
A Toolkit for Performability Evaluation
Based on Stochastic UML State Machines

J. Trowitzsch∗

Technische Universität Berlin
Real-Time Systems

and Robotics
joni@cs.tu-berlin.de

D. Jerzynek
Technische Universität Berlin

Real-Time Systems
and Robotics

danjerz@cs.tu-berlin.de

A. Zimmermann
Technische Universität Berlin

Real-Time Systems
and Robotics

azi@cs.tu-berlin.de

ABSTRACT
This paper considers a sub-set of UML State Machines extended by
annotations from the UML Profile for Schedulability, Performance,
and Time for the modeling of technical systems and their behavior.
A toolkit is presented for performability evaluation of these sto-
chastic UML State Machine models. It extends our modeling and
evaluation tool TimeNET. Performance evaluation of the resulting
extended UML State Machine models is done indirectly via an au-
tomatic transformation into a stochastic Petri net, to which existing
evaluation techniques are applied subsequently.

Keywords
Stochastic UML State Machines, Software Tool, Petri Nets, Model
Transformation, Performance Evaluation

1. INTRODUCTION
Modeling and model-based evaluation of properties are an inte-

gral part of the development process of non-trivial systems. The
resulting models allow to assess qualitative as well as quantitative
system aspects in early stages of the development process already.
Software tool support as well as the integration of modeling and
evaluation techniques into a structured design process are neces-
sary means for an efficient design process.

There are numerous modeling techniques which have often
emerged for specific application areas. The Unified Modeling Lan-
guage (UML) [17] is a successful attempt towards a collection of
modeling techniques to describe technical systems, especially in
the context of computing. UML is a widely accepted standard in
industry now, but lacks some of the analysis techniques and for-
mal clearness of approaches that have their origin in the scientific
community. A combination of both advantages thus appears to be
attractive.

We are mainly interested in a performance and dependability
evaluation of a system, which requires models that are able to cap-
ture a system’s behavior of interest. Out of the different description
∗The author’s research work was supported by a PhD scholarship
from the German Research Council (DFG) under grant GrK 621-2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Valuetools ’07, October 23-25, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

techniques available in the UML, we thus chose UML State Ma-
chines extended by annotations from the UML Profile for Schedu-
lability, Performance, and Time (SPT) [15] for modeling systems
and their characteristics.

For the resulting models the problem remains that performance
measures can be obtained directly from the models with huge effort
only. Several approaches can be found dealing with quantitative
analysis of extended UML diagrams. These often origin from the
field of software performance evaluation. Two different strategies
exist: The direct strategy directly maps a UML model to the under-
lying stochastic process which can then be used for an evaluation.
For example Lindemann et. al presented such an approach [12]
based on a generalized semi-Markov process (GSMP). The alter-
native indirect strategy includes the mapping of a UML model into
an established performance model such as a Stochastic Petri Net
(SPN) or a Queuing Network (QN) model.

An approach for the systematic development of Generalized Sto-
chastic Petri Nets (GSPNs) from UML models is proposed by
Merseguer [13] and Bernardi et al. [3]. King and Pooley also use
GSPNs in [11, 18] to represent the behavior of StateCharts. Each
state is mapped into a place and each state transition becomes a
transition in the Petri Net. The resulting submodels are combined
using UML collaboration diagrams.

We proposed an indirect evaluation approach [24, 23] based on
Stochastic Petri Nets (SPNs) [1, 7] in earlier papers. UML State
Machine models are transformed into SPNs with equivalent behav-
ior. Performance measures can be derived from the resulting SPN
models using techniques and tools available for this model class.

This approach for modeling and quantitative evaluation of sys-
tems based on UML State Machines and Stochastic Petri Nets re-
quires an appropriate tool support in order to be practicable. Tasks
for which a support is necessary include modeling based on UML
State Machines, transformation into a corresponding SPN, evalua-
tion of the resulting SPN as well as the transformation of the com-
puted performance results back into the UML model.

