
Model-Based Performance Engineering of

General Motors’ Vehicle Supply Chain

Armin Zimmermann, Michael Knoke, Shang-Tae Yee, and Jeffrey D. Tew

Abstract— We present results of a collaboration project,
during which parts of General Motors’ north American vehicle
supply chain have been modeled and evaluated. A variant of
colored stochastic Petri nets has been developed for this task,
and support for model creation and performance evaluation
was implemented in our tool TimeNET. Variations of the model
and their stepwise evaluation lead to suggestions about how the
supply chain can be reorganized in order to improve the time
between customer order and vehicle delivery (order-to-delivery
time).

I. INTRODUCTION

Supply chains and logistic networks play a major role in

today’s businesses because of the growing importance of

external suppliers to final products and partition of work

between distributed plants. Material buffer levels are kept

small to decrease the bound investments. Timely deliveries

of intermediate parts are thus necessary to avoid shipment

delays while keeping the amount of work in process small.

Model-based quantitative evaluation of logistic networks is

a vital tool to aid in the decision-making at various stages of

planning, design, and operation of supply chain operation.

A robust control and management of supply chain loops

can be achieved by analyzing performance measures such

as the throughput rate, average resource utilization, expected

number of parts in a buffer, setup costs, work-in-process

inventory, mean order queue time, etc.

Typical decisions during the planning and design stages

include the number of containers or transport facilities,

buffer storage capacity in a logistic center, scheduling of

material and parts, number of links in inbound and outbound

logistics, and location of distribution centers. During the

operational phase, performance modeling and analysis can

help in making decisions related to predicting the probability

of a material shortage.

The work presented here is the result of an industrial

project carried out by General Motors Research and De-

velopment together with groups of Stanford University and

Technische Universität Berlin. A specific variant of colored

stochastic Petri nets has been developed and implemented in

the software tool TimeNET [1], [2] during the project. The

overall goal was to model and analyze supply chain issues

of GM. Previous results have been presented in [3].

This work was supported by General Motors Research and Development.
A. Zimmermann and M. Knoke are with the Faculty of Electrical En-

gineering and Computer Science, Real-Time Systems and Robotics Group,
Technische Universität Berlin, 10587 Berlin, Germany {zimmermann,
knoke}@cs.tu-berlin.de

S.-T. Yee and J. D. Tew are with the GM Research and Devel-
opment Center, 48090-9055 Warren, MI, USA {shang-tae.yee,
jeffrey.tew}@gm.com

The presented supply chain model is an adapted version

of the actual one. Details have been altered in order to keep

the original information confidential. Model and problems

are however characteristic. The main issue considered here

(thus driving the modeling and evaluation process) is the

question how long customers have to wait for their vehicle

from the day of the purchase decision. This delay between

order and delivery (or order-to-delivery time) is denoted by

OTD time in the sequel.

The background is the way how the U.S. vehicle business

(in contrast to European car makers) works today. Vehicle

dealerships keep a high number of cars in their lot to

have a large selection available for prospective customers.

Buyers usually select a vehicle directly from the lot and

thus do not need to worry about the time it would take to

get an individually ordered vehicle. There are however big

drawbacks for the car making companies and dealers. The

high amount of available cars binds money and makes fast

reactions to changing customer needs impossible. In fact, the

selection of vehicles and the installed options are guessed

based on past sales patterns. What thus often happens is

that many of the vehicles can only be sold by giving large

rebates, decreasing the earnings substantially. Another issue

is that individually manufactured vehicles could be sold with

a higher price considering the different options.

The current way of operating the supply chains, plants and

logistics implies a very long OTD time for an individually

ordered vehicle. Car makers have realized that an agile

supply chain and a short OTD time can be a substantial

marketing factor and lead to higher earnings. Even in Europe,

where individually ordered vehicles are sold by tradition,

OTD times have become an issue to attract more customers

lately. The example considered in this paper shows how

OTD times of a certain operation style can be evaluated

and how possible improvements are quantifiable to aid in

strategic design decisions.

