
TimeNET – A Toolkit for Evaluating
Non-Markovian Stochastic Petri Nets

Reinhard German*, Christian Kelling, Armin Zimmermann**, and Günter Hommel

Technische Universität Berlin
Institut für Technische Informatik

Fachgebiet Prozeßdatenverarbeitung und Robotik
(Real-Time Systems and Robotics)

Franklinstr. 28/29
10587 Berlin, F. R. Germany

Abstract

This paper describes TimeNET (Timed Net Evaluation Tool), a software package

for the modeling and evaluation of stochastic Petri nets with non-exponentially

distributed firing times. TimeNET has been developed at the Technische Universität

Berlin in several research projects. A graphical user interface is provided for the

model specification and several specialized analysis and simulation components are

used for the automated model evaluation. The implementation of the analysis and

simulation components is based on recent research results. Both the general

structure and the underlying algorithms of TimeNET are described. An example

illustrates the modeling and evaluation process using TimeNET.

Keywords: Performance and Dependability Modeling Tool

Analysis and Simulation of Stochastic Petri Nets

Graphical User Interface

* R. German's work was supported by the Siemens Corporate Research and Development.
** A. Zimmermann's work was supported by the German Research Council under grant Ho 1257/4-1.



-1-

TimeNET – A Toolkit for Evaluating
Non-Markovian Stochastic Petri Nets

1 Introduction

Stochastic Petri nets (SPNs) represent a graphical method for the modeling of discrete event

systems like computer systems, communication systems, and manufacturing systems. The

stochastic extensions to the pure Petri net formalism allow modeling and evaluating the

performance and dependability of these systems. In order to deal with realistic models,

software tools are needed which support the modeling and evaluation process. This paper

describes the new software package TimeNET (Timed Net Evaluation Tool) which provides

several specialized components for dealing with SPNs with non-exponentially distributed firing

times.

During the last decade several classes of SPNs with different modeling power were

proposed. Most commonly, the transitions may fire after an exponentially distributed delay.

SPNs with both exponentially timed and immediate transitions firing without delay are referred

to as generalized stochastic Petri nets (GSPNs, [7]). The underlying stochastic process of a

GSPN is a continuous-time Markov chain. Several variants of SPNs with an underlying

Markov chain have been proposed in the literature. Accordingly, we refer to this class of SPNs

as Markovian SPNs. Markovian SPNs have been broadly used and accepted due to the

availability of software packages which completely automate their solution process (e.g.

GreatSPN [4], [6], SPNP [10], UltraSAN [11], and TOMSPIN [23]). However, the Markov

assumption is not realistic in many cases. Delays may either be deterministic or may be non-

exponentially distributed. Therefore non-Markovian SPNs are also required. Deterministic

and stochastic Petri nets (DSPNs, [2]) allow exponentially distributed and deterministic firing

delays. A numerical steady-state analysis is possible, if in each marking no more than one

transition with a deterministic delay is enabled [2]. Therefore, transitions with a deterministic

firing delay must not be concurrently enabled in a DSPN.

Based on the graphical user interface of GreatSPN, the software tool DSPNexpress was

developed at the Technische Universität Berlin. DSPNexpress is especially tailored to the

analysis of DSPNs and uses a refined, more efficient solution algorithm [24, 25]. It can also

deal with marking-dependent deterministic firing delays [27], which can be used for the

modeling of activities with a varying speed. The refined DSPN solution algorithm was also

added to UltraSAN.



-2-

Recently, new analysis methods were proposed for more general non-Markovian SPNs.

References [15, 8, 9] present general solution formulas for the steady-state analysis of SPNs

with exponentially and generally distributed firing delays. Similar to DSPNs, the solution is

subject to the restriction, that in each marking no more than one transition with a non-

exponentially distributed firing delay is enabled. We refer to this class of SPNs as extended

DSPNs. [15] and [9] present efficient numerical solution formulas for extended DSPNs in case

the general distributions belong to a special class of distributions, called expolynomial

distributions. Expolynomial distributions can be piecewise defined by exponential

polynomials. The class of expolynomial distributions contains many known distributions as

special cases (e.g. deterministic delay, uniform distribution, triangular distribution, truncated

exponential distribution, finite discrete distribution) and allows the approximation of practically

any distribution.

In case of DSPNs with concurrently enabled deterministic transitions (referred to as

concurrent DSPNs) a new method for the approximate steady-state analysis was presented in

[13]. Using pseudo-probabilities outside the interval [ , ]0 1  a generalized phase expansion with

few phases leads to a good approximation.

If an SPN is still too complex for analysis, it is possible to use discrete event simulation for

the evaluation. Simulation can deal with large state spaces and is not restricted to a certain class

of SPNs but may cause long run times. In [18, 20, 21] it was proposed to use parallelization

and variance reduction by control variates to achieve significant speedups.

TimeNET has been developed at the Technische Universität Berlin and is an extension of the

software tool DSPNexpress. It provides a user-friendly graphical interface for the modeling of

non-Markovian SPNs with deterministic, exponentially distributed, and expolynomially

distributed firing delays. Depending on the class of the SPN, different analysis, approximation,

and simulation components can be used for the evaluation. Analysis methods for DSPNs and

extended DSPNs [15, 9], an approximation method for concurrent DSPNs [13], and a fast

simulation method for arbitrary SPNs [18, 20, 21] are available. For the structural analysis and

the generation of the reachability graph specialized efficient algorithms are used [29]. The

contribution of TimeNET is that it contains new analysis and approximation components as

well as fast simulation components, providing a unified framework for the evaluation of non-

Markovian SPNs. It runs on Sun and DEC Alpha workstations under the X11 window system.

TimeNET and its predecessor DSPNexpress have been successfully applied for several

modeling projects. [28] contains a performance analysis of a virtually shared memory

architecture, [26] presents the performability analysis of a flexible manufacturing system, and

[19] evaluates real-time properties of communication systems. There are other ongoing projects



-3-

together with the Siemens AG and with the Daimler–Benz AG.

The remainder of this paper is organized as follows. Section 2 describes existing software

packages and gives a motivation for developing TimeNET. Section 3 contains a description of

the general structure of TimeNET and short descriptions of the implemented algorithms.