For the modeling part several commercial tools like Poseidon for
UML [6] from Gentleware or Rhapsody [20] from Ilogix support
modeling of UML and of UML State Machines in particular. A free
tool that should be mentioned here is ArgoUML [2]. Besides that,
several tools exist that support the evaluation of SPN models. Ex-
amples include GreatSPN tool [9] and TimeNET [21, 25, 26]. The
latter integrates methods and algorithms for the numerical analysis
and simulation of SPNs, especially if they contain transitions with
non-Markovian delay distributions. However, it is desirable to have
modeling and evaluation carried out within one tool. This includes
an implementation of the mentioned transformation steps. The de-
cision was thus made to extend the existing TimeNET software tool
for both modeling and evaluation.



Throughout the work described here, TimeNET has been ex-
tended by the possibility to model (a subset of) UML State Ma-
chines. For this task a new stochastic State Machine (sSM) net
class is introduced; net classes represent the types of models that
the tool can handle. Furthermore, the model transformation is inte-
grated in such a way that the existing SPN support of TimeNET can
be used for the quantitative evaluation of the models. The results of
these evaluations are not directly reported back into the sSM model
yet. This is subject of further work.

The remainder of the paper is organized as follows. In Section 2
the considered subset of UML State Machines is briefly touched.
Furthermore, the corresponding model transformation into SPNs is
recalled. The software tool itself is introduced in Section 3. Here
also the integration of the extension into the tool’s software archi-
tecture is explained. Section 4 presents the use of the developed ex-
tended software tool showing the differences to other CASE tools.
Finally, a summary and an outlook about future work is given in
Section 5.

2. MODEL AND TRANSFORMATION
In this section we introduce the considered subset of UML State

Machines and shortly explain the applied transformations into cor-
responding SPNs.

UML [17] is a collection of semi-formal models for specifying,
visualizing, constructing, and documenting models of software sys-
tems and of technical systems. Various diagram types allow the
description of different system viewpoints. Static and behavioral
aspects, interactions among system components, and implemen-
tation details are captured. UML comprises an extension mecha-
nism, which allows the definition of profiles. A profile for a special
application domain maps aspects from the domain to elements of
the UML metamodel. The UML Profile for Schedulability, Perfor-
mance, and Time (SPT) [15] is an example for such a profile. It
enables advanced annotation of quantitative system aspects such as
timing and probabilistic information. For this a set of stereotypes
and tagged values is provided. Among the behavioral UML dia-
grams our focus is on UML State Machines. In combination with
the SPT profile they enable detailed modeling of quantitative sys-
tem aspects. In our work we consider a subset of these extended
UML State Machine. It is referred to as stochastic State Machines
(sSMs) in the following.

SSMs comprise simple states, composite states, state transi-
tions, pseudostates, and events. States may have optional inter-
nal activities, the so-called entry, do, and exit activities. The en-
try activity is always executed upon entering the state, i.e. prior
to any other internal behavior. The exit activity is always per-
formed whenever the state is left, regardless of which transition
is taken. Pseudostates are transient vertices with a special seman-
tics. They can be used to connect multiple transition paths into
more complex ones. Pseudostates allowed in sSMs include initial,
join, fork, junction, choice, entry and exit point, as well as shallow
history. Furthermore the usage of counter variables, final states,
and intra-synchronization between regions of composite states is
allowed [23].

Sterotypes from the SPT profile are used to annotate quantita-
tive aspects. Stereotypes RTdelay, RTaction, and RTevent
with their tagged value RTduration are used to add timing in-
formation to corresponding sSM elements like internal activities of
states or state transitions. The PAstep stereotype with its tagged
value PAprob in combination with a choice pseudostate is used
to express probabilistic branching within a sSM model. Composite
states are used to build hierarchical models. In order to query the
resulting sSM model we propose an additional lightweight PQpro-

file performance query sub-profile extension to the standard SPT
profile. Table 1 shows the proposed stereotypes and related tagged
values. Stereotype PQstate can be associated with simple and com-
posite states to measure the probability for being in these states.
The PQtransition stereotype can be associated with transitions to
query their throughput. Life time of an object described by the
sSM model can be derived using the PQcontext stereotype with its
tagged value PQlifeTime.

