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Abstract

Support for the efficient design and operation of complex manufacturing systems requires
an integrated modelling, analysis, and control methodology as well as its implementation
in a software tool. In this paper the Petri net based design engine TimeNET is presented
for this task. Petri nets are able to capture the characteristic features of manufacturing
systems in a concise form. A subclass of coloured Petri nets is used, that has been
developed especially for the application area of manufacturing. Structure and work plans
are modelled separately. Stochastic as well as deterministic and more general distributions
are adopted for the firing times of transitions. Fundamental questions about system
properties can be answered using qualitative analysis. For an efficient performance and
dependability prediction, different evaluation techniques are proposed: direct numerical
analysis, approximate analysis, and simulation. Finally, the model can be used to evaluate
different control strategies and to control the manufacturing system directly. There is no
need to change the modelling methodology, thus avoiding additional effort e.g. for model
conversion. In the paper the necessary steps are described using an application example.

1 Introduction

Design and operation of modern manufacturing systems is a complex task. For its support
throughout the life cycle of production systems, an integrated modelling, analysis, and
control methodology and its implementation in a software tool is necessary. Petri nets
have been successfully used in the application area of manufacturing systems because of
their ability to describe and analyse their inherent behaviour, which is characterised by
synchronisations, resource sharing conflicts, and concurrent activities.

Manufacturing systems are a classical application area of Petri nets; see (Silva and
Teruel 1997) for a survey. Two popular extensions including stochastic timing are stochas-
tic Petri nets (SPNs, (Ajmone Marsan 1990)) and generalised stochastic Petri nets (GSPNs,

*Int. Journal of Production Research, vol. 39, no. 2, pp. 225-253 (Special issue on Modeling, Specification
and Analysis of Manufacturing Systems)



(Chiola et al. 1993)). Both have been used for manufacturing system modelling and eval-
uation (Al-Jaar and Desrochers 1990; Silva and Valette 1989). However, the use of these
uncoloured net classes requires that if more than one product is processed by a machine,
the machine’s model has to be replicated due to the lack of distinguishable tokens. Zu-
rawski and Dillon (1991) proposed a method for constructing those replicated uncoloured
subnets in a systematic way. In general, using uncoloured nets leads to models that
do not reflect the actual structure, making the models less understandable. Uncoloured
net classes therefore do not appear to be adequate for the modelling of more complex
production systems (Zimmermann et al. 1996a).

Therefore, coloured Petri nets (CPNs, (Jensen 1992)) have been applied to manu-
facturing systems. Viswanadham and Narahari (1987) used coloured Petri nets for the
modelling of automated manufacturing systems. Based on these models, deadlocks can
be found by analysing the invariants. A coloured Petri net model of a manufacturing cell
controller is described by Kasturia, DiCesare and Desrochers (1988). After obtaining its
invariants, the liveness of the model is checked.

The independent modelling of structural and functional system parts is of high im-
portance for the modelling of complex production systems. Only then it is possible to
change parts of the work plans without having to redesign the whole model. Separate
models for manufacturing system structure and work plans have also been proposed in
other frameworks. Ezpeleta and Colom (1997) generate a model that is used for deadlock
prevention control policies. Villaroel, Martinez and Silva (1989) proposed to model work
plans with coloured Petri nets, while for the structural model predefined building blocks
are used.

Martinez, Muro and Silva (1987) show how the coordination subsystem of a flexible
manufacturing system can be described by a coloured Petri net. The obtained model
is embedded into the surrounding levels of control (local controllers and scheduling sub-
system), and a terminology based upon the Petri net colours is used for the interaction.
Analysing the model detects deadlocks, decision problems, and gives performance mea-
sures that depend on variations in the system being modelled.

