
Using UML State Machines and Petri Nets for the
Quantitative Investigation of ETCS

J. Trowitzsch∗

Technical University Berlin
Real-Time Systems and Robotics

joni@cs.tu-berlin.de

A. Zimmermann
University Potsdam

Hasso Plattner Institute for IT Systems
Engineering

armin.zimmermann@hpi.uni-
potsdam.de

ABSTRACT
This paper proposes the modeling of technical systems and
their behavior by means of Unified Modeling Language
(UML) State Machines and the extending UML Profile for
Schedulability, Performance, and Time. This Profile allows
the detailed description of quantitative system aspects such
as times and probabilistic choice. For the resulting models
a transformation into a Stochastic Petri Net is established.
The Petri Net’s performance measures can be determined by
simulation or numerical analysis. A part of the future Euro-
pean Train Control System (ETCS) serves as an application
example. The relationship between ETCS communication
quality and minimal distance between subsequent trains is
investigated.

Keywords
UML State Machines, Stochastic Petri Nets, ETCS, Model
Transformation

1. INTRODUCTION
Developing complex technical systems requires adequate

methods for modeling and evaluating the behavior of the
later system. Evaluation of performance measures and reli-
ability can be done by applying quantitative analysis meth-
ods.

The Unified Modeling Language (UML) [17] is a widely ac-
cepted modeling standard in industry. Without extensions
UML does not allow modeling and evaluating of properties
like timeliness, throughput or fault tolerance. This paper
proposes modeling of technical systems my means of UML
State Machines using the extending Profile for Schedulabil-
ity, Performance, and Time (SPT) [16] to include quantita-
tive system aspects in the model.

∗The author’s research work is supported by a PhD scholar-
ship from the German Research Council (DFG) under grant
GrK 621-2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Valuetools ’06, October 11-13, 2006, Pisa, Italy
Copyright 2006 ACM 1-59593-504-5/06/10 ...$5.00

In order to allow a quantitative evaluation the resulting
model is transformed into a Stochastic Petri Net following
our approach presented in previous papers [21, 20]. The
proposed transformation rules are extended in this paper.
Performance measures for the Petri Net can be determined
by applying simulation or numerical analysis methods. Ex-
isting results and software tools can thus be exploited for
UML State Machines.

Several approaches can be found dealing with quantitative
analysis of extended UML diagrams. These often origin from
the field of software performance evaluation. Basically two
different strategies exist. The direct strategy is to develop
and apply an analysis that operates directly on the UML
model. The indirect strategy includes the mapping of the
UML model into an established performance model such as
Stochastic Petri Nets or Queuing Network Models.

Generalized Stochastic Petri Nets (GSPNs) [1] are used
by King and Pooley in [12, 18] to represent the behavior of
StateCharts. Each state is mapped into a place and each
state transition becomes a transition in the Petri Net. The
resulting sub models are combined using UML collaboration
diagrams. Another approach for systematic development of
GSPNs is proposed by Merseguer [14] and Bernardi et al. [2].
Extended UML diagrams are translated into labeled GSPN
modules, which are merged into a complete model subse-
quently. In [9] also an extension of UML models with prob-
abilistic choice and stochastic timing is proposed. These
indirect approaches have in common that they are limited
to exponentially distributed timing. Whereas our indirect
approach also covers deterministic and even more general
timing.

The idea of direct quantitative evaluation of the extended
UML model without transforming it into another model
class is followed by Lindemann et al. in [13]. Determin-
istic and exponential delays are considered. The result-
ing stochastic process is a generalized semi-Markov process
(GSMP), which is numerically analyzable under certain
structural constraints.

A part of the future European Train Control System
(ETCS) is considered as application example. Operating
at final implementation level it provides dynamic track as-
signment using radio communication, the so-called moving
block operation. Parameters for reliability and timeliness are
included in the existing specifications. But beyond it a de-
tailed investigation of the behavior using a stochastic model
for retrieving performance measures is needed.