Stereotype Tagged Value Explanation
PQstate PQprob probability

for being in a state
PQtransition PQthroughput throughput

of a transition
PQcontext PQlifeTime mean lifetime

of the object

Table 1: Stereotypes of the Performance Query sub-profile

For the quantitative evaluation of the sSM models an indirect
approach using SPNs [1, 7] was proposed in previous work [22,
23, 24]. A Petri Net is a bipartite graph. Its vertices are denoted as
places and transitions. Places may include tokens. The distribution
of all tokens over the places corresponds to the state of the model.
Places and transitions are connected via arcs. These arcs describe
the dependency of the active elements (transitions) on tokens in
places and their changing due to the firing of transitions. Detailed
definitions and overviews can be found for example in [14, 19].

Stochastic Petri Nets include stochastic specifications such as fir-
ing delay distributions for transitions. Thus, modeling and evalu-
ation of quantitative system aspects is enabled, see [1]. The re-
sulting SPNs of our transformation approach belong to the class
of extended Deterministic and Stochastic Petri Nets (eDSPNs) [7].
Timed transitions are drawn as an empty rectangle if the firing time
is exponentially distributed, as a black rectangle if the firing time
is deterministic or as a gray rectangle if the firing time is a gen-
eral distribution function. Immediate transitions are drawn as small
rectangles and describe activities that have zero delay. Due to the
assigned firing weights a nondeterministic solution of conflicts is
possible.

Transformation rules for basic states as well as for pseudostates
and annotations from the SPT profile were proposed in earlier work
and are shortly recalled and explained in the following. A sSM
model is decomposed into its basic elements. For each element
a transformation into a corresponding SPN fragment is accom-
plished. The transformations take into account that annotations
from the SPT profile may possibly be present. Based on naming
conventions, the individual resulting SPN fragments are combined
to one SPN, whose behavior is the same as for the original sSM
model.

Transformation of simple states as presented previously [23],
where dummy SPN elements were generated even for empty sSM
actions, required a subsequent simplification step which deleted
meaningless SPN elements structurally. In difference to this, we
now decided to avoid the generation of unnecessary SPN elements
on the fly. This means that if an optional internal activity is not
specified for a simple sSM state, no immediate transition is gen-
erated at all. Hence, for each of the eight possible combinations
of internal activities, a different transformation rule exists. The
RTduration tagged value annotations are used to refine the tim-
ing of the resulting transitions in the SPN. A detailed explanation
is given in [23] by means of the RTdelay stereotype. Transforma-
tions for initial, join, fork, and choice pseudostates were presented



in [22]. In the resulting SPN, probabilistic branching as described
by the choice pseudostate is accomplished by conflicting immedi-
ate transitions with adequate weights in the SPN model.

3. A SOFTWARE TOOL
This section presents a software tool that supports quantitative

evaluation based on sSMs as described above. Basics of the soft-
ware tool are introduced in the following, and the integration of the
extension into our TimeNET tool will be explained in detail.

3.1 TimeNET
TimeNET is a software tool for modeling and performance

evaluation of stochastic Petri nets, especially for such with non-
exponentially distributed firing delays. It has been developed and
maintained at the modeling and performance evaluation group of
Technische Universität Berlin. Its functions are being continuously
extended, mainly as a result of PhD theses and industrial projects.
Thus, it is important that its overall tool architecture and its graphi-
cal user interface (GUI) are extendable and adaptable to new net
classes and analysis algorithms. Analysis components are kept
modular with well-defined interfaces.

The main components of TimeNET are the GUI and the analysis
and simulation algorithms. They are usually started as background
processes from the GUI. Data exchange between GUI and analysis
algorithms is mainly done via data files, while sockets are used
between analysis processes for efficiency reasons.