In the present paper, a design engine for the integrated support of the different steps
of manufacturing design is presented. To the best of the authors knowledge, the pre-
sented tool TimeNET is the only modelling and analysis environment supporting coloured
stochastic Petri nets including non-markovian firing delays, whose performance evalua-
tion is not only based on simulation. The class of Petri nets used has been introduced
especially for the modelling of manufacturing systems. The same model is used from the
first rough design until the control interpretation. During this process, more details are
added, thus refining the model. The advantage of an integrated design engine is obvious:
the process becomes easier, faster, and less error-prone.

2 The architecture of the design engine

Modelling and evaluation of complex systems is only feasible with the support of appro-
priate software tools. Since the modelling framework of stochastic Petri nets has been
proposed, many algorithms and their implementations as software tools have been de-
veloped. A powerful and easy-to-use graphical interface is important in addition. The
modelling and analysis techniques described throughout this paper have been implemented
in the tool TimeNET (Timed Net Evaluation Tool, (German et al. 1995; Zimmermann
et al. 2000)).

Figure 1 sketches the different modules of the design engine together with their in-
teraction. The starting point are information about the system to be modelled, like the
descriptions of the resources as well as the work plans. In a first step, structure and work
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Figure 1: Overview of the design engine

plans are modelled with a dedicated class of coloured hierarchical Petri nets. sections 3.2
and 3.3 demonstrate this using the application example, which is described in section 3.1.

Templates from a library of common submodels can be parameterised and instantiated
to ease the description of large systems. They can be used for the hierarchical refinement
of substitution transitions. Each of them represents a class of structurally similar re-
sources. It consists of a structural model and a generic work plan model. The latter
contains a model of the possible production paths through the submodel structure. Tem-
plates usually have a set of parameters such as processing times or buffer capacities. The
graphical user interface lets the modeller select the desired template, and then asks for
the actual parameter values. The template parameters are set accordingly, and then it is
copied from the library into the current model. It is possible to mask out the instantiation
of template parts by the use of parameter dependent conditions. Thus it is possible to
change the template structure depending on the parameter values.

The separate models of structure and work plans are later on automatically merged
to a complete model. Different analysis techniques can then be applied to it. Qualitative
analysis techniques developed recently for the dedicated net class use linear algebraic
techniques. Information about structural properties from the net are derived directly and
efficiently (see section 4). The results can be interpreted in terms of the modelled system
to check basic properties, thus helping to understand better its behaviour.

For the evaluation of the system performance different techniques have been devel-
oped and implemented within the described design engine. For a realistic description
of manufacturing system behaviour, stochastic as well as deterministic and more general
distributions are adopted for the firing times of transitions as defined for extended deter-
ministic and stochastic Petri nets (eDSPNs, (German 1994)). Direct numerical analysis
(see section 5.1) is applicable to systems up to a certain complexity, e.g. during the
first design stages when the model is not yet very detailed. An efficient discrete event



simulator (described in section 5.3) can be used for models of any size, but may require
high computational effort depending on the desired accuracy especially in the case of rare
events.

An approximate performance evaluation technique has been developed for the dedi-
cated net class recently (Freiheit and Zimmermann 1998). Section 5.2 describes a new
variant of it and its application to the example. The approximation method follows the
divide-and-conquer principle by analysing the model in parts. The local results are itera-
tively improved using an abstraction of the global model, until convergence is reached.

Moreover, control strategies for resource allocation, transport strategies and others can
be included in the model during a more detailed design. Their influence on the behaviour
and performance can therefore be evaluated to select the best variant. Input and output
signals can be assigned to transitions of the model, making possible the direct online
control of the designed system. This part of the design engine is described in section 6.

Slightly different classes of Petri net models are used during the modelling and the
evaluation steps. While the modeller describes the system structure and work plans,
no evaluation is possible. The compilation of the complete model has to be done first.
The resulting net can then be used for the evaluation. By allowing only the actions that
correspond to the current net class (like complete model generation or numerical analysis),
some guidance is given for the systematic use of the design engine.
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Figure 2: Sample screenshot of the graphical user interface

For the current version 3.0 of TimeNET a new generic graphical user interface has
been developed. Figure 2 shows a sample screen shot of the interface during a modelling
session with coloured Petri nets. It is implemented in C++ and uses the Motif toolkit.