In previous works [24, 21] a failure model for the used com-

munication system GSM-R is developed and investigated.
The present paper describes communication between trains
and control center by means of State Machines. Quanti-
tative evaluation of the resulting Petri Net shows the re-
lationship between train distance and safe operation. Also
the impact of the reliability of the communication link is
shown. Considering the reliability for GSM-R required by
the specifications, the results show that an efficient opera-
tion of ETCS is hardly reachable.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the extension of UML State Machines by
quantitative information using the SPT profile. The trans-
formation of such a model into an Stochastic Petri Net is
explained subsequently. In Section 4 the application exam-
ple is introduced. An UML State Machine model for the
communication of ETCS is presented and transformed into
a Petri Net. The interrelationship between train distance
and an emergency stop forced by a communication error is
calculated afterwards. Summary and outlook are given fi-
nally.

2. BACKGROUND
The Unified Modeling Language (UML) [17] is a collection

of semi-formal models for specifying, visualizing, construct-
ing, and documenting models of technical systems and of
software systems. It provides various diagram types allowing
the description of different system viewpoints. Static and
behavioral aspects, interactions among system components
and implementation details are captured. UML is very flex-
ible and customizable, because of its extension mechanism.
The extension mechanism of UML allows the definition of
profiles. A profile for a special application domain maps
aspects from the domain to elements of the UML meta-
model. The UML Profile for Schedulability, Performance,
and Time (SPT) [16] is an example for such a profile. It
enables advanced annotation of quantitative system aspects
such as timing and probabilistic information. For this a
set of stereotypes and tagged values is provided. Among the
behavioral UML diagrams especially the State Machines are
suitable for modeling the systems behavior. Sequence charts
and collaboration diagrams describe single cycles inside the
system and therefor they are not directly useful for inves-
tigation of the whole behavior. UML State Machines are
a variant of Harels StateCharts [7]. Because of the avail-
ability of suitable software tools they are widely accepted in
industry.

At this point we abstain from giving a detailed description
of UML State Machines and the SPT profile. In the follow-
ing a short description is given how the relevant quantitative
information may be represented within the State Machines
by means of the SPT profile. For more detailed information
we refer to the prior works cited before.

Figure 1 shows an example for a simple annotated UML
State Machine. The most important elements within a State
Machine are states (A and B in Fig. 1) as well as transitions.
These model state transitions and are depicted as arrows be-
tween states. A simple State Machine is always in one state
at most. To each state certain actions may be assigned.
In Fig. 1 state A has an action ac1 which is processed dur-
ing entering of the state (entry). The actions ac2 and ac3

are processed during the stay in the state (do) and during
leaving of the state (exit).

Transitions model a state transition and may depend on

A

entry / ac1

do / ac2

exit / ac3

B

<<RTdelay>>

{RTduration = (10, 's')}

<<RTdelay>>

{RTduration = (8, 's')} <<RTdelay>>

{RTduration = ('exponential', 20, 's')}

<<RTdelay>>

{RTduration = ('exponential', 100, 's')}

stereotype

tagged value

Figure 1: Example of an UML State Machine with
SPT annotations

guards but also generate events. The complex composite
states are divided into regions. Therefor they are suitable
for modeling concurrent aspects. Each region specifies its
own sequence having a local state. With it the description
of parallel and synchronized processes is easier compared to
the classical automata model. Furthermore State Machines
include pseudostates which are abstractions that encompass
different types of transient vertices.

Fig. 1 includes examples for the usage of stereotypes and
tagged values from the SPT profile. The stereotype RTdelay
describes the delay of an action, for example 10 seconds for
ac1 in Fig. 1. Tagged values consist of a property name
and an assigned value, for example {RTduration=(8,’s’)}.
For the timing information it is possible to specify distri-
bution functions for stochastic timing, like ac2 in Fig. 1.
The number value indicates the expectation for the dura-
tion as specific parameter for the exponential distribution.
The specification of probabilities at transitions can be done
using the PAstep stereotype and its tagged value PAprob.

3. TRANSFORMATION OF UML STATE
MACHINES INTO PETRI NETS

In the following we explain our approach for the transfor-
mation of UML State Machines into Stochastic Petri Nets
aimed at quantitative evaluation. We introduce the transfor-
mation rules for the use of synchronization between regions
of a State Machine and for the use of counter variables. In
this context, basic transformation rules have been presented
in [21, 20] in detail, so that we abstain from recalling them
here. We are aware, that at this point we can not claim
completeness for transforming all State Machine elements
and constructs. However, they are subject of our ongoing
work.

The approach is based on a decomposition of UML State
Machines into its basic elements, like states, pseudostates,
and transitions. For each element, transformation rules from
State Machines into Stochastic Petri Net fragments are spec-
ified. Thereby the additional quantitative annotations from
the SPT profile are taken into account. Additional timing
information are of special interest, such as provided by the
RTdelay stereotype. The resulting Petri Net fragments are
finally composed following the original decomposition [21].