Section 4 illustrates the modeling and evaluation of a queuing system using TimeNET.

Concluding remarks are given in Section 5.

2 Existing Software Packages for the Evaluation of SPNs

In this section several software packages are described which are closely related to TimeNET.

At the University of Torino the software package Graphical Editor and Analyzer for Timed and

Stochastic Petri Nets (GreatSPN, [4], [6]) was developed. GreatSPN provides a user-friendly

graphical interface running under XView which allows to interactively edit, validate, and

evaluate SPN models. Version 1.4 supports the transient and steady-state analysis of GSPNs

and the steady-state analysis of DSPNs [4]. In version 1.5 the DSPN analysis component was

removed due to its high computational costs and a component for simulation has been added

[6]. Moreover, several “compiling techniques” [5] have been exploited in order to improve the

efficiency of the reachability graph generation. Additionally, GreatSPN supports SPNs with

colored tokens. The development of the user interface of TimeNET has been influenced by

GreatSPN. Opposed to GreatSPN, TimeNET contains components especially tailored to the

evaluation of non-Markovian SPNs.

At the Duke University, the software package Stochastic Petri Net Package (SPNP, [10])

was developed. SPNP contains components for the transient and steady-state analysis of

GSPNs. The entire package has been implemented in C and data structures are managed

dynamically. SPNP uses an alphanumerical interface, models have to be specified in a C-based

description language which allows a very high modeling flexibility. Moreover, very general

reward specifications can be given. SPNP also comprises a component for sensitivity analysis.

However, SPNP does not include a graphical user interface and cannot deal with non-

Markovian SPNs.

At the University of Arizona, the software package UltraSAN was implemented [11].

UltraSAN provides a user-friendly graphical interface running under X11 and components for

the transient and steady-state analysis of Stochastic Activity Networks (SANs). SANs are

similar to SPNs and include immediate and timed activities. UltraSAN uses reduced base

models for deriving the measures of interest. UltraSAN provides transient and steady state

analysis for SANs with exponential timing and also a steady-state analysis component for

SANs with exponential and deterministic timing. Moreover, this tool comprises a component



-4-

for the transient and steady-state simulation of SANs with non-exponentially timed activities.

Although UltraSAN can deal with models containing both exponentially distributed and

deterministic timing, it can not analytically evaluate models with more general timing. The

simulation component of UltraSAN uses importance sampling whereas TimeNET uses variance

reduction by control variates. Furthermore, TimeNET can execute single simulation runs in

parallel.

Since 1991 the software package DSPNexpress [25] has been developed at the Technische

Universität Berlin. DSPNexpress provides a user-friendly graphical user interface running

under X11 and is especially tailored to the steady-state analysis of DSPNs. Transient and

steady-state analysis of GSPNs is also provided. DSPNexpress uses a refined numerical

DSPN-solution algorithm [24] which can be executed in parallel. However, DSPNexpress

cannot deal with more general firing times than exponentially distributed and deterministic

times. Furthermore no simulation component is provided. One drawback is therefore that no

quantitative evaluation is possible in case transitions with a deterministic delay are concurrently

enabled.

The software package TimeNET is a major revision of DSPNexpress. It contains all

components of DSPNexpress, but supports the specification and evaluation of SPNs with an

increased modeling power. TimeNET allows for the definition of expolynomially distributed

firing delays of transitions. Therefore non-Markovian SPNs can be specified. Depending on the

class a specified SPN belongs to, different evaluation components can be used. In case of an

extended DSPN (in each marking at most one non-exponentially timed transition), TimeNET

can compute the steady-state solution using the algorithm described in [14, 9]. In case of a

concurrent DSPN (exponentially and deterministically timed transitions without structural

restrictions), no analytical solution method is known. TimeNET can compute an approximate

steady-state solution using the method described in [13]. In more general cases, if either the

structural restrictions do not hold or if the state space becomes too large, TimeNET provides

also a fast simulation component for obtaining quantitative results. The simulation component

uses the results published in [18, 20, 21]. Since analysis, approximation, and simulation is

performed for the same class of models, TimeNET provides a unified framework for the

modeling and evaluation of non-Markovian SPNs. The graphical user interface is based on X11

running on Sun and DEC Alpha workstations.

The development of TimeNET was also influenced by two other software packages: ESP

[12] and TOMSPIN [23]. ESP was written for the analysis of SPNs with phase-type

distributed firing times. Although ESP cannot deal with immediate transitions, the basic

algorithm was used and extended for the approximation component of TimeNET. TOMSPIN

was developed by the Siemens Corporate, Research and Development. TOMSPIN provides an



-5-

alphanumerical interface and components for the transient and steady-state analysis of GSPNs

and can deal with very large models.

3 Description of TimeNET

The major components of TimeNET are the graphical user interface and the evaluation

components. This section is organized as follows. In Section 3.1 the considered classes of

SPNs are introduced and in Sections 3.2, 3.3, and 3.4 the analysis, approximation, and

simulation components are described, respectively.

3 .1 The Considered Classes of SPNs

TimeNET uses the customary SPN formalism as e.g. in [1]. A SPN consists of places and

transitions, which are connected by input, output, and inhibitor arcs. In the graphical

representation, places are drawn as circles, transitions are drawn as thin bars or as rectangles,

and arcs are drawn as arrows (inhibitor arcs have a small circle at their destination). Places may

contain undistinguishable tokens, which are drawn as dots. The vector representing the number

of tokens in each place is the state of the SPN and is referred to as marking. The marking

changes by the firing of the transitions. A marking-dependent multiplicity can be associated

with each arc. Places that are connected with a transition by an arc are referred to as input,

output, and inhibitor places of the transition, depending on the type of the arc. A transition is

said to be enabled in a marking if each input place contains at least as many tokens as the

multiplicity of the input arc and if each inhibitor place contains fewer tokens than the

multiplicity of the inhibitor arc. A transition fires by removing tokens from the input places and

adding tokens to the output places according to the multiplicities of the corresponding arcs. The

reachability graph is defined by the set of vertices corresponding to the markings reachable

from the initial marking and the set of edges corresponding to the transition firings. The

transitions can be divided into immediate transitions firing without delay (drawn as thin bars)

and timed transitions firing after a certain delay (drawn as rectangles). Immediate transitions

have priority over timed transitions. Accordingly, the markings can be partitioned into

vanishing and tangible markings and the reduced reachability graph is defined by the set of

vertices corresponding to the reachable tangible markings and the set of edges given by the

corresponding transition firings.