Two design concepts have been included in the interface to make it applicable for
different model classes: A net class corresponds to a model type and is defined by a
text file. For each node and arc type of the model the corresponding attributes and the
graphical appearance is specified. The shape of each node and arc is defined using a set of
primitives (e.g. polyline, ellipse, and text). Shapes can depend on the attribute value of
an object, making it possible to show tokens as dots inside places. Nodes can correspond
to submodels of a different net class. All used net classes and their corresponding analysis
algorithms are thus integrated with the same ‘look-and-feel’ for the user.

More complex functions depend on the net class and require programming. TimeNET
offers the possibility to implement modules that are compiled and linked to the program.
A module has a predefined interface to the main program. It can select its applicable
net classes and extend the menu structure by adding new algorithms. An example of
an implemented module applicable without restrictions is an export filter to the drawing
program xfig. The token game is implemented as a module for the coloured models of
manufacturing systems in the user interface. The modules of the design engine depicted in
figure 1 are implemented as independent programs. They are started by a user interface
module when the user selects the corresponding menu button, and run as background
processes. Output messages are shown in windows of the user interface, while analysis
results directly become part of the model description. More details about the general tool
usage and software architecture can be found in (Zimmermann et al. 2000).

TimeNET is available free of charge for non-commercial use under Solaris and Linux.
Further information can be found at http://pdv.cs.tu-berlin.de/"timenet.

3 Manufacturing systems modelling

The modelling of complex production systems with uncoloured Petri nets usually leads
to large models that are hard to understand and maintain. Coloured Petri nets (Jensen
1992) offer more advanced modelling facilities like distinguishable tokens and hierarchical
modelling compared to uncoloured nets. The pure graphical description method of Petri
nets is, however, hampered by the need to define colour types and variables comparable
to programming languages. The class of coloured stochastic Petri nets used throughout
this paper (Zimmermann and Hommel 1999; Zimmermann 1997) has been introduced
especially for the modelling of manufacturing systems, trying to overcome this problem.

Two colour types are predefined: Object tokens model work pieces inside the manufac-
turing system, and consist of a name and the current state. Elementary tokens can not be
distinguished, and are thus equivalent to tokens from uncoloured Petri nets. Places can
contain only tokens of one type. Arcs and places are drawn thin (thick), to mark them
as corresponding to elementary (object) tokens. Textual descriptions needed in coloured
Petri nets for the definition of variables and colour types are omitted, and the specifica-
tion of the types of places and arcs is implicitly given. The net class is only informally
introduced here, during the modelling of the application example. More detailed infor-
mation can be found in previous papers (Zimmermann et al. 1996a; Zimmermann and
Hommel 1999). The models are hierarchically structured, which is necessary to handle
complex systems. Furthermore, a library of template models for typical machines and
their behaviour is used.

Structure and work plans are modelled independently using this net class. This is
important for the evaluation of different work plans, where the structural model is not
changed. The structural model describes the abilities and work plan independent prop-
erties of the manufacturing system resources, such as machines, buffer capacities, and
transport connections. Work plan models specify the work piece dependent features of
the manufacturing system. Later on, the different model parts are automatically merged



Figure 3: The considered production cell model

resulting in a complete model, which then includes both the resource constraints of the
system and the synchronisation of the production steps.

The proposed net class strongly encourages the modeller to describe the system under
evaluation as it structurally is. This means that e.g. a buffer should be modelled by exactly
one place with the appropriate capacity. One location of parts (one active resource)
should not be modelled with more than one place (transition). However, if a complex
manufacturing system is modelled, one can also start at a higher level of abstraction,
e.g. one production cell is modelled by a transition without further details. Later on, this
transition could then be changed into a substitution transition, which is then hierarchically
refined by submodels at lower levels of hierarchy. Besides that, the degree of abstraction
is left to the modeller.