3.1 Stochastic Petri Nets
Petri Nets are a model applicable to discrete event sys-

tems where synchronized and concurrent processes play an
important role. A Petri Net is a bipartite graph whose ver-

tices are denoted as places and transitions. Places may in-
clude tokens. The distribution of all tokens over the places
corresponds with the state of the model.

Arcs connect places and transitions and describe the de-
pendency of the active elements (transitions) on tokens in
places and their changing due to the transitions firing. For
a detailed definition we refer to the extensive literature for
this field. Overviews can be found for example in [15, 19].

Stochastic specifications such as firing times for the tran-
sitions were added to Petri Nets in order to enable model-
ing and evaluation of quantitative system aspects, see [1].
In the following extended deterministic and stochastic Petri
Nets (eDSPNs) [6] are used. Figure 2 shows an exemplary
eDSPN model describing a two-component redundant sys-
tem with repairing. Components correspond to tokens in
the places. At the beginning both components are intact
(two tokens in p1).

p1 p2 p3t1 t3

t2

t4

2

2

Figure 2: Example of a Stochastic Petri Net

Immediate transitions are drawn as small rectangles (t3)
and describe activities that have no delays. Due to the as-
signed firing weights the non-deterministic solving of con-
flicts is possible. Corresponding to their firing times timed
transitions are drawn as empty rectangle (t1 - exponential
distribution function), as black rectangle (t2 - determinis-
tic timing) or as gray rectangle (t4 - general distribution
function).

3.2 Transformation of Simple States and
Transitions

The basic transformation of simple states and the in-
volved fixed naming conventions have been introduced in
detail in [21]. In the following we briefly explain how tim-
ing information is transformed into corresponding Petri Net
transitions.

Time may be consumed within each state because of the
optional internal entry, do, and exit activities. Regardless if
the optional activities within a state are specified or not we
always follow the temporal and logical order of the activi-
ties. If an activity is not specified or if no additional timing
information is associated with the activity the correspond-
ing transition in the resulting Petri Net is an immediate
transition.

Table 1 presents possible annotations for the RTdelay
stereotype from the SPT profile and the consequences for the
transitions in the resulting Petri Net. Constant times result
in deterministic transitions. Exponentially distributed tim-
ing results in exponential transitions with the corresponding
rate λ. Stochastic timing with a known quantile results also
in exponential transitions.

Figure 3 shows an example for the transformation of a sim-
ple state transition considering the timing annotations from
the SPT profile. The missing do activity at state A results in
the immediate transition t do A. The constant times for the

entry and exit activities result in the corresponding deter-
ministic transitions t ent A and t ex A respectively. The
state transition from A to B is assigned by an exponentially
distributed delay with the mean value of 100 seconds. The
resulting exponential transition t trans A B therefore has
a rate λ = 1/100.

ex_AAent_A ent_Bout_A

A

entry / ac1

exit / ac3

B

t_ent_A t_trans_A_Bt_do_A t_ex_A

<<RTdelay>>

{RTduration = (7, 's')}

<<RTdelay>>

{RTduration = (2, 's')}

<<RTdelay>>

{RTduration = ('exponential', 100, 's')}

= 1/1007 2

...

Figure 3: Transformation of a simple state transition

3.3 Transformation of special constructs
Special elements and constructs within UML State Ma-

chines include for example pseudostates, the synchroniza-
tion between regions, or the usage of counter variables.
Pseudostates are transient vertices with a special semantics
which has to be considered during the transformation into
a corresponding Petri Net fragment. In [20] transformation
rules for choice, join, fork, junction, and initial pseudostates
were introduced amongst others. In the following further ex-
tensions will be explained.

The synchronization of regions can be achieved by ex-
changing events. Fig. 4 displays an example for it. The
regions are divided by a dashed line. In the upper region
the state transition from A to B has the event ev as post-
condition. Thus this event is generated when the state tran-
sition is taken. In the lower region, on the other hand, the
state transition from C to D is only possible if the pre-
condition ev is satisfied. Thus the event already has been
generated by the state transition in the upper region. If
the event has been generated but the state transition within
the lower region is not possible due to other reasons, the
generated event is discarded.