Stochastic specifications are added to the formalism such that a stochastic process is

underlying an SPN. Possible conflicts between immediate transitions are resolved by assigning

weights to them. The firing delays of the timed transitions are specified by deterministic delays

or by random variables. Important cases are transitions with a deterministic delay (drawn as

filled rectangles), with an exponentially distributed delay (drawn as empty rectangles), and with



-6-

a generally distributed delay (drawn as dashed rectangles). In case of non-exponentially

distributed firing delays firing policies have to be specified [1]. We assume that each transition

restarts with a new firing time after being disabled, corresponding to “race with enabling

memory” as defined in [1], although some of our algorithms can also deal with “race with age

memory”.

In TimeNET a certain class of general distributions is used, referred to as expolynomial

distributions [15, 9]. An expolynomial distribution can be piecewise defined by exponential

polynomials and has finite support. An expolynomial distribution may contain jumps, therefore

it can represent random variables with mixed continuous and discrete components. The class of

expolynomial distributions contains many known distributions (e.g. deterministic delay,

uniform distribution, triangular distribution, truncated exponential distribution, finite discrete

distribution), allows the approximation of practically any distribution (e.g. by using splines),

and is particularly well suited for the numerical analysis (see next section). Since the probability

mass function (pmf) seems to be graphically more significant for the user than the cumulative

distribution function (CDF), we decided to use the pmf for the specification in TimeNET. A

context-free grammar was defined for the specification of expolynomial distributions. Using the

Unix tools lex and yacc, a parser for expolynomial distributions was written and added to

TimeNET.

In order to clarify the names for the different classes of SPNs, a short summarization is

given in this paragraph. In generalized stochastic Petri nets (GSPNs) only exponentially

timed transitions are allowed. In deterministic and stochastic Petri nets (DSPNs) also

deterministically timed transitions are allowed under the restriction that at most one such

transition is enabled in each marking. The restriction is caused by the numerical analysis

method. TimeNET allows the evaluation of more general model classes: In extended DSPNs

in each marking at most one expolynomially timed transition may be enabled. In concurrent

DSPNs exponentially and deterministically timed transitions may be enabled without

restrictions. The most general case, exponentially, deterministically, and expolynomially timed

transitions without restrictions is simply referred to as SPNs.

3 .2 The Analysis Component

The analysis of an SPN consists of several steps. First the structure of the SPN is examined.

Based on that information the reachability graph can be efficiently generated. Depending on the

type of the SPN different algorithms are then used for the numerical analysis.

3.2 .1 Structural Analysis

The first analysis step carried out by TimeNET is the computation of several structural



-7-

properties of the given model. Examining these properties, the modeler can check whether the

model has been specified correctly or not. Additionally, some of the structural properties are

used for the efficient generation of the reachability graph, using the idea described in [29, 5, 7].

Since these properties can be obtained directly from the net structure, the computational cost is

very small in relation to the further analysis steps.

The algorithm proposed in [30] is employed to obtain the minimal-support place invariants

of the net. From these invariants an upper bound of the number of tokens is derived for each

place, which is used for a space-efficient storing of the reachable markings following [5].

Furthermore, the extended conflict sets of immediate transitions are computed. For this

reason, the concepts of causally connectedness and indirect conflict are used as described in

[7]. Because mutually exclusive transitions cannot be in conflict, this property has to be

checked for a correct computation of the extended conflict sets. Two transitions are mutually

exclusive, if they are structural mutual exclusive, marking mutual exclusive or if they have a

different priority. The structural mutual exclusiveness can be checked on the net structure,

while for the marking mutual exclusive transitions the place invariants have to be considered.

Furthermore, the net is tested to be confusion free, because the reachability graph generation

algorithm employed in TimeNET requires the absence of confusions (see below). We extended

the definition of confusion freeness from [7] to cope with marking-dependent arc cardinalities

and marking-dependent firing weights for immediate transitions [29]. It is possible to examine

the computed extended conflict sets and the minimal-place invariants to allow the modeler to

check the correctness of the SPN model at an early stage of the analysis process.

Note that the results of the structural analysis are valid, even though the considered class of

SPNs allows for priorities of transitions, inhibitor arcs, and finite support of firing time

distributions. All place invariants are still valid in presence of these model features. However, it

may happen that the list of detected place invariants is not exhaustive. All other structural

properties of the net, e.g. conflicts and confusions, are only checked for immediate transitions.

The results of the structural analysis are therefore valid for non-Markovian SPNs, even if the

firing time distributions of timed transitions have finite support.

3.2 .2 Efficient Generation of the Reachability Graph

The main problem with the generation of the reachability graph of a Petri net lies in the

computational effort and required memory space. To overcome the conflict between a fast

execution time and a small main memory space usage, TimeNET provides two variants of the

algorithm: a time efficient and a space efficient one. Both variations of the algorithm are

based on [3], generating the reduced reachability graph of a timed Petri net model after a



-8-

decomposition of the net into subnets by removing the timed transitions. The timed transitions

constitute a barrier between the subnets of immediate transitions. This is still the case for non-

exponentially timed transitions; therefore the method is applicable for non-Markovian SPNs as

well.

The memory requirements of a reachability graph generation algorithm should not exceed the

main memory available on a given workstation. This hampers the employment of the time-

efficient generation algorithm for some models, even if the “compiling techniques” introduced

in [5] are used to optimize the data structures. Using the method described in [29], the memory

requirements of the reachability graph generation algorithms could be estimated, resulting in an

a-priori selection of the appropriate variation. This estimation exploits the place invariants of the

model, which can be derived directly from the net structure. If the estimated memory require-

ments exceed the main memory on a given workstation, the space efficient variation is used.

The time efficient variation of the algorithm computes and stores all possible firing paths

from a vanishing submarking to its reachable tangible submarkings together with their

associated probabilities. Thus, the set of reachable tangible submarkings and the corresponding

probability vector has to be derived only once even for multiply visited submarkings.