An adequately complex and flexible model class is neces-

sary to capture the detailed behavior of a logistic network and

the individual nodes, such as manufacturing plants (assem-

bly, fabrication), logistics centers, suppliers and dealerships.

We use a variant of colored stochastic Petri nets for the

modeling. There is a large quantity of literature available

on Petri nets with individual tokens. Different variants have

evolved, namely colored Petri nets [4], [5], algebraic high-

level nets [6] and Predicate/Transition nets [7].

Extensions of colored Petri nets by stochastic firing times,

as they are necessary for a performance evaluation, have been

introduced in [8], [9]. Applications are e.g. demonstrated

14151-4244-0991-8/07/$25.00/©2007 IEEE

in [10], [11].

The variant of stochastic colored Petri nets used here was

mainly influenced by the definition given in [5]. The main

differences are easier specification of arc inscriptions, allow-

ing an automated generation of efficient analysis algorithm

code, and a true stochastic timing semantics which is in

accordance to the usual understanding of stochastic timed

Petri nets. Type definitions are simplified, and arc variables

do not need to be declared as they have to be in CPNs using

the specification language Standard ML.

Model-based evaluations of supply chains have been re-

ported in the literature, including the following results.

Generalized stochastic Petri nets are used for modeling and

analyzing supply chain networks in [12]. Make-to-stock and

assemble-to-order systems are compared in terms of total

cost. A toolset for modeling and analysis of logistic networks

is presented in [13]. Another software tool which can be used

to model and analyze logistic systems is ExSpect [14], which

uses hierarchical colored Petri nets. The discrete behavior

of logistic systems is modeled by timed Petri-Nets with

individual tokens in [15]. The application of timed colored

Petri nets to logistics is also covered in [16].

The paper is structured as follows. The subsequent section

briefly introduces the variant of colored stochastic Petri

nets used throughout the paper and project. Section III

describes the developed model of General Motors’ supply

chain. Order-to-delivery time for customers is evaluated

based on the model in Section IV, and different setups are

checked if they improve it. The results are summarized in

the conclusion.

II. COLORED STOCHASTIC PETRI NETS

This section briefly describes stochastic colored Petri nets

(SCPNs), which are especially useful to describe complex

stochastic discrete event systems and thus appropriate for

logistic problems. Places and transitions of a Petri net natu-

rally map to buffers and activities or similar entities. Objects

which are created, changed and moved through a system are

usually described by tokens in places. The application of

classic Petri nets to examples in which these objects carry

some significant attributes leads to cluttered models in which

places and transitions need to be unfolded to keep track

of the individual attributes. These problems motivated the

development of high-level Petri nets, a set of net classes

with distinguishable tokens. The main difference between

simple Petri nets and colored models is that tokens may have

arbitrarily defined attributes. It is thus possible to identify

different tokens in contrast to the identical tokens of simple

Petri nets.

The introduction of individual tokens leads to some ques-

tions with respect to the Petri net syntax and semantics.

Attributes of tokens need to be structured and specified,

resulting in colors (or types). Numbers as arc information

are no longer sufficient as in simple Petri nets. Transition

firings may depend on token attribute values and change them

at firing time. A transition might have different modes of

enabling and firing depending on its input tokens. Our class

of SCPNs uses arc variables to describe these alternatives.

In the following we mostly point out differences to uncol-

ored Petri nets. The syntax of textual model inscriptions is

chosen similar to programming languages like C++ or Java.

A. Token Types or Colors

Tokens belong to a specific type or color, which specifies

their range of attribute values as well as the applicable

operations just like a type of a variable does in a program-

ming language. Types are either base types or structured

types, the latter being user-defined. Available base types

in the software tool TimeNET, which has been extended

with SCPNs recently [1], [2], include Integer, Real, Boolean,

String, and DateTime. Structured types are user-defined and

may contain any number of base types or other structured

types just like a Pascal record or a C struct.

Types and variables are textually specified in a declara-

tional part of the model. This is done with type objects

in the graphical user interface of TimeNET, but is omitted

in the model figures. Variable definitions are not necessary

in difference to standard colored Petri nets because they

are always implicitly clear from the context (place or arc

variable).