A B

C D

flush-ev ev t_trans_AB

...

ent_A

ex_C t_ex_C out_C

...

... ...

...

... ...

......

/ev

ev

Figure 4: Synchronization of regions using events

The transformation results in a place with the same name
as the event (place ev in Fig. 4). This place connects the
generated Petri Net fragments for the involved single re-
gions. In Fig. 4 this means for example that state C (ex C)
can only be left (t ex C) if place ev contains a token. This
is the case if the state transition from A to B took place.

Table 1: Stereotype RTdelay - tagged value RTduration transformation

Tagged Value Petri Net transition

(8,’s’) deterministic - delay 8 sec
(’exponential’, 32,’s’) exponential - rate λ = 1/mean

(’percentile’, 80, (5, ’s’), ’exponential’) exponential - rate via F (x) = 1 − e−λx

If place ev contains a token but place ex C does not the
event (the token) is discarded by firing the lower prioritized
transition flush ev.

Using counter variables in a State Machine model is often
reasonable, for example if the number of failures of a cer-
tain system component should be observed and is allowed
to happen only a certain times. A simple example for the
use of such a counter can be seen in Fig. 5. The variable
counter is incremented each time a state transition from A
to B happens, and set back to 0 during state transition from
B to A.

A B

/counter++

/counter=0

... counter...

ent_Bout_A t_trans_AB

......

out_B

......

#counter

t_trans_BA

ent_A

Figure 5: Counter variable example in State Ma-
chines and resulting Petri Net

The transformation generates for such a counter variable
a corresponding place with the same name within the Petri
Net (place counter in Fig. 5). The incrementation is repre-
sented by adding a token to this place. Resetting to 0 is rep-
resented by the firing of transition t trans BA. It removes
all token from the place counter via the marking dependent
arc inscription #counter.

4. AN APPLICATION
The future European Train Control System (ETCS) has

been introduced in order to enable fast, efficient, and con-
sistent train traffic across Europe. It is meant to replace
the existing national systems. The traditional fixed block
structure of the tracks and the release of those track blocks
for a train is repealed. In the final implementation (ETCS
level 3) a continuous assignment of free track blocks is intro-
duced. Thereby an improvement of the bad track utilization
because of the traditional fixed block structure of the tracks
ought to be achieved. The traditional track side electro-
mechanical infrastructure is replaced by a radio communi-
cation system. The tasks of classical railway control centers
are handled by the Radio Block Centers (RBC). Every train
actively checks its integrity and reports its position to the
responsible RBC periodically. Every RBC observes the po-
sitions, speeds, and planned routes of the trains within its
scope. It assigns to each train free track blocks on which the
train can drive safely by transmitting movement authority
messages to them. This method is called moving block oper-
ation. For it the reliable and timely data exchange via the

radio interface as well as the data processing at the train
and the RBC are critical issues for efficient and safe train
traffic.

The data exchange between train and RBC is obviously
an important issue because otherwise a train could not
be informed about the free track blocks along its route.
This would make the high speed operation impractical.
The connection between trains and RBC is handled wire-
less via GSM-R (global system for mobile communications
- railway), a variant of the known GSM system for mobile
phones [3]. The radio communication was specified and de-
signed in detail inside the EIRENE (European Integrated
Railway Radio Enhanced Network) project [5]. The EURO-
RADIO layer of the communication connection specifies the
requirements for the radio communication [4, 11].

In the following the time critical procedure for the deter-
mination of the free track section is considered. Thereby
the worst-case assumptions from the specification are used
to calculate the guaranteed reachable best possible track uti-
lization. First a train checks its integrity. This takes as per
specification up to 5 seconds. Afterwards the train trans-
mits the position of the end of the train from the beginning
of the integrity check (min safe rear end) to the RBC. This
is done periodically every t seconds, with t ≥ 5sec. Since
the accuracy obviously becomes better if a train sends its
position more often we assume in the following t = 5sec.

The position message is send via GSM-R to the RBC.
This is specified to take between 400 and 500 milliseconds
at middle. Processing of the data at the RBC takes 500 mil-
liseconds. During this time the movement authority message
for the subsequent train is generated. The transmission of
this message again takes in middle between 400 and 500
milliseconds.

Communication via GSM-R is not safe. Data packages
may be delayed or even get lost. Therefor each train must
decide after a certain deadline if a continuation of the drive is
no longer safe and an emergency braking has to be initiated.
The deadline depends on the driven speed and on the length
of the assigned free track section.