In the case of the space efficient variation of the reachability graph algorithm, the memory

required for the reachability graph of a subnet is released immediately after this subnet has been

processed, resulting in substantially less main memory space usage.

Additionally, our algorithm uses independent firing of immediate transitions, which reduces

the number of possible firing sequences while examining vanishing submarkings. This method

is only applicable in a confusion free net, because in this case, the subsequent behavior of the

model does not depend on the order of firing of the immediate transitions enabled in a given

marking.

3.2 .3 Numerical Analysis

If the SPN is either a GSPN, a DSPN or an extended DSPN, numerical analysis is possible. In

case of a GSPN all timed transitions have an exponentially distributed delay. The reduced

reachability graph is isomorphic to a continuous-time Markov chain. The steady-state solution

is obtained by solving the corresponding linear system of equations and the transient solution is

obtained by solving the corresponding system of differential equations. In TimeNET successive

over relaxation (SOR) [22] and sparse Gaussian elimination [33] are used for the steady-state

solution and Jensen’s method, also called randomization or uniformization [16], is used for the

transient solution.

In case of a DSPN (i.e. the SPN contains transitions with deterministic delay with the



-9-

restriction that in each marking no more than one of these transitions is enabled), steady-state

analysis is also possible [2]. The analysis is based on the observation that the underlying

stochastic process enjoys the absence of memory at certain instants of time, referred to as

regeneration points [27]. The definition of the regeneration points depends on whether a

deterministically timed transition is enabled or not. In markings enabling only exponentially

timed transitions the next regeneration point is chosen to be the instant after the next firing of a

transition. In all other markings the next regeneration point is chosen to be the instant after the

deterministically timed transition has fired or has become disabled by the firing of another

transition. An embedded Markov chain (EMC) with a discrete time parameter can be defined at

the regeneration points. The one-step transition probabilities of the EMC are denoted by the

stochastic matrix P. The entry pij of P represents the probability of being in marking j in the

next regeneration point given that the marking in the last regeneration point was i. The steady

state solution γ of the EMC is given by the linear system of equations:

γγ γγ⋅ = ⋅ =P P e, 1 (1)

where e denotes a vector with all entries equal to one. Since the EMC does not reflect the time

spent in the markings up to regeneration, the solution has to be converted in order to obtain the

solution of the DSPN. Therefore a matrix C of conversion factors is computed. The entry cij of

C represents the average sojourn time in marking j up to regeneration given the marking in the

last regeneration point was i. The solution π of the DSPN is obtained by multiplying the EMC

solution by the matrix of conversion factors and a subsequent normalization step in order to

obtain a vector of proper probabilities:

′ ⋅ ⋅ ′′⋅γ = γ = γγC e, π 1 (2)

The main problem of the algorithm lies in the computation of the entries of P and C. In case

a deterministically timed transition is enabled, the possible evolution of the stochastic process

during its enabling has to be taken into account. Since only exponentially timed transitions may

fire during the enabling, this process is a continuous-time Markov chain, referred to as

subordinated Markov chain (SMC) of the deterministically timed transition. Let the generator

matrix of an SMC be denoted by Q and let τ denote the deterministic firing delay. The state

probabilities in the SMC in the instant of the deterministic firing time and the average sojourn

times in the states of the SMC up to the deterministic firing time are given by the transient

solution and by the cumulative transient solution of the SMC, respectively:

e e dttQ Qτ
τ

,
0
∫ (3)

The matrix exponential and the integral of the matrix exponential have thus to be computed



-10-

for the SMC of each deterministically timed transition. The result has then to be inserted into the

matrices P and C. For the mapping of the transient quantities to the matrices P and C, we refer

to [24] and [27]. In TimeNET, Jensen’s method is used for the transient and cumulative

transient analysis of the subordinated Markov chains. Furthermore, the algorithm detects

isolated components of the SMCs, tests them for possible isomorphisms, and starts a process

for the analysis for each component. Since the components are independent, the processes are

executed in parallel on different workstations. For the computation of the solution of the EMC,

SOR is used.

In [27] it was shown how these formulas can be generalized in order to deal with marking-

dependent deterministic firing delays. Marking-dependent deterministic firing delays can be

used for the modeling of activities with a constant speed which may vary due to other events

(e.g. a fault-tolerant service facility with a slower performing redundant unit). For the proper

definition of the regeneration points, the marking-dependent deterministic delays can be

normalized and the rates of the exponentially distributed delays can be scaled appropriately.

This algorithm is included in the analysis component of TimeNET.

In case of extended DSPNs (i.e. the SPN contains transitions with generally distributed

delays with the restriction that in each marking no more than one of these transitions is

enabled), steady-state analysis is still possible. The structural restriction is very similar to that

of ordinary DSPNs: non-exponentially timed transitions must not be concurrently enabled. The

analysis is either possible by the method of supplementary variables [15], or by means of an

embedded Markov chain [8], [9]. Since the second algorithm is a straightforward extension of

the described solution algorithm for DSPNs, we decided to implement this one. The definition

of the regeneration points is very similar to the definition for ordinary DSPNs: in markings

enabling only exponentially timed transitions the next regeneration point is chosen to be the

instant after the next firing of a transition. In all other markings the next regeneration point is

chosen to be the instant after the non-exponentially timed transition has fired or has become

disabled by the firing of another transition. The definition of the EMC, the computation of the

solution of the EMC, the conversion and normalization are identical to a DSPN. Only the

computation of the one-step transition probabilities of the EMC and of the conversion factors is

different. Let Q denote the generator matrix of the SMC of a transition with a generally

distributed delay and let F(t) denote its probability distribution function. The state probabilities

of the SMC in the instant of firing are given by the Stieltjes integral of the matrix exponential

with respect to F(t) from zero to infinity; the average sojourn times in the states of the SMC up

to firing are given by the ordinary integral of the matrix exponential multiplied with the

complement of F(t) from zero to infinity, respectively:



-11-

e dF t e F t dtt tQ Q( ), ( )
0 0

1
∞ ∞

∫ ∫ ⋅ −( ) (4)

The integrals (4) are a generalization of the expressions (3): substituting F(t) by the unit step

function in τ (which is a probability distribution representing a deterministic delay) leads to the

expressions (3). The solution formulas are valid for arbitrary distributions. In [15, 9] it was

shown how Jensen’s method can be generalized for the efficient numerical computation of the

integrals in case the general distribution is an expolynomial distribution. This algorithm was

implemented and is provided by TimeNET.