The GUI is one of TimeNETs main components and has been
completely rewritten in Java [10] for the current version 4.0. It can
therefore be run on both Unix- and Windows-based environments.
It is a generic GUI especially in the sense that any graph-like mod-
eling formalism can be easily integrated without much program-
ming effort. Nodes can be hierarchically refined by corresponding
submodels. The GUI is thus not restricted to stochastic Petri nets.
As a stand-alone program it is named PENG (platform-independent
editor for net graphs) [26]. The tool architecture allows to run the
GUI on a client desktop PC, while computationally expensive sim-
ulations may run on a remote server. Both parts may be located on
the same host as well.

Program modules can be added to the tool which implement net
class specific algorithms. A module has a predefined interface to
the main program. It can select its applicable net class and extend
the menu structure by adding new algorithms. All currently avail-
able and future extensions of net classes and their corresponding
analysis algorithms are thus integrated with the same look-and-feel
for the user.

Models as well as net class descriptions are stored in XML [4]
format based on corresponding XML Schema [5] descriptions.
Such a XML Schema defines the allowed elements of a model type.
Node objects, connectors and miscellaneous others are possible el-
ements. For each node and arc type of the model the corresponding
attributes and the graphical appearance is specified. The shape of
each node and arc is defined using a set of primitives (e.g. polyline,
ellipse, and text). Shapes can depend on the attribute value of an
object. This allows e.g. to show tokens as dots inside places in the
case of SPNs. Actual models are stored in an XML file that must
be consistent with the model class definition, which can be checked
automatically with library toolkits for XML. Editing and storing a
model can already be done with the tool after the corresponding
XML Schema is available.

An example screen shot of the GUI is shown in Figure 1. The
chosen net class in the example is the sSM net class corresponding
to the type of models considered in this paper. Standard menus
with necessary editing commands can be found in the top row. The

commands are self-explaining and of typical GUI style. Frequently
used menu commands may also be accessed by a set of icons below
the menu bar.

Figure 1: Screenshot of the TimeNET GUI

The main window contains the editing area. Editing is done just
like in standard drawing tools with mouse-based operations for se-
lecting, moving, and others. The lower icon bar shows all available
model objects for the currently edited net class. The content of this
bar is derived automatically from the net class description. Indi-
vidual attributes of a model element are edited by selecting it in
the drawing area and changing the values in the right tab. For each
object attribute defined in the net class for that object type an entry
for editing can be found in the right tab.

3.2 Integration of Stochastic State Machines
in the TimeNET Tool

A new stochastic State Machine (sSM) net class has been devel-
oped and integrated in TimeNET. For this purpose a correspond-
ing new net class description XML schema was implemented. It
specifies the elements of a sSM model with their corresponding
attributes and graphical appearances. Some sSM model element
representations differ from the common standard. This is due to
the specific way how models are implemented in TimeNET’s GUI.

Figure 2: SSM net class integration

Figure 2 sketches the software architecture of the sSM netclass
integration within TimeNET. Based on the sSM net class XML



Schema description the GUI allows to create a sSM model. Such a
model is stored in a corresponding XML file. A net class specific
transformation module implements the transformation of a sSM
model into a corresponding eDSPN model by applying the transfor-
mations mentioned previously. The resulting eDSPN model XML
file is written into a file, adhering to the eDSPN net class descrip-
tion XML Schema. For eDSPN models the net class specific perfor-
mance evaluation including corresponding analysis and simulation
modules is available. The results of such a performance evaluation
are displayed in the GUI.