We consider two trains Train 1 and Train 2 which drive
at the same speed v and directly follow each other. The
head-to-head distance is s. Our goal is the calculation of
the deadline d for the decision if Train 2 has to initiate
an emergency brake when no new movement authority mes-
sage arrives. Fig. 6 illustrates this context. The train length
(about 410m for German high-speed train ICE), the posi-
tion error of not more than 20m, and the braking distance
(depending on actual speed between 2300m and 2800m have
to be subtracted from the train distance s. We assume in the
following the sum of these three parameters as l = 3000m.

In the worst-case Train 1 crashes after an integrity check
or might have lost coaches. Because of this the delay a
between receiving the message at Train 2 and the integrity

Train1Train2

distance s

distance length
train

age
packetbreak

deadline d error

Figure 6: Train Distance and Deadline

check at Train 2 also has to be subtracted from the available
waiting time. According to the detailed information from
the specification this delay a is between 5 and 9 seconds.

The deadline d now can be calculated respectively: d =
s−l
v

− a, whereas v = 83ms−1 according to the speed of
current ICE trains.

4.1 Train Communication Model
The ability to exchange data packets with position and

integrity reports as well as movement authority packets
is crucial for the reliable operation of ETCS. In the fol-
lowing we adopt worst-case assumptions based on the re-
quirements from the ETCS specifications, because otherwise
there would be no guarantee of a working integrated system.
A model of the position report message exchange and emer-
gency braking due to communication problems is developed
below. The goal is to analyze the dependency between max-
imum throughput of trains and reliability measures of the
communication system.

Fig. 7 shows the UML State Machine describing the ETCS
communication. It includes five parallel regions which are
explained in detail subsequently.

ReadyToSend
/TrainSend

<<RTdelay>>

{RTduration = (5,’s’)}

TrainSend

/RBCreceive

<<PAstep>>

{PAprob = 0.0188}

<<PAstep>>

{PAprob = 0.9822}

<<RTdelay>>

{RTduration = (’exponential’, 0.45, ’s’)}

RBCsend

/TrainReceive

<<PAstep>>

{PAprob = 0.0188}

<<PAstep>>

{PAprob = 0.9822}

RBCreceive

/RBCsend

tick/counter++

/counter=0

[else]

[counter>=20]

TrainReceive/counter=0

Empty

Idle

Empty

Counting

ETCS GSM-R

/counter=0

<<RTdelay>>

{RTduration = (0.5, ’s’)}

<<RTdelay>>

{RTduration = (’exponential’, 0.45, ’s’)}

<<RTdelay>>

{RTat = (0.75, ’s’)}

<<RTdelay>>

{RTduration = (’exponential’, 900.0, ’s’)}

Stopped

do/calc-stopped

Full

do/calc-down

Busy

do/calc-work

Full

do/calc-up

Figure 7: UML State Machine model for ETCS com-
munication

The top region models the generation of position/integrity
packages at Train 1. Such a package is generated every
5 seconds at which an event TrainSend is produced. The
transmission of the data packages from the train to the
RBC via the radio link is described in the region below.
The radio link has two possible states Empty (no transmis-
sion activity) and Full (sending of data package). With the
occurrence of the TrainSend event a new data package is
ready to be send to the RBC. This data package is cor-
rectly send to the RBC with a probability of 98.22% and
with a probability of 1.88% the transmission is incorrect.
This is modeled using a choice pseudostate and the cor-
responding PAprob annotations at its outgoing transitions.
These values result from the bit error rate of 10−4 given
by the specification and the known package size of 190 bit:
P (error) = 1−(1−10−4)190 = 1.88%. The correct transmis-
sion takes 0.45 seconds in middle. This is the total trans-
mission delay. We do not separate between the delays of
the radio and the ISDN backbone transmission here. If the
channel is empty again, an event RCBreceive is generated
during the corresponding transition to state Empty. The
next region models the behavior at the RBC. With the oc-
currence of event RCBreceive the transition from state Idle
to state Busy is triggered. The processing of the received
data package takes 5 seconds. During the subsequent tran-
sition to state Idle an event RCBsend is generated. The
region below models the sending of a movement authority
message from the RCB to Train 2. The only differences
to the sending from train to RCB are the varying events
that play a role. Event RCBsend activates the transition
from state Empty to state Full. An error may again occur
during transmission. An event TrainReceive is generated af-
ter a correct transmission . The lowest region models the
observation of the deadline for receiving a new movement
authority message at Train 2. A counter variable counter is
used for it. Two states exist: Counting and Stopped. Every
0.75 seconds an event Tick is generated if a exemplary dead-
line of 15 seconds is considered. With each new Tick event
counter is incremented. If counter has reached a value of 20
the train initiates an emergency breaking. For this a delay
of 900 seconds in middle is assumed. Afterwards counter is
set back to 0 and the train starts driving again. If counter
is smaller than 20 state Counting is entered again waiting
for the next Tick. A new movement authority message has
been received if the region is in state Counting and the event
TrainReceive occurs. In this case counter is set back to 0.