3 .3 The Approximation Component

The numerical steady-state analysis of DSPNs is subject to the restriction that deterministically

timed transitions must not be concurrently enabled. TimeNET provides an algorithm for the

approximate steady-state analysis in case that restriction is relaxed. The approximation is based

on replacing the deterministically timed state transitions by sequences of exponential phases.

Most commonly, an Erlang distribution, consisting of a sequence of identical phases, is used

for the approximation. The replacement leads to an expanded state space which is isomorphic to

a continuous-time Markov chain. The solution can be obtained by solving the corresponding

linear system of equations. Appropriately summing up the results of the expanded states leads

to an approximate steady-state solution of the DSPN. For good approximations a large number

of phases of the Erlang distribution is required (e.g. 10 phases), leading to a state space

explosion.

In order to avoid this state space explosion, it was proposed in [13] to use a a generalized

Cox distribution function (GCDF) for the approximation. A GCDF consists also of a

sequence of identical exponential phases, but has a switching probability after the completion of

the first phase. Using pseudo-probabilities outside the interval [ , ]0 1  leads formally to a

smaller variance than in the case of an Erlang distribution with the same number of phases. The

replacement of the deterministic times by GCDFs leads again to an expanded state space. Since

the GCDF comprises negative rates, the state space is isomorphic to a generalized continuous-

time Markov chain. Solving the corresponding linear system and appropriate summing-up leads

to an approximate solution. In some cases very good approximations can be obtained by using

just two phases. Unfortunately, for some structures the approximation yields negative values

and the result is useless. At the moment no criterion is known for the prediction whether the

result is good or not. Therefore the approximation based on GCDFs can only be heuristically

used and must be validated by simulation for a given DSPN.

In TimeNET deterministic delays can automatically be replaced either by Erlang distributed



-12-

delays or by GCDFs. The underlying expanded state space is generated by an algorithm taken

from [12]. The (generalized) continuous-time Markov chain is then solved and the results are

automatically summed up.

3 .4 The Simulation Component

The main problem of all analytical evaluation methods remains the size of the state space to be

generated. Real-life models tend to be very detailed and the state space of their underlying

stochastic process becomes unmanageable. Therefore in some situations simulation is the only

feasible approach for performance evaluation. Furthermore, the simulation component can

serve as a validation tool for new analysis methods. TimeNET contains a simulation component

that has been designed to deal with complex Petri net models with non-exponentially distributed

firing times.

3.4 .1 Concepts

Simulation accompanies the whole design and evaluation process of the SPN model. While in

early stages of the modeling an interactive simulation support is necessary in order to verify the

model behavior, for the evaluation a fast and automated simulation component is required. The

interactive tokengame of TimeNET implements an animated framework for testing and

debugging purposes. It allows the user to control the firing sequences using the graphical net

representation. The fast, automated simulation for reward measure estimations is realized by a

second simulator.

In general, a SPN simulation is performed by executing the following steps cyclically:

• find enabled transitions

• if immediate transitions are enabled: according to priorities and weights choose one

immediate transition to fire

if timed transitions are enabled: according to the (random) firing delays choose one timed

transition to fire

• fire the selected transition, i.e. compute the new marking

• update the statistics of the reward measures (if necessary)

This discrete-event simulation is a stochastic experiment. Therefore all samples drawn by the

simulation procedure are random variates. Reward measures can be obtained by estimating the

mean value of the sampled data. Assumptions concerning the precision of this estimate are

usually based on confidence intervals derived from the sample variance. Since most statistical

methods require that the input data satisfy special properties (e.g. independence, normal

distribution) but obtained samples do not have these properties in general, some effort is



-13-

indispensable to ensure valid results.

Even though the application of the simulator does not require special knowledge about the

implemented methods, an outline of the techniques is given in the next section, and after this

some implementation aspects of the simulator are discussed.

3.4 .2 Statistical Methods

The simulation component contains statistical techniques for reliable and robust estimation of

the user-defined reward measures:

• The user can specify the accuracy of the reward measure estimates giving the confidence

level and the maximum relative error that can be tolerated in the final result.

• Samples drawn from the initial transient phase of a simulation run induce bias into the

mean value estimate. Therefore, the initial transient phase is detected automatically and

data is only taken from the steady-state stage. We apply a test proposed by Schruben et

al. [32] preceded by a simple heuristic. The procedures are adopted from [31].

• Statistical analysis of the sample data is performed by spectral variance analysis [17, 31].

This technique with an enhancement developed in [18] allows flexible and robust variance

estimates in single as well as multiple replication scenarios. It does not make any

assumptions concerning the correlation structure and therefore it is also applicable if only

a few replications are available.

• The simulation run length required for the pre-specified precision is determined

automatically. Upper bounds for the run length and the number of samples can be given.

3.4 .3 Implementation

Simulation experiments may be very time consuming. Several approaches have been proposed

in order to reduce the computational overhead for simulation runs. We use different techniques

to accelerate the traditional Petri net simulation.

An obvious way to obtain efficiency is to use structural properties of the SPN. Since the

search for enabled transitions in a new marking may be very costly if all transitions are

considered, so called causally connectedness is used to determine the transitions that can

become enabled after a particular transition has fired. This reduces significantly the overhead to

find new enabled transitions [5].

Parallelization is sometimes a well suited approach to speed up sequential programs. The

simulator component is able to run multiple independent replications at several workstations in a

LAN-environment. This means that several simulation engines, i.e. program components

realizing the firing sequences of the model, are started in the distributed system and one

centralized control instance collects and analyses the data samples. This is an easy way to



-14-

achieve significant speedup for simulation experiments, as long as models are not too small and

therefore the distribution overhead is greater than the simulation run length. The simulator

applies UNIX standard communications techniques via sockets for the transmission of the data

samples. Further details can be found in [21].