Stereotype Tagged Value sSM Elements
RTdelay RTduration Transition

Activities
RTevent RTat Event (trig.)
PAstep PAprob Transition (choice)
PQstate PQprob Simple state

Composite State
PQtransition PQthroughput Transition

Table 2: Supported stereotypes of the sSM net class

The sSM net class does not yet support all elements from the sub-
set of extended UML State Machines presented earlier in Section 2.
The not yet supported elements comprise the junction pseudostate,
the history pseudostates, the terminate pseudostate, the entry and
the exit point pseudostates. The featured modeling elements are
composite states, simple states, final states, initial pseudostates,
join pseudostates, fork pseudostates, choice pseudostates, and tran-
sitions. Furthermore, a set of stereotypes and related tagged values
from the SPT profile and from the proposed additional lightweight
PQprofile performance query sub-profile is included. These anno-
tations can be added to certain elements like transitions or simple
states. We point out that so far only annotations are offered that
are supported by the mentioned transformation into SPNs. Among
the supported stereotypes are RTdelay, PAstep, and RTevent. Ta-
ble 2 summarizes the stereotypes that are currently supported by the
sSM net class. Besides that, the sSM model class follows our rec-
ommendations for modeling UML State Machines. For example,
an initial pseudostate is automatically introduced for each region of
a composite state in order to ensure a correct default entry into the
composite state. Furthermore, at most one final state is allowed for
each region.

3.3 Tool Operation and Use
Figure 1 depicts the GUI while editing an example sSM model.

The lower icon bar for the sSM net class includes the following
model elements (from left to the right): selection mode, composite
state, simple state, final state, initial pseudostate, join pseudostate,
fork pseudostate, choice pseudostate, and state transition. The rep-
resentations of these sSM elements are depicted in Figure 3. Com-
posite states are depicted as empty rounded rectangle containing
a circle and the text Comp in it. A simple state is depicted as an
empty rounded rectangle. Final states are displayed as an empty
circle with a smaller solid black circle in it. An initial pseudostate
is shown as a small solid black circle. Join pseudostates are de-
picted as small black rectangles with a J above it, whereas fork
pseudostates are displayed as small black rectangle with a F above
it. The choice pseudostate is represented by a rotated empty square.
The representation of transitions is not depicted in Figure 3. They
are displayed as directed arcs connecting two sSM elements as can
be seen in the later example.

Visible elements can be selected, their attributes be edited, and

Figure 3: Representations of the sSM elements

additional action buttons be used if the selection mode is activated.
These additional attributes and action buttons appear in the right
tab of the GUI. Each simple state has a text attribute that specifies
its name. Optional internal activities can be added using the Cre-
ate Entry, Create Do, and Create Exit buttons in the right tab (see
Figure 1). If specified, they are displayed within the state represen-
tation in the drawing panel. Attributes for an internal activity are a
name and a stereotypes list of attached stereotypes. Internal activ-
ities can be removed from a simple state using the Remove Entry,
Remove Do, and Remove Exit button (see Figure 1). The Create
Loop button allows to include a self-transition for the selected sim-
ple state.

Stereotypes can be added to a selected element if an Add Stereo-
type action button is available in the right tab. After choosing the
desired stereotype (Choose Stereotype) and related tagged value
(Choose TAG), the value needs to be entered as a text. The value
has to conform to the syntax for RTtimeValue from the SPT profile
specification [15, Sec 5.2.]. Afterwards the action button for adding
the stereotype should be clicked. The Remove action button can be
used to remove one single selected stereotype from the stereotypes
list of a sSM element. By using the Remove all action button the
complete stereotypes list is removed from the sSM element.

In standard CASE tools like ArgoUML, UML State Machines
are depicted as one connected graph. However, a sSM model fea-
tures an abstraction level where each region of a composite state is
described in a model part and graph on its own. Because of that
abstraction the look and feel for modeling sSM composite states
differs from other CASE tools. Entry and exit activities can be
added using the corresponding Create Entry and Create Exit but-
tons for a composite state in the right tab. Do activities are not
allowed for sSM composite states. The internal activities can be
removed from a composite state using the corresponding Remove
Entry and Remove Exit buttons. The Create Loop button allows to
include a self-transition for a selected composite state just like for
simple states. If a composite state is drawn, it is possible to specify
the number of contained regions in the numberOfRegions attribute
(the default is 1). Each composite state also has a text attribute
specifying its name. The upper icon bar below the menu offers op-
erations for navigating between the different regions of a compos-
ite state but also to add or remove a region. The submodel for the
first region is opened by double-clicking the composite state. Ele-
ments connected to the composite state via transitions are visible in
that submodel with dashed borderlines. This indicates that they are
outside the current submodel, which means outside the composite
state’s region.