4.2 Resulting Petri Net
The presented model for the ETCS communication now

is transformed into a corresponding Stochastic Petri Net.
The resulting net includes several sequences of immediate
transitions that have no influence on the behavior of the
model. These sequences result from the single transforma-
tion of each State Machine element with actions or timing
annotations possibly missing. Therefore the Petri Net is
simplified by using two simple structural rules that avoid
unnecessary vanishing states.

First, for all sequences place - immediate transition - place
both places are merged and the transition is deleted. This
is feasible if the immediate transition is the only connec-
tion between the places and not in structural conflict with
any other transition. The second simplification considers
all corresponding simple sequences timed transition - place

- immediate transition. In this case the place can be deleted
and both transition can be merged so that one timed tran-
sition is left.

The resulting Stochastic Petri Net after applying the re-
duction rules is shown in Fig. 8. The initial state of each
model part is reached via firing of transition t init. After-
wards each model part has its own local behavior whose
states are determined by the location of one mark. The
RBC for example can be in the states c idle or busy de-
pending on if it currently waits or processes a message.
The generation of a new message at the train in front hap-
pens every 5 seconds, so that the deterministic transition
t trans rts rts has a firing time of 5 and is immediately
activated again after firing. The model parts for the up-
and down link of the communication channel between train
and RBC are quite similar. The probability of a package
loss, for example because of incorrect transmission, is rep-
resented by the firing of one of the conflicting immediate
transitions t choice e and t choice f. Both transitions have
corresponding firing weights. The duration of the whole
transmission is represented by the exponential transitions
t do full and t do full2 respectively.

c_count

t_trans_rts_rtsc_rts

c_empty

t_do_busy

full_1

counter

t_do_full2

flush_ev_TrainSend ev_TrainSend

t_ex_empty

t_choice_e

choice_e_f

t_choice_f

flush_ev_RBCreceive

t_do_full full

ev_RBCreceive

t_ex_idlec_idle

t_init
init

t_flush_ev_RBCsend

t_ex_empty_1

ev_RBCsend

c_empty_1

choice_e_f_1

t_flush_ev_TrainReceive

t_choice_e_1

t_choice_f_1
ev_TrainReceive

t_tick
count_reset

t_flush_ev_tick

ev_tick
t_ex_count_tick

counter_ok

deadline_violation

stopt_do_stopout_stop

t_trans_stop_count

out_count_tick

#counter

#counter
20

t_ex_count_TrainReceive
out_count_TrainReceive

busy

Figure 8: Resulting Petri Net for ETCS communi-
cation

The exchange of messages between the model parts is
done using a similar construct. For example a message
send from the train to the RBC is represented by a token

in place ev TrainSend. This is immediately send (because
t ex empty has a higher priority) or dropped otherwise (fir-
ing of flush ev TrainSend). This corresponds to the seman-
tics for the synchronization between regions of a State Ma-
chine as presented in section 3.3.

The lowest model part describes the behavior of the
counter for the receiving deadline and initiation of an emer-
gency braking. In the initial state a token is located in state
c count. Two events may occur: either a new message is
received (t ex count TrainReceive fires and afterwards all
token from place counter are removed via count reset us-
ing marking dependent transition inscription #counter) or
a new Tick event is generated (t tick). Afterwards the ini-
tial state is reached again if the counter variable has not
reached a value of 20 yet and counter ok fires. Otherwise
an emergency stop is initiated. With the firing of t do stop
it ends and the cycle starts again.