B. Places

Places are similar to those in simple Petri nets in that they

are drawn as circles and serve as containers of tokens. By

doing so they represent passive elements of the model and

their contents correspond to the local state of the model. As

tokens have types in a colored Petri net, it is useful to restrict

the type of tokens that may exist in one place to one type,

which is then also the type or color of the place. This type is

shown in italics near the place in figures. The place marking

is a multiset of tokens.

The unique name of a place is written close to it together

with the type. The initial marking of a place is a collection of

individual tokens of the correct type. It describes the contents

of the place at the beginning of an evaluation. A useful

extension that is valuable for many real-life applications is

the specification of a place capacity. This maximum number

of tokens that may exist in the place is shown in square

brackets near the place in a figure, but omitted if the capacity

is unlimited (the default).

C. Arcs and Arc Inscriptions

Places and transitions are connected by directed arcs as

in any other type of Petri net. An arc going from a place

to a transition is called input arc of that transition, and the

connected place is also called input place (and vice versa for

output places and output arcs). In contrast to simple Petri

nets, where a number is the only attribute of an arc, the

modeler must be able to specify what kinds of tokens should

be affected and what operations on the token attributes are

carried out when a transition fires. This is done with arc

inscriptions, which are enclosed in angle brackets <> here.

Input arcs of transitions and their inscriptions describe

how many tokens are removed during a transition firing,

1416

and attach a name to these tokens under which they may

be referenced in output arc and guard expressions. They

carry a variable name in pointed brackets for the latter

task, optionally extended by a leading integer specifying the

number of tokens to be removed from the place. A token

from the input place is given to the variable as its current

value, and removed from the place during firing.

A transition’s output arcs define what tokens are added to

the connected place at the time of transition firing. There are

two general possibilities for this: either existing tokens are

transferred, or new tokens are created. In the transfer/copy

case the name of the chosen input token is used at the output

arc. The multiplicity of tokens must be the same to avoid

ambiguities.

Fig. 1 depicts a small example. Transition Assembly

has two input places InputA and Stock, from which one

product p1 and three products p2 are removed respectively.

The firing of the transition transfers the p1-token to the

output place OutputA, and changes the attribute step to

the new value 5. Tokens bound to input variables which are

not used on output arcs (p2-tokens) are destroyed at the end

of the firing, modeling an assembly operation here.

New tokens of the output place type are created if no input

variable is specified at an output arc. The attributes of a new

token are set to their default values initially, or can be set to

specific values. Operators are allowed in expressions as long

as their resulting type corresponds to the required one.

The type of the variables contained in the input and

output arc inscriptions is implicitly given by the type of

the connected place and is thus not defined by the modeler.

Restrictions on the input tokens are modeled using transition

guards as described below.

D. Transitions

Transitions (drawn as rectangles with different shapes)

model activities of the system. They can be activated (en-

abled) when all necessary input tokens are available and

an optional guard function is true. Their firing models the

occurrence of the activity and changes the marking of places

with tokens (the state of the system). There are different

transition types with their corresponding shapes: immediate

transitions firing without delay are drawn as thin rectangles,

timed transitions bigger and empty, while substitution tran-

sitions have black rectangles at the top and bottom.

Transitions have several attributes besides their name. The

firing delay (timed transitions only) describes the probability

[p1.name==”Part1”]

InputA

Stock

Assembly

OutputA

<p1(step=5)>

<p1>

Product

Product

Product<3#p2>

Fig. 1. Arc inscription example

distribution of the delay that needs to elapse between the

transition enabling and firing. Immediate transitions have a

firing weight (a real number) and a priority (integer greater

than 0) just like in simple Petri nets, with the same function.

Their default value is one in both cases.

The set of tokens bound to a transitions’ arc variables

determines its mode of firing in a specific marking, and is

usually coined binding in the literature. In a state of a SCPN

all possible assignments of input tokens to their respective

arc variables may be valid firing modes. A guard function

can be used to restrict the tokens for which a transition may

be enabled. The guard is a boolean function that may depend

on the model state and the input arc variables. It is shown

in square brackets close to the transition in figures. The

transition is only enabled with a certain binding of tokens

to variables in a model state if the guard function evaluates

to True for this setting. In the example of Fig. 1, transition

Assembly is only enabled for tokens in place InputA,

which have their attribute name set to Part1.