3.1 An application example

This section briefly describes the application example that is used in the remainder of
the paper. It is a manufacturing cell built of parts from the ‘Fischertechnik’ construction
kit, which is used for education and research at the department. Figure 3 shows the
system and figure 4 its layout. Please note that the layout sketch as well as all subsequent
model figures show the system after a counterclockwise rotation. The application example
has been chosen here to demonstrate the proposed integrated technique until the control
interpretation.

In the considered production cell, new work pieces are initially stored in the high bay
racking on pallets. The rack conveyor can fetch one of them and deliver it to the upper
pallet exchange place. A horizontal crane then takes it to the first conveyor belt. Three
conveyor belts moves work pieces from one processing station to another. There are two
drilling stations, the second having three different interchangeable drilling tools. The last
station is a milling machine. Work pieces stay on the conveyor during processing. After
leaving the machines, they arrive at a turn table. This table puts them into position for
the slewing picker arm, who takes the work piece to the right pallet exchange place. From
there it is brought back to a place in the high bay racking by the rack conveyor.

The exchange of crude and finished work pieces takes place via the rack storage.
Throughout the paper it is assumed that work pieces have to be machined by the two
drilling machines and the milling machine, in this order. The work pieces are moving
counterclockwise through the system.
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Figure 4: Overview of the modelled system

The ‘Fischertechnik’ production cell comprises 22 motors and 84 sensing devices alto-
gether. For the online control they can be accessed through a standard RS 232 commu-
nication interface.

3.2 Modelling the structure

The described application example is modelled with the proposed class of dedicated
coloured Petri nets. A strict separation between the model of the manufacturing sys-
tem’s structure and the sequence of the processing steps for each product is observed.

Figure 5 shows the top level of the structural model. Its composition follows the layout
of the modelled system, which makes it easier to understand. Places model buffers and
other possible locations of work pieces. The place rack corresponds to the rack storage, the
places exchpll and exchpl?2 to the pallet exchange places, and place turnpl to the turn
table. The remaining four places represent the locations of work pieces on the conveyors
which are directly in front of the machines or the horizontal crane. As described above,
in- and output of work pieces takes place through the rack storage and is modelled with
transitions input and output.

In principle, there are two different operations that can be performed: transport and
processing of work pieces. The former corresponds to moving a token to another place,
while the latter is modelled by a change in the colour of the token corresponding to the
work piece. Transitions modelling machines specify processing steps which only change the
token colour. This is emulated by removing the former token from the place and instantly
adding a token with the new colour by firing the transition. Therefore many transitions
and places are connected by arcs in both directions (loops), which are conveniently drawn
on top of each other. The structural model contains all possible actions of the resources,
even if they are not used for the processing. The horizontal crane could e.g. move work
pieces from the conveyor to the exchange place as well.

Transitions with thick bars depict substitution transitions, which are refined by a
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Figure 5: Highest level of the hierarchical coloured model

submodel on a lower level of hierarchy. The whole model consists of 11 submodels. Fig-
ure 7 shows such a refining submodel for the slewing picker arm and is described later
on. Substitution transitions are e.g. used to describe the behaviour of a machine with
more detail during a top-down design. Submodels from a library of standardised building
blocks (templates) can be parameterised and instantiated while refining the model. This
alleviates the creation of complex manufacturing system models, where many structurally
similar parts can be found.

Transition rconveyor contains the model of the high bay rack conveyor, while tran-
sitions hcrane and picker correspond to the horizontal crane and slewing picker arm,
respectively. For the transport of a work piece from one machine to the next, two of
the three conveyor belts have to operate simultaneously. All three conveyors are there-
fore treated together as one transport facility and are modelled by transition conveyors.
Thus, their synchronisation is hidden at a lower level and can be specified together.

Alternatively, the modeller can start with function symbols and automatically translate
them into a Petri net with separate models of structure and work plans (Zimmermann
et al. 1998). The design engine described in this paper can therefore be applied without
the need to use Petri nets. However, this technique is not described in detail here. For
the translation as well as the modelling of large manufacturing systems with e.g. similar
machines, the above mentioned library of Petri net submodels is used.