Figure 1 shows the achievable speedup for parallel runs. With speedup we denote the ratio

of the execution time using one slave and the execution time using n slaves. In the considered

case, one simulation engine generates 10,000 samples of the reward measure in 30 seconds of

execution time. This indicates a reward measure obtained from relatively rare events of the

model. The distribution overhead is approximately 5 seconds and the curves represent different

number of samples required to obtain a predefined accuracy.

Variance reduction techniques (VRTs) are among the most promising methods to reduce the

overhead of stochastic simulation experiments. Most VRTs require special knowledge about the

simulation model under study and individually adapted simulation algorithms. This makes its

incorporation into flexible, user-friendly simulation tools more difficult. One of the more

generally applicable methods is the control variates VRT. The basic idea is to use the correlation

between an estimator of interest and another stochastic parameter of the model (called the

control variate CV) to reduce the variance of the estimator. We use special selection rules, also

exploiting the net structure, for effective CVs and can achieve a reduction of the simulation run

length between 30% and 90%, depending on the model parameters. For details we refer to

[20].

4 A Modeling Example: MMPP/G/1/K queueing system

The modeling and evaluation process using TimeNET is now illustrated by an example. An

MMPP/G/1/K queueing system with vacations is considered. This kind of queueing systems is

very common for the modeling of ATM-switches in Broadband-ISDN. The arrival process is a

2-state Markov modulated Poisson process (MMPP), the service time is generally distributed,

and the buffer capacity is restricted to K places. Additionally, the server may take repetitive

vacations after busy periods. The duration of a vacation is also generally distributed. The

MMPP is specified by four parameters: high and low arrival rate λ1 and λ2 , rate of changing

from high to low level r1 and rate of changing from low to high level r2.The mean rate λ is

thus given by λ λ λ= + +( ) /( )1 2 2 1 1 2r r r r  and the burstiness b is defined as the ratio of the high

to the mean arrival rate b = λ λ1 / .

Using TimeNET, the queueing system can easily be modeled as an extended DSPN.

Figure 2 shows the user interface. The main window contains the graphical representation of

the model. The buttons and icons on the left side allow the user to edit the model interactively.



-15-

The pull-down menues on the upper side allow file operations and validation/evaluation of the

model.

In this paragraph the SPN model is described. The arrival of data cells is modeled by the

exponential transition T1, the modulation of the arrival by the subnet consisting of P1, T2, P2,

and T3. T1 has no input place and is therefore enabled in each marking, its mean firing delay

depends on whether a token is in P1 or P2. Tokens in P3, P4, and P5 represent cells

immediately after arrival, waiting for service, or receiving service, respectively. A token in P6

models an idle server and a token in P7 a server vacation. The number of free buffer places is

represented by tokens in P8. Initially all K places are free. A cell arriving at the system may

either enter the system (firing of immediate transition t5) if a buffer place is available, otherwise

it gets lost (firing of immediate transition t4). A cell waiting for service may enter the service

facility if it is idle (firing of immediate transition t6). Transition T7 with a generally distributed

firing time represents the service process. When the server facility becomes idle, it may take a

vacation (firing of immediate transition t8). A vacation may only be taken if no cell is waiting

for service. This is modeled by assigning a higher priority to t6 than to t8 (default priority is 1,

therefore priority 2 is assigned to t6). The duration of the vacation itself is modeled by

transition T9 with a generally distributed firing time.

TimeNET provides several special purpose editors for the definition of certain parts of the

model. These editors allow the specification of probability distribution functions of timed

transitions, marking-dependent delays of timed transitions, marking-dependent weights of

immediate transitions, marking-dependent arc multiplicities, and result measures. Figure 3

shows the editor for specifying expolynomially distributed delays. The user may specify the

probability mass function (pmf) of an expolynomial distribution using expressions in a context-

free grammar. The editor then immediately draws the curve of the pmf or the distribution

function, as desired. An on-line help is provided for all operations. A special syntax may also

be used for the definition of result measures. For example, the mean queue length can be

expressed as:

Mean: E{#P4}+E{#P5};

and the probability that less than 10 cells are inside the system as:

Threshold: P{#P8<10}; (5)

The modeling process is thus very efficient, just some minutes were needed for creating the

example model description.

Now the model behavior can be validated. The first possibility is to play the tokengame: in

that mode all transitions enabled in a marking are blinking, mouse clicking causes firing of a



-16-

transition leading to a marking change. Second, the minimal place invariants can be computed.

In the example the three invariants #P1 + #P2 = 1, #P4 + #P5 + #P8 = K, #P5 + #P6 + #P7 =

1 are determined. Additionally, the extended conflict sets (ECS) of immediate transitions can be

checked. In the example it turns out that t5 and t8 belong to the same ECS. This can be

interpreted as follows: although t5 and t8 are not in direct conflict, the choice whether t5 fires or

not may influence whether t6 can fire. Although this situation does not occur in the given

model, assigning priority 2 to t5 avoids this unintended semantics. After the assignement all

immediate transitions are in different ECS.

Now it is possible to evaluate the model. The following sets of experiments are performed

on a DEC Alpha workstation (DEC 3000 Model 800, 1/2 GB main memory). In all curves the

measure Threshold as defined in (5) is determined for a varying burstiness b. The following

parameters of the queueing system are adopted: K = 50, λ = 0.5, λ2  = 0.4, ρ2 21 7312= =/ r .

λ1 and ρ1 11= / r  can then be computed for a given value of b. The mean service and vacation

time is set to 1.

Figure 4 shows analytical results for different distributions of the service and vacation time.

The mean of the distribution is kept fixed for all curves. An exponential distribution with rate 1,

an uniform distribution with support from 0 to 2, and a deterministic time equal to 1 are used,

respectively. The tangible state space contains 202 states and approximately 5 sec of CPU time

are required for the computation of a result for a given value of b. The figure shows that

depending on the distribution the results may differ in several orders of magnitude. This can

especially be observed for smaller values of b, whereas for higher values the difference

becomes less significant.

In another experiment the service and vacation times are assumed to be deterministic. The

approximation component is used for obtaining the results shown in Figure 5. The solid line

corresponds to the exact analytical results already shown in Figure 4. The dashed lines show

the results obtained with an Erlang distribution with two phases, and with a generalized Cox

distribution function with two phases and a squared coefficient of variation of 1/100. In both

cases the expanded state space contains 404 states, while 6 sec of CPU time are required for the

computation of a result for a given value of b. The curves show that the generalized Cox

distribution leads to a much better approximation, although the computational costs are the same

in both cases.