E. Model Hierarchy

A SCPN model consists of pages in a hierarchical tree.

There is exactly one prime page (or main model), which

forms the base of the tree structure, and to which other

pages are subordinated on different levels of hierarchy via

substitution transitions. Hierarchical refinement and modular

description of complex systems is thus possible.

Substitution transitions act as a placeholder or association

to a refining subpage. They have no firing semantic as other

normal transitions do. The associated subpage is a place-

bordered subnet, i.e. no transitions of the subnet may have

direct interactions with elements outside the substitution

transition. Interaction of submodels with the surrounding

model only happens via the places that are connected to the

substitution transition. All of these places are known in the

submodel and depicted there as a dotted circle.

III. A SUPPLY CHAIN MODEL

In this section we present a simplified model of General

Motors’ supply chain operation. It is altered to keep business

information confidential, but the main issues that the mod-

eling and evaluation aims at are maintained. Due to space

limitations we can only show some selected parts of the

model, which in reality comprises many more subpages than

explained here.

Fig. 2 shows a rough overview of the covered entities.

Customer, dealership and (assembly) plant as well as the

logistic network that transports vehicles from the plant to

the dealership are considered. Internal and external suppli-

ers which deliver intermediate parts to the assembly plant

(inbound logistic) are not considered here. We assume that

enough material is available at the plant to avoid downtimes.

How this can be efficiently achieved has been considered in

the project as well.

A pure on-demand production setup would work as fol-

lows. When a customer comes to a dealership, he has a

certain vehicle in mind that he or she wants to buy. This

1417

Dealership PlantCustomer

Desired Vehicle Order

Logistics Network
Delivery of Vehicle

Vehicle

Fig. 2. Sketch of supply chain entities

specification of a desired vehicle is ordered by the dealer

from the plant. The order is stored in an order queue, which

is after some time processed by the plant, resulting in a new

vehicle in the plant yard. From there it is transported by the

logistics network to the dealer where the customer can pick

it up.

The supply chain model and its hierarchical decomposition

into submodels is covered in the following. Each model

describes the actions and decisions of one typical entity, for

example a dealer or customer. Communication takes place

by exchanging tokens via interface places. Behavior and

decisions based on rules are specified using transition firing

attributes.

Fig. 3 shows the topmost level of hierarchy of the sup-

ply chain model. It describes the main entities and their

interaction. Transitions with thick bars depict substitution

transitions, that are refined with a submodel. Types of tokens

in places are depicted in italics (e.g. Config or Vehicle).

Tokens model complex entities and thus have a set of

corresponding attributes. The set of token types used in

the supply chain model are listed in Table I. String and

DateTime are the only necessary base types. The latter is a

convenient way of handling a point in time by specifying day

and time. Configuration of a vehicle and the type of car that

a customer wants to buy are described by the type Config.

It specifies the model, type of drive, interior and color. This

is a simplification of the actual configuration attributes for

the sake of readability. An order for a vehicle production

is described by color Order, describing the order time as

well as the ordered configuration. An actual vehicle has the

attributes Order — the order that initiated the production of

Dealership

DesiredVehicle

Customer

OrderQueue Plant

LogisticsDealerLot

Config

Vehicle

Order

PlantYard
Vehicle

Fig. 3. Main colored Petri net model of the example

Color Element Element Type

Config model string

drive string

interior string

color string

Order Conf Config

OrderTime DateTime

Origin string

Vehicle Order Order

ProdTime DateTime

TABLE I

TOKEN TYPES (COLORS) OF THE SUPPLY CHAIN MODEL

the vehicle — and the time when its production was finished.

Transition Customer models the customer behavior. The

selected vehicle type and configuration information is trans-

ferred to the dealership model (transition Dealership)

through place DesiredVehicle. The queue of waiting

orders at the plant is modeled by place OrderQueue.