A triggering event can be attached to a transition. Such an added
event can be selected to add a stereotype to it. These stereotypes
are stored in the eventStereotypes list. Connected outside elements



are not displayed inside submodels (regions) if the connecting tran-
sition directly points to the border of the composite state. This is
the case when default entering or exiting is modeled. It is specified
by setting the connectsToBorder and startsFromBorder attributes
of the relevant transition to appropriate values.

The transformation module for the sSM net class can be started
via the menu command sSM → sSM to eDSPN. The name for the
resulting eDSPN model XML file can be chosen. After loading
that resulting eDSPN model, all existing menu commands for the
eDSPN net class, including analysis and simulation algorithms, are
available.

4. A SIMPLE EXAMPLE
In this section we show the exemplary usage of the sSM net

class in TimeNET. The differences to UML State Machines as sup-
ported by known CASE tools are explained. An imaginary two-
component redundant system with local and global repair serves as
an example.

The considered system consists of two redundant components
that both are working correctly in the beginning, but may fail due
to errors. If a component fails, a local repair is carried out. The first
component fails every two days on average. The local repair of this
component takes a fixed time of 30 minutes. The second compo-
nent fails every three days on average. Its local repair takes fixed
45 minutes. If both components are failed at the same time, a com-
plete system failure occurs and a global repair is necessary. It takes
half a second until the global repair is started after the complete
failure occurred. This global repair is successful with a probability
of 99.95% only. In 0.05% of all cases another global repair is nec-
cessary. The global repair itself requires a fixed time of two and a
half hours to be performed. One interesting performance question
is for example the probability that the system is working correctly.

Figure 4: Top Level

The top level of the sSM model for the two-component redun-
dant system as modeled in our software tool is depicted in Figure 4.
Composite state Running includes two regions and models the sit-
uation when the system is working correctly, meaning that at least
one component is working. A join pseudostate, which is depicted
as a small black rectangle with a J above, is used to model the situ-
ation if both components did fail together. State Complete Failure
is entered in that case, indicating that the whole system failed. The
transition to state Global Repair has an RTdelay value attached to
it, specifying its delay of 0.5 seconds. The Do depicted for state
Global Repair represents the global repair activity. Its RTdelay
value specifies the duration of the activity (2.5 hours). The subse-

quent rotated empty square depicts a choice pseudostate. The tran-
sition leading to the border of composite state Running represents a
successful global repair. It has a PAstep stereotype attached, speci-
fying a PAprob probability of 99.95%. The transition leading back
to state Global Repair represents the case that the global repair was
not successful and needs to be repeated. The PAstep stereotype at-
tached to this transition specifies a PAprob probability of 0.05%.
We chose a performance measure to evaluate the probability that
the system is working correctly. It is included by attaching a PQs-
tate and its related PQprob tag to composite state Running.

By double-clicking the composite state Running, the first of the
two contained submodels (regions) is opened. Figure 5 shows this
region of composite state Running depicting the behavior of the first
of the two redundant components. Initially, the component is work-
ing correctly which is modeled by state Ok. Occasionally an error
occurs (event error1) that triggers the transition to state Failure.
The error1 event is attached to a RTevent stereotype and a corre-
sponding RTat tagged value specifying that the event occurs every
two days on average with exponentially distributed delay (RTat =
(’exponential’, 2, ’days’)). Two transitions leave from the Failure
state. The transition back to state Ok is attached to a RTdelay spec-
ifying a RTduration = (0.5, ’hr’). This delay represents the time
needed to perform a local repair of the first component. The tran-
sition leading to the join pseudostate from the top level (indicated
by dashed border lines) is activated if the model part for the other
component is in the corresponding Failure state as well.