4.3 Results of the Quantitative Evaluation
The performance of the model can now be evaluated. The

probability for a train being stopped because of a violation
of the deadline can be obtained by the measure P (Stop) =
P {�counter >= 20}. A steady state analysis results in the
mean probability during operation, i.e. the time a train
spends in this undesirable state.

Calculation of this measure is not possible with one of the
known numerical analytical methods because multiple non-
exponential transitions are active at the same time. Use
of standard simulation methods is rather limited because
the relevant probabilities for an emergency stop are very
small. This problem of rare events leads to unacceptable
long calculation times. Therefore the investigations are done
applying the RESTART method [22] which is a variant of
importance splitting for the accelerated simulation of rare
events. For the performance evaluation the TimeNET [23]
tool is used. It includes an implementation of the RESTART
method [10] for Stochastic Petri Nets. The number of to-
kens in place counter is used to define thresholds for the
RESTART method. The tool calculates certain thresholds
by using presimulation.

1e−18

1e−16

1e−14

1e−12

1e−10

1e−08

1e−06

1e−04

0.01

1

3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y

of
 s

to
pp

ed
 tr

ai
n

Train distance (km)

Information age 5sec
9sec

Figure 9: Probability of train being stopped depen-
dent on train distance

Fig. 9 shows the relationship between train distance and
the resulting probability for an emergency stop. Influence of
the age of the received data is represented by two curves for
5 and 9 seconds, respectively. The curves display a nearly
logarithmic dependency on the distance for the probability,

from a distance s of 4.5 km on. For a mean number of one
emergency stop due to communication errors per train and
year at most the distance must be at least s = 6 km.

The analysis shows the importance of the unsafe commu-
nication via GSM-R (package loss and delay) for the maxi-
mum possible track utilization when ETCS operates at level
3 implementation. The existing idea of driving at brake dis-
tance is unrealistic. Obviously larger distances are needed
for safe operation. A more detailed comparison with the cur-
rent fixed block operation can be found at [25]. Similar in-
vestigations have been driven out for example by Hermanns
et al. [8].

5. CONCLUSION
The presented paper describes the modeling of the be-

havior of technical systems by means of UML State Ma-
chines and the subsequent quantitative investigation of such
models. For this purpose, extensions from the UML Pro-
file for Schedulability, Performance, and Time are used to
introduce the necessary additional information such as de-
lays and occurrence probabilities of actions into the UML
State Machines. A method for the transformation of the
resulting models into corresponding Stochastic Petri Nets is
proposed. Performance measures can now be calculated by
using known Petri Net software tools and algorithms.

As an application example a section of the communica-
tion between trains and Radio Block Centers (RBC) within
the future European Train Control System (ETCS) is con-
sidered. In order to enable safe and efficient train traffic a
safe, reliable, and timely exchange of communication data
packages is needed, especially because track side infrastruc-
ture is no longer available for this purpose in the planned
final implementation of ETCS. This contribution introduces
a simple State Machine model of the communication as well
as its transformation into a Stochastic Petri Net. The subse-
quent quantitative analysis by applying simulation methods
for rare events shows the significant influence of the commu-
nication quality on the smallest possible distance between
two trains. The results make it doubtful that efficient train
traffic for high speed trains can be achieved under the given
requirements. More detailed investigations are necessary in
order to quantify safety and efficiency of technical solutions
within this area more precisely.

The implementation of the explained methods as an ex-
tension of the new version of the TimeNET tool [26] is cur-
rently on the way. Direct editing of UML State Machine
models within the TimeNET GUI will be enabled, but also
the importing of models created in other UML editors. Basic
transformation, analysis, and result presentation are already
implemented within TimeNET.

6. REFERENCES
[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli,

and G. Franceschinis. Modelling with Generalized
Stochastic Petri Nets. Series in parallel computing.
John Wiley and Sons, 1995.

[2] S. Bernardi, S. Donatelli, and J. Merseguer. From
UML Sequence Diagrams and Statecharts to
analysable Petri Net models. In Proc. of the 3rd Int.
Workshop on Software and Performance (WOSP),
pages 35–45, Rome, Italy, July 2002.

[3] A. Coraiola and M. Antscher. GSM-R network for the
high-speed line Rome-Naples. Signal und Draht,
92(5):42–45, 2000.

[4] EEIG ERTMS User Group. Euroradio FFFIS. UIC,
Brussels, 2000.