After production in the Plant, new vehicles arrive in the

PlantYard and are transported by Logistics to the

DealerLot. The model considered here only takes into

account one dealership and one plant in contrast to the

original detailed model.

For our purposes it is important to specify when a customer

comes to a dealership to purchase a car and what configura-

tion he wants to buy. This customer behavior is captured in a

customer submodel (that refines transition Customer). The

configuration of the customer’s desired vehicle is generated

in a stepwise fashion. A newly created token of type Config

without set attributes is generated. The token then follows

through a series of places, in which one attribute of the

configuration is set one after another.

Firing probabilities that correspond to known customer

choices are associated to the transitions. The fully specified

configuration token finally arrives in the interface place

DesiredVehicle to the upper model level.

When a customer wants to purchase a vehicle, the cor-

responding token of type Config thus arrives in place

DesiredVehicle in the dealership model shown in Fig. 4.

The dealer sends a new order to the order queue (by creating

a token of type Order in place OrderQueue). The con-

figuration of the order is copied from the customer’s choice,

and the order time is set to the current model time (NOW). A

similar copy of the order is kept in place WaitingOrders

at the dealership, to identify waiting orders later on when

new vehicles are available in the dealer lot.

If a vehicle arrives at the dealer lot (place DealerLot)

that matches a waiting order, transition DeliverOrdered

fires. The guard function of that transition ensures that only

vehicles are delivered that match exactly.

Details of the remaining submodels are omitted due to

space limitations. The plant submodel describes how orders

in the order queue are processed. New vehicles arrive in place

PlantYard finally.

1418

DealerLot

OrderVehicle

OrderQueue

WaitingOrders

Config

Order

Order

Vehicle

<o>

<c>

<v>

<{Conf=c, OrderTime=NOW}>

<{Conf=c, OrderTime=NOW}>

DesiredVehicle

DeliverOrdered
[v.Order.Conf == o.Conf]

Fig. 4. Dealership model

New vehicles need to be transported from there to the

dealership, which is done by the logistics network (sub-

stitution transition Logistics). Vehicles are picked up

from the plant yard and transported to the dealer lot, at

first considering only train transport. Vehicle transport by

train has the advantage of being very cost-efficient. The

downside is its long delay and high variance. Moreover, train

transport is externally managed by the train companies, and

thus cannot be influenced significantly by the car making

company.

IV. MODEL-BASED PERFORMANCE

ENGINEERING

The order-to-delivery time for customers is evaluated

based on the model explained above, and different setups

are checked if they improve it. Results of the quantitative

model evaluation lead to ideas how the design and operation

of the supply chain can be changed in order to decrease

the OTD time. We demonstrate with the example how a

series of model changes and quantitative evaluations can

be successfully exploited to improve the performance of a

supply chain significantly.

Discrete event simulation is used for the quantitative

evaluation of the model. Numerical analysis techniques

are not applicable because of several transitions with non-

exponentially distributed firing delay distributions. A sim-

ulation run of six years of model time typically took

45 seconds. All evaluations have been carried out on a PC

with Intel Pentium III Mobile processor running at 1 GHz

under Windows XP. Measure samples for the first year of

model time are discarded to avoid influences of the initial

transient phase. Statistical analysis shows that the remaining

simulation length leads to sufficiently accurate results for

our purposes. A typical evaluation shows that the number of

considered samples results in a maximum relative error of

only 2% for a confidence level of 99%.

The initial setup of the model is evaluated first. There

are obviously no vehicles available in the dealer lot, because

every one is produced on demand and immediately delivered.

The mean OTD time is computed as 25.08 days.

The first change in the model includes details of how

vehicles can be produced and stored without prior customer

order. A rough estimate of the probability of vehicle config-

urations of customer purchase decisions is known from past

sales numbers. The dealership can thus order a restricted set

of popular configurations, keep them available at the dealer

lot, and sell them to customers with matching vehicle desire

immediately. The dealership can check the influence of a

certain selection of popular configurations and the number of

available vehicles at the lot using the performance evaluation

of the model.