Figure 5: Orthogonal Region (one component)

The region depicting the behavior of the second component is
almost identical to the first one as shown in Figure 5. The only
differences are the varied timing values and the name for the trig-
gering event indicating an error. This event is here error2 and is
attached to the corresponding RTevent stereotype and RTat tagged
value specifying that the event occurs every three days on average
(RTat = (’exponential’, 3, ’days’)). The transition from state Fail-
ure to state Ok is extended by a RTdelay specifying a RTduration =
(0.75, ’hr’) representing the time needed to perform the local repair
of the second component.

Figure 6: System in ArgoUML

A UML State Machine model for the same system is depicted in
Figure 6, as it is displayed by the ArgoUML tool [2]. The same



Figure 7: Resulting SPN after model transformation

names are used for the modeled elements as in our first model. The
figure shows for instance the differences in displaying composite
states, Running in our case. All regions including the submodels
for the two redundant components are depicted inside the compos-
ite state as a whole connected graph in the ArgoUML tool. A hier-
archical view is used in our tool, where each region of a composite
state is described in a model part and graph for its own.

Performance evaluation of the sSM model of the considered two-
component redundant system requires the transformation into the
corresponding eDSPN model first. Figure 7 depicts the result-
ing eDSPN model after applying the model transformation ap-
proach as proposed in previous papers. Transitions t_gen_error1
and t_gen_error2 represent the occasional occurrence of events er-
ror1 and error2, respectively. Probabilistic branching due to choice
pseudostates is represented by the conflicting immediate transitions
t_choice_GRR and t_choice_GRGR.

The probability that the system is working correctly can be cal-
culated using the analysis algorithms or simulation component that
are implemented for eDSPNs in TimeNET. The result shows that
the system is working correctly with a probability of 99.91%.

5. SUMMARY AND OUTLOOK
The paper introduces a software tool for the performance evalu-

ation based on stochastic UML State Machines. Our work extends
the software tool TimeNET, comprising components for model
specification as well as for performance evaluation. A stochas-
tic State Machine net class that allows the modeling of a sub-set
of stochastic UML State Machines has been implemented in the
model-class generic graphical user interface of TimeNET for this
task. From our experience people are more familiar with UML
usage than with Petri net usage. The usage of the sSM net class

in TimeNET does not require knowledge about Petri nets. Perfor-
mance evaluation of the resulting sSM models is done by automati-
cally translating such a model into a stochastic Petri net first, which
is then subject to one of the existing quantitative evaluation algo-
rithms of the tool. The results of the evaluations are not directly re-
ported back into the sSM model yet. But since performance queries
are specified at sSM elements the results can be related to these ele-
ments. The direct reporting of results into the sSM model is subject
of further work.

With the proceeding acceptance of UML in different communi-
ties more and more UML tools came up, supporting system design,
code generation, and testing. In order to accomplish a good inter-
operability between these varying tools the XML Metadata Inter-
change (XMI) interface [16] was adopted. XMI represents a stan-
dardized mechanism for exchanging and presenting UML models.
It is an application of XML standardized by the World Wide Web
Consortium (W3C). In the future the import of XMI-based UML
State Machine models into our software tool will be implemented
in order to enable openness to other CASE tools. Due to the re-
strictions from the generic GUI the imported models must be trans-
ferred into the supported sSM net class first. Performance evalu-
ation methods can be applied afterwards. This conversion can be
done by applying tools from the XML domain since XMI as well
as the sSM net class schema of TimeNET are based on XML.

We are aware that other tools like ArgoSPE [8] also provide
capabilities for modeling UML State Machines and performance
evaluation methods. A comparison with our tool is difficult since
different sub-sets of UML State Machines are supported and fur-
thermore different Petri net classes are used for evaluation.



6. REFERENCES
[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and

G. Franceschinis. Modelling with Generalized Stochastic
Petri Nets. Series in parallel computing. John Wiley and
Sons, 1995.