In an additional experiment we compare the results of the analysis and simulation

components. Figure 6 shows the curves in case of exponentially distributed and deterministic

service and vacation times. The solid lines correspond to analytical results and the dashed lines

correspond to results obtained by simulation. The confidence level is set to 95%, the maximum



-17-

relative error of the confidence intervals to 5%, and sequential simulation is used. Due to the

logarithmic scale, the graphical representation of the confidence intervals is contained in the

dots of the mean values. The required CPU time for determining a result for one value of b

ranges from 5 sec (b = 2.4) to 50 min (b = 1.7). This wide range of execution time

demonstrates the sensitivity of simulation techniques to the probability of the event of interest.

The model could easily be modified. For example, a MMPP comprising more states or more

complex dependencies between the queue length and the service process could be specified. In

the following we consider a tandem queueing system: after receiving service the customers

proceed to a second queueing system with deterministic service and vacations. Figure 7 shows

a SPN model of the tandem queueing system. Similar steps for the validation and evaluation as

for the simple queueing system can be performed. It is interesting to investigate how the

burstiness influences the behavior at the second queue. Figure 8 shows the probability that the

second queue has less than 10 free buffer places, defined as:

Threshold2: P{#P14 < 10};

The results are obtained by sequential simulation. The required CPU time for determining a

result for one value of b ranges from 10 sec (b = 2.4) to 30 min (b = 1.7).

5 Conclusions

TimeNET is a software package which supports the modeling and evaluation of discrete event

systems by means of stochastic Petri nets. It provides a user-friendly graphical interface and

several specialized components for the evaluation of non-Markovian stochastic Petri nets.

Analysis components for SPNs with deterministic, exponentially and generally distributed

firing delays, an approximation component for SPNs with deterministic firing delays, and an

efficient simulation component for arbitrary SPNs are available. For the structural analysis and

the generation of the reachability graph specialized efficient algorithms are used. The general

structure and a description of the algorithms has been given. An example illustrating the

modeling and evaluation process was also given. The tool has already been successfully

employed for several modeling projects.

In future work, several extensions of TimeNET are intended: implementation of an analysis

component for SPNs with discrete timing [34], development of a transient analysis component

for DSPNs [14], and incorporation of colored tokens. In the application field we plan to model

and evaluate telecommunication systems in cooperation with our industrial partner, Siemens

AG.



-18-

Acknowledgements

The authors would like to thank Ulrich Hertlein, Kolja Koischwitz, Thomas Kuhlmann, Jörg

Mitzlaff, and Joachim Schneider for the implementation of the new components of TimeNET.

References

[1] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, A. Cumani. The Effect
of Execution Policies on the Semantics of Stochastic Petri Nets. IEEE Trans. Softw.
Engin., 15 (1989) 832–846.

[2] M. Ajmone Marsan and G. Chiola. On Petri Nets with Deterministic and Exponentially
Distributed Firing Times. In: G. Rozenberg (Ed.) Advances in Petri Nets 1986, Lecture
Notes in Computer Science 266, pp. 132–145, Springer 1987.

[3] G. Balbo, G. Chiola, G. Franceschinis, G. Molinar Roet. On the Efficient Construction
of the Tangible Reachabilty Graph of Generalized Stochastic Petri Nets. Proc. of the 2nd
Int. Workshop on Petri Nets and Performance Models, Madison, WI, USA, pp. 85–
92, August 1987.

[4] G. Chiola. A Graphical Petri Net Tool for Performance Analysis. Proc. 3rd Int. Conf. on
Modeling Techniques and Tools for Performance Analysis, Paris, France, pp. 323–
333, 1987.

[5] G. Chiola. Compiling Techniques for the Analysis of Stochastic Petri Nets. Proc. 4th
Int. Conf. on Modeling Techniques and Tools for Computer Performance Evaluation,
Palma de Mallorca, Spain, pp. 11–24, 1988.

[6] G. Chiola. GreatSPN 1.5 Software Architecture. Proc. 5th Int. Conf. on Modeling
Techniques and Tools for Performance Analysis, Torino, Italy, pp. 117–132, 1991.

[7] G. Chiola, M. Ajmone Marsan, G. Balbo, and G. Conte. Generalized Stochastic Petri
Nets: A Definition at the Net Level and Its Implications. IEEE Trans. Softw.
Engineering, 19 (1993) 89–107.

[8] H. Choi, V. G. Kulkarni, and K. S. Trivedi. Markov Regenerative Stochastic Petri Nets.
Perf. Eval., 20 (1994) 337–357.

[9] G. Ciardo, R. German, C. Lindemann. A Characterization of the Stochastic Process
Underlying a Stochastic Petri Net. Trans. on Softw. Eng., 20 (1994) 506–515.

[10] G. Ciardo, J. Muppala, and K.S. Trivedi. SPNP: Stochastic Petri Net Package. Proc.
3rd Int. Workshop on Petri Nets and Performance Models, Kyoto, Japan, pp. 142–
151, 1989.

[11] J. Couvillion, R. Freire, R. Johnson, W.D. Obal, M.A. Qureshi, M. Rai, W.H.
Sanders, and J.E. Twedt. Performability Modeling with UltraSAN. IEEE Software, 8
(1991) 69–80.

[12] A. Cumani. ESP - A Package for the Evaluation of Stochastic Petri Nets with Phase-Type
Distributed Transition Times. Proc. 1st Int. Workshop Timed Petri Nets, Torino, Italy,
pp. 144–151, 1985.

[13] R. German. A New Approach to the Approximation of Deterministic Time in Continuous



-19-

Time Stochastic Models. Short Papers and Tools Descriptions 7th Int. Conf. on
Modelling Techniques and Tools for Computer Performance Evaluation, Vienna,
Austria, pp. 91–94, 1994.

[14] R. German. Transient Analysis of Deterministic and Stochastic Petri Nets by the Method
of Supplementary Variables. Proc. Int. Workshop Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS ’95), Durham, NC, USA,
1995, (to appear).