The dealership model is adapted accordingly, but not

shown here due to space limitations. Different setups have

been evaluated after the model change. Results are given in

Table II, showing the number of popular configurations that

are stored in the dealer lot and the mean number of available

vehicles. Both numbers mainly influence the probability with

which a customer buys a vehicle from the lot, which is

listed as “Immediate Delivery”. The results show that the

number of dealer-ordered configurations is more important

than a very high number of available vehicles at the lot. The

two OTD time values represent mean numbers, taking into

account all customers or only the ones that do not purchase

an available vehicle. We choose to order nine different

configuration types and to keep the amount of available

vehicles in the range between 60 and 120 as a consequence

of the results. The new OTD time of 9.99 days represents a

60% improvement.

At the plant there are several obvious details which can be

changed for a smaller OTD time. We select the following:

customer-ordered vehicles should be processed with priority

over the ones that will be stored in the dealer lot. This change

has the following influence on the performance measures.

The OTD time of all customers drops to 8.37 and the time

for waiting customers to 18.62 as a result, an improvement

of 16%.

In order to reduce the average OTD time we need to con-

centrate on the OTD time of waiting customers, because the

percentage of immediate deliveries could only be increased

by storing more vehicles with additional configurations in the

dealer lot. Other means of vehicle transport are considered

for this reason. Specialized trucks for vehicles will be respon-

sible for the transport between plant yard and dealer lot. Train

transport is chosen for dealer-ordered vehicles and in cases

where there is no truck available for transport. The submodel

describing the logistic network is enhanced with more details

describing the truck transport. Model and detailed evaluation

Number of Immediate OTDtime

Configurations Delivery All Waiting

2 34% 16.07 24.36
9 53% 10.29 21.87
9 55% 9.99 22.33

TABLE II

INFLUENCE OF VEHICLE STORAGE ON THE OTD TIME IN DAYS

1419

0 5 10 15 20 25 30 35 40

P
ro

b
ab

il
it

y

Order to Delivery time (days)

0

0.1

0.2

0.3
Number of trucks

1
3
6
9
12

Fig. 5. Order-to-delivery time distributions of waiting customers

results had to be omitted here.

A sensible number of trucks for the example can be chosen

based on the resulting OTD times. About 15 trucks are

necessary to achieve the minimum OTD time of 5.92 days,

which is an improvement of 29%. The mean OTD time of

waiting customers is 12.9 days.

We show detailed results for one selected question: how

are the OTD times distributed for different numbers of

trucks? Fig. 5 shows probability density functions for se-

lected truck numbers, ignoring all zero OTD times. The

curves start at the left with the remaining probabilities that

a waiting order is fulfilled by an incoming dealer-ordered

vehicle which has not been available before. The peak value

at 12.5 is due to the mean delays of production and transport,

while the stochastic influences lead to the distribution around

this value. For smaller number of trucks the transport time is

heavily influenced by the long and variating train transport,

resulting in a much flatter curve without a peak.

V. CONCLUSIONS

The paper presented results of a collaboration project

between General Motors R&D and academic partners. It is

obviously much easier to develop and evaluate variants of

supply chain systems by using a model-based approach. A

variant of colored stochastic Petri nets has been developed

for this task, and proper tool support has been implemented

in a prototype extension of our tool TimeNET. Colored Petri

nets are powerful enough to describe the complex objects and

interactions of a supply chain. We considered the order-to-

delivery time as a performance issue here, which is attracting

high interest in order to fulfill individual customer demands

in a timely fashion.

Results of the quantitative model evaluation lead to ideas

how the design and operation of the supply chain can

be changed in order to decrease OTD time. The paper

demonstrates how a series of model changes and quantitative

evaluations can be successfully exploited to improve the

performance of a supply chain significantly. The application

example has shown that strategic decisions during the design

of a supply chain can be efficiently aided using a model and

performance evaluation. The mean OTD time for customers

as the significant measure for our experiment could be

improved from about 25 to less than six days in the model.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support

of the cooperation project by General Motors Research and

Development. Further thanks go to Peter Glynn at Stanford

University, our partner in the described project. We would

additionally like to thank the numerous graduate students

who implemented the software tool extension.