[2] ArgoUML CASE tool. http://argouml.tigris.org.
[3] S. Bernardi, S. Donatelli, and J. Merseguer. From UML

Sequence Diagrams and Statecharts to analysable Petri Net
models. In Proceedings of the 3rd Int. Workshop on Software
and Performance (WOSP), pages 35–45, Rome, Italy, July
2002.

[4] W. W. W. Consortium. Extensible Markup Language (XML).
www.w3.org/xml.

[5] W. W. W. Consortium. XML Schema 1.1.
http://www.w3.org/XML/Schema, 2001.

[6] Gentleware. Poseidon for UML. http://www.gentleware.com.
[7] R. German. Performance Analysis of Communication

Systems, Modeling with Non-Markovian Stochastic Petri
Nets. John Wiley and Sons, 2000.

[8] E. Gómez-Martínez and J. Merseguer. ArgoSPE:
Model-based software performance engineering. In ICATPN
2006, volume 4024 of LNCS, pages 401–410.
Springer-Verlag, 2006.

[9] The GreatSPN tool. http://www.di.unito.it/~greatspn.
[10] Java programming language. http://java.sun.com/.
[11] P. King and R. Pooley. Using UML to derive stochastic Petri

net models. In Proceedings of the 15th UK Performance
Engineering Workshop, pages 45–56, Bristol, UK, July 1999.

[12] C. Lindemann, A. Thümmler, A. Klemm, M. Lohmann, and
O. Waldhorst. Performance Analysis of Time-enhanced
UML Diagrams Based on Stochastic Processes. In Proc. of
the 3rd Workshop on Software and Performance (WOSP),
pages 25–34, Rome, Italy, 2002.

[13] J. Merseguer. On the use of UML State Machines for
Software Performance Evaluation. In Proc. of the 10th IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2004.

[14] T. Murata. Petri Nets: Properties, Analysis and Applications.
In Proceedings of the IEEE, volume 77(4), pages 541–580,
April 1989.

[15] Object Management Group. UML profile for schedulability,
performance, and time. www.uml.org, March 2002.

[16] Object Management Group. XML Metadata Interchange
(XMI) Specification, January 2002.

[17] Object Management Group. Unified Modeling Language
Specification v.2.0. www.omg.org, August 2005.

[18] R. Pooley and P. King. The Unified Modeling Language and
Performance Engineering. In IEE Proceedings - Software,
volume 146(1), February 1999.

[19] W. Reisig. Petri nets. Springer Verlag Berlin, 1985.
[20] Rhapsody user guide. www.ilogix.com.
[21] TimeNET. pdv.cs.tu-berlin.de/~timenet.
[22] J. Trowitzsch and A. Zimmermann. Real-Time UML State

Machines: An Analysis Approach. In Object Oriented
Software Design for Real Time and Embedded Computer
Systems, September 2005.

[23] J. Trowitzsch and A. Zimmermann. Using UML State
Machines and Petri Nets for the Quantitative Evaluation of
ETCS. In Proc. of the 1st Valuetools, Pisa, Italy, October
2006.

[24] J. Trowitzsch, A. Zimmermann, and G. Hommel. Towards

Quantitative Analysis of Real-Time UML Using Stochastic
Petri Nets. In 13th Int. Workshop on Parallel and Distributed
Real-Time Systems, April 2005.

[25] A. Zimmermann, J. Freiheit, R. German, and G. Hommel.
Petri net modeling and performability evaluation with
TimeNET 3.0. In Proceedings of the 11th Int. Conf. on Tools
and Techniques for Computer Performance Evaluation,
pages 188–202, Schaumburg, Illinois, USA, 2000.

[26] A. Zimmermann, M. Knoke, A. Huck, and G. Hommel.
Towards version 4.0 of timenet. In 13th GI/ITG Conference
on Measurement, Modeling, and Evaluation of Computer
and Communication Systems, MMB 2006, Nuernberg, March
2006.