[5] EIRENE Project Team. EIRENE System
Requirements Specification. UIC, Brssel, 1999.

[6] R. German. Performance Analysis of Communication
Systems, Modeling with Non-Markovian Stochastic
Petri Nets. John Wiley and Sons, 2000.

[7] D. Harel and M. Politi. Modeling Reactive Systems
with Statecharts: The StateMate Approach. Wiley,
New York, 1998.

[8] H. Hermanns, D. N. Jansen, and Y. Usenko. From
stocharts to modest: a comparative reliability analysis
of train radio communications. In WOSP ’05:
Proceedings of the 5th international workshop on
Software and performance, pages 13–23, New York,
NY, USA, 2005. ACM Press.

[9] R. Hopkins, M. Smith, and P. King. Two approaches
to integrating UML and performance models. In Proc.
of the 3rd Int. Workshop on Software and
Performance (WOSP), pages 91–92, July 2002.

[10] C. Kelling and G. Hommel. A framework for rare
event simulation of stochastic Petri nets using
RESTART. In Proc. of the Winter Simulation
Conference, pages 317–324, 1996.

[11] D. Kendelbacher and F. Stein. EURORADIO -
communication base system for ETCS. Signal und
Draht, 94(6):6–11, 2002.

[12] P. King and R. Pooley. Using UML to derive
stochastic Petri net models. In Proceedings of the 15th
UK Performance Engineering Workshop, pages 45–56,
Bristol, UK, July 1999.

[13] C. Lindemann, A. Thümmler, A. Klemm,
M. Lohmann, and O. Waldhorst. Performance
Analysis of Time-enhanced UML Diagrams Based on
Stochastic Processes. In Proc. of the 3rd Workshop on
Software and Performance (WOSP), pages 25–34,
Rome, Italy, 2002.

[14] J. Merseguer. On the use of UML State Machines for
Software Performance Evaluation. In Proc. of the 10th
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2004.

[15] T. Murata. Petri Nets: Properties, Analysis and
Applications. In Proceedings of the IEEE, volume
77(4), pages 541–580, April 1989.

[16] Object Management Group. UML profile for
schedulability, performance, and time. www.uml.org,
March 2002.

[17] Object Management Group. Unified Modeling
Language Specification v.2.0. www.uml.org, September
2003.

[18] R. Pooley and P. King. The Unified Modeling
Language and Performance Engineering. In IEE
Proceedings - Software, volume 146(2), March 1999.

[19] W. Reisig. Petri nets. Springer Verlag Berlin, 1985.

[20] J. Trowitzsch and A. Zimmermann. Real-Time UML
State Machines: An Analysis Approach. In Object
Oriented Software Design for Real Time and
Embedded Computer Systems, Erfurt, Germany,

September 2005. NetObjectDays.

[21] J. Trowitzsch, A. Zimmermann, and G. Hommel.
Towards Quantitative Analysis of Real-Time UML
Using Stochastic Petri Nets. In 13th Int. Workshop on
Parallel and Distributed Real-Time Systems
(WPDRTS), Denver, Colorado, April 2005.

[22] M. Villn-Altamirano, J. Villn-Altamirano, J. Gamo,
and F. Fernndez-Cuesta. Enhancement of accelerated
simulation method restart by considering multiple
thresholds. In Proc. 14th Int. Teletraffic Congress,
pages 797–810. Elsevier, 1994.

[23] A. Zimmermann, J. Freiheit, R. German, and
G. Hommel. Petri net modeling and performability
evaluation with TimeNET 3.0. In Proc. of the 11th
Int. Conf. on Tools and Techniques for Computer
Performance Evaluation, pages 188–202, Schaumburg,
Illinois, USA, 2000.

[24] A. Zimmermann and G. Hommel. A train control
system case study in model-based real-time system
design. In Proc. of the 11th Int. Workshop on Parallel
and Distributed Real-Time Systems (WPDRTS),
Nizza, 2003.

[25] A. Zimmermann and G. Hommel. Towards Modelling
and Evaluation of ETCS Real-Time Communication
and Operation. Journal of Systems and Software,
77(1):47–54, July 2005.

[26] A. Zimmermann, M. Knoke, A. Huck, and
G. Hommel. Towards version 4.0 of timenet. In 13th
GI/ITG Conference on Measurement, Modeling, and
Evaluation of Computer and Communication Systems,
MMB 2006, Nuernberg, March 2006.