REFERENCES

[1] A. Zimmermann, M. Knoke, A. Huck, and G. Hommel, “Towards ver-
sion 4.0 of TimeNET,” in 13th GI/ITG Conference on Measurement,

Modeling, and Evaluation of Computer and Communication Systems

(MMB 2006), March 2006, pp. 477–480.
[2] M. Knoke and A. Zimmermann, “Distributed simulation of colored

stochastic Petri nets with TimeNET 4.0,” in Proc. 3rd Int. Conf.

Quantitative Evaluation of Systems (QEST ’06), Riverside, CA, USA,
Sep. 2006, pp. 117–118.

[3] S.-T. Yee, J. Tew, A. Zimmermann, M. Knoke, and A. Huck, “New
methodology for developing supply chain models in support of OTD,”
General Motors Research and Development Center, Warren, Research
Report MSR-121, 2002.

[4] K. Jensen, “Coloured Petri nets and the invariant-method,” Theoretical

Computer Science, vol. 14, pp. 317–336, 1981.
[5] ——, Coloured Petri Nets: Basic Concepts, Analysis Methods and

Practical Use, ser. EATCS Monographs on Theoretical Computer
Science. Springer Verlag, 1992.

[6] J. Vautherin, “Parallel specification with coloured Petri nets and
algebraic data types,” in Proc. 7th European Workshop on Application

and Theory of Petri Nets, Oxford, UK, Jul. 1986, pp. 5–23.
[7] H. J. Genrich and K. Lautenbach, “The analysis of distributed systems

by means of Predicate / Transition nets,” in Semantics of Concurrent

Computation, ser. Lecture Notes in Computer Science, G. Kahn, Ed.
Springer Verlag, 1979, vol. 70, pp. 123–146.

[8] C. Lin and D. C. Marinescu, “On stochastic high-level Petri nets,”
in Proc. 2nd Int. Workshop on Petri Nets and Performance Models,
Madison, Wisconsin, 1987, pp. 34–43.

[9] A. Zenie, “Colored stochastic Petri nets,” in Proc. 1st Int. Workshop

on Petri Nets and Performance Models, 1985, pp. 262–271.
[10] G. Balbo, G. Chiola, S. C. Bruell, and P. Z. Chen, “An example

of modeling and evaluation of a concurrent program using colored
stochastic Petri nets – Lamport’s fast mutual exclusion algorithm,”
IEEE Transactions on Parallel and Distributed Systems, vol. 3, no. 2,
pp. 221–240, 1992.

[11] S. M. Koriem and L. M. Patnaik, “A generalized stochastic high-level
Petri net model for performance analysis,” The Journal of Systems and

Software, vol. 36, no. 3, pp. 247–266, Mar. 1997.
[12] N. Raghavan, “Performance analysis and design of supply chains:

a Petri net approach,” Journal of the Operations Research Society,
vol. 51, no. 10, pp. 1158–1169, 2000.

[13] F. Bause, H. Beilner, M. Fischer, P. Kemper, and M. Völker, “The
ProC/B toolset for the modelling and analysis of process chains,”
in 12th Int. Conf. Computer Performance Evaluation, Modelling

Techniques and Tools (TOOLS 2002), ser. Lecture Notes in Computer
Science, T. Field, P. Harrison, J. Bradley, and U. Harder, Eds., no.
2324. London, UK: Springer Verlag, Apr. 2002, pp. 1–51.

[14] W. van der Aalst and A. Waltmans, “Modelling logistic systems with
EXSPECT,” in Dynamic Modelling of Information Systems, H. Sol
and K. v. Hee, Eds. Amsterdam: Elsevier Science Publishers, 1991,
pp. 269–288.

[15] K. Lemmer and E. Schnieder, “Modelling and control of complex
logistic systems for manufacturing,” in Advances in Petri Nets 1992,
ser. Lecture Notes in Computer Science, K. Jensen, Ed. Springer
Verlag, 1992, vol. 616, pp. 373–378.

[16] W. v. d. Aalst, “Timed coloured Petri nets and their application to
logistics,” PhD Thesis, Eindhoven University of Technology, 1992.

1420