[15] R. German, C. Lindemann. Analysis of Stochastic Petri Nets by the Method of Supple-
mentary Variables. Perf. Eval., 20 (1994) 317–335.

[16] D. Gross and D.R. Miller. The Randomization Technique as a Modeling Tool and So-
lution Procedure for Transient Markov Processes. Operations Research, 32 (1984) 345–
361.

[17] P. Heidelberger, P.D. Welch. A Spectral Method for Confidence Interval Generation and
Run Length Control in Simulations. Communications of the ACM, 24 (1981) 233–245.

[18] C. Kelling. A New Method to Determine the Initial Checkpoint of the Spectral Variance
Analysis. Proc. 7th GI/ITG Conf. on Modeling, Measurement and Evaluation of
Computing Systems (MMB ’93), Aachen, Germany, pp. 37–42, 1993.

[19] C. Kelling, G. Hommel. Modeling Priority Schemes with Timed Petri Nets. Proc. 2nd
Int. Workshop on Parallel and Distributed Real-Time Systems, Cancun, Mexico,
IEEE Press, 1994, (also to appear in Int. J. of Mini- and Microcomputers).

[20] C. Kelling. Control Variate Selection Strategies for Timed Petri Nets. Proc. of the
European Simulation Symposium 1994. Instanbul, Turkey, pp. 73–77, 1994.

[21] C. Kelling. TimeNET-SIM – a Parallelsimulator for Stochastic Petri Nets. Internal paper
(submitted for publication).

[22] D.R. Kincaid, J.R. Respess, and D.M. Young. ITPACK 2C: A Fortran Package for
Solving Large Sparse Linear Systems by Adaptive Accelerated Iterative Methods. ACM
Trans. on Math. Softw., 8 (1982) 302–322.

[23] G. Klas, R. Lepold. TOMSPIN, a Tool for Modeling with Stochastic Petri Nets. Proc.
of the 6th Annual European Computer Conference, Le Hague, Netherlands, pp. 618–
623, 1992.

[24] C. Lindemann. An Improved Numerical Algorithm for Calculating Steady-State Solutions
of Deterministic and Stochastic Petri Net Models. Perf. Eval., 18 (1993) 79–95.

[25] C. Lindemann. DSPNexpress: A Software Package for the Efficient Solution of
Deterministic and Stochastic Petri Nets. Perf. Eval.

[26] C. Lindemann, G. Ciardo, R. German, and G. Hommel. Performability Modeling of an
Automated Manufacturing System with Deterministic and Stochastic Petri Nets. Proc.
IEEE Int. Conf. on Robotics and Automation, Atlanta, Georgia, USA, pp. 576–581,
1993.

[27] C. Lindemann, R. German. Modeling Discrete Event Systems with State-Dependent
Deterministic Service Times. Discrete Event Dynamical Systems: Theory and
Applications, 3 (1993) 249-270.

[28] C. Lindemann, F. Schön. Performance Evaluation of Memory Consistency Models for



-20-

Multiprocessor Systems with Vitually Shared Memory. Proc. 26th Hawaii Int. Conf. on

System Sciences, Maui, Hawaii, 1993.

[29] C. Lindemann, A. Zimmermann. An Adaptive Algorithm for the Efficient Generation of
the Tangible Reachability Graph of a Stochastic Petri Net. Technical Report 1994-8,
Technische Universität Berlin, Germany, 1994.

[30] J. Martinez, M. Silva. A Simple and Fast Algorithm to Obtain All Invariants of a
Generalized Petri Net. In: C. Girault, W. Reisig, (Eds.) Informatik Fachberichte 52,
pp. 301-310, Springer 1982.

[31] K. Pawlikowski. Steady-State Simulation of Queueing Processes: A Survey of Problems
and Solutions. ACM Computing Surveys, 22 (1990) 123–170.

[32] L.W. Schruben, H. Singh, L. Tierney. Optimal tests for initialization bias in simulation
output. Operations Research, 31 (1983) 1167–1178.

[33] A.H. Sherman. Algorithms for sparse Gaussian elimination with partial pivoting. ACM
Trans. on Math. Softw., 4 (1978) 330–338.

[34] R. Zijal, R. German. A new Approach to Discrete Time Stochastic Petri Nets. Proc. 11th
Int. Conf. on Analysis and Optimization of Systems, Sophia-Antipolis, France, pp.
198–204, 1994.



-21-

B

B

B
B B

J

J

J

J
J

H

H

H

H

H

F

F

F

F

F

1 5 10 15 20
0
2
4
6
8

10
12
14
16

sp
ee

du
p

number of slaves

B 10,000 samples

J 20,000 samples

H 50,000 samples

F 100,000 samples

Figure 1. Gain of Parallelization (Simulation)

Figure 2. User interface of TimeNET



-22-

Figure 3. Editor for specifying expolynomial pmfs

1.8 2 2.2 2.4
b10e-7

10e-6

10e-5

10e-4

10e-3

10e-2

10e-1

10e0

deterministic

uniform(0,2)

exponential

Figure 4. Threshold vs. burstiness for different distributions (analysis)

1.8 2 2.2 2.4
b10e-7

10e-6

10e-5

10e-4

10e-3

10e-2

10e-1

10e0

deterministic

GCox(2,100)

Erlang(2)

Figure 5. Threshold vs. burstiness (analysis and approximation)



-23-

1.8 2 2.2 2.4
b10e-7

10e-6
10e-5
10e-4
10e-3
10e-2
10e-1
10e0

simulation
exponential

analysis

1.8 2 2.2 2.4
b10e-7

10e-6
10e-5
10e-4
10e-3
10e-2
10e-1
10e0

simulation
deterministic

analysis

Figure 6. Threshold vs. burstiness (analysis and simulation)

P1

P2

P3

P4 P5

P6

P7

P8

K

P9

P10 P11

P12

P13

P14
K

T1

T2T3

t4

t5 t6 T7

t8T9

t10 t11 T12

t13T14

t15

Figure 7. Tandem queueing system

1.8 2 2.2 2.4
b10e-5

10e-4

10e-3

10e-2

10e-1 exponential

1.8 2 2.2 2.4
b10e-5

10e-4

10e-3

10e-2

10e-1 deterministic

Figure 8. Threshold2 vs. burstiness (simulation)