3.3 Modelling the work plans

In addition to the structural model, for each product a model of the work plans has to
be defined. This is done using the same class of coloured Petri nets with some slight
differences. Figure 6 shows the first part of the work plan model of one work piece.

This model describes the sequence of operations and transports for a work piece at
the highest level of hierarchy. Each step can only be carried out by a resource that is
available in the manufacturing system layout. Therefore, only transitions, places, and
their connecting arcs from the structural model can be used here. Arc inscriptions show
the name (A) and processing state (crude or stagel) of the work piece, separated by a
dot.

The model shown in figure 6 corresponds to the structural model in figure 5. Model
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Figure 6: Part of the work plan model

elements in work plan models refer to their structural counterpart through the use of
identical names. It is obvious that a substitution transition in a work plan model has
to be refined with a submodel. This submodel is then associated to the submodel of the
corresponding substitution transition in the structural model. This relationship between
both model parts holds for all submodels in the hierarchy. We use the term associated
Petri nets for this concept of specifying different views of a system in related model parts.

It is possible to model alternatives in production sequences of work pieces. Logical
expressions depending on the current marking as well as probabilities can be used to
choose a path for a token at such an alternative. A work plan model usually consists of a
simple succession of transitions and places. An exception is the modelling of (dis)assembly
operations. In this case more than one input or output arc is connected to a transition.
Although it can not be immediately seen in figure 6, an assembly operation is also needed
for the example work plan. Each work piece is transported and processed while being
fixed to one pallet. For an input of a new work piece into the rack storage, there has
to be an empty pallet in it (place rack contains a token of colour P.empty). The input
operation (transition input fires) removes this token and puts back a token with colour
A.crude. The inverse operation is carried out by the output transition.

A pallet without a mounted work piece has no different states. The transport strategy
of empty pallets is described in an additional work plan model.

After the structure and work plans have been modelled with separate coloured Petri
nets as described above, a complete model is automatically generated. This is done
by adding the information contained in the work plan models to the structural model.
Each transition of the structural model is extended with descriptions of its different firing
possibilities, called ¢ransition table. Such a table contains the input/output behaviour, the
firing time distribution, and guard functions. Every time a transition appears in a work
plan model, a new firing possibility is added to the transition table. Thus, the resource
constraints that are imposed by the structure and the synchronisation of the work plans
are compiled into one model. The resulting model contains all necessary information from
the structural and work plan models. Please refer to (Zimmermann et al. 1996a) for the
details of the compilation.

4 Qualitative analysis

As soon as the complete model has been compiled, the design engine (figure 1) offers
the possibility to carry out a qualitative analysis of the system. A qualitative analysis
answers fundamental questions on the functionality and safety of the system. It consid-
ers only time-less properties that are valid independent of time-restrictions. Following
Heiner (Heiner 1998), qualitative validation techniques can be classified into two groups
after the system properties in question:

e Context checking or general analysis deals with general qualitative properties like
boundedness or liveness which must be valid in any system independent of its special



semantics.

e Verification or special analysis aims at special qualitative properties like safety or
robustness, which are determined by the intended special semantics.

The context checking of general properties is a prerequisite for the verification of special
properties. For the verification step, the intended system functionality has to be specified.
From a technical point of view, three main types of qualitative analysis techniques can be
distinguished:

e Animation lets the modeller watch the simulated net behaviour. It is useful as an
informal debugging technique.

e Static analysis techniques avoid the generation of the state space of a system.
Static analysis comprises net reduction and various techniques that are related to
linear algebra and integer programming. An important static technique is struc-
tural analysis. It is independent of the initial marking and uses only structural net
information, which is normally expressed by the incidence matrix of the net.

e Dynamic analysis techniques generate the state space of a system. The clas-
sic approach of constructing the complete reachability graph can be improved by
various compression and reduction techniques. Dynamic analysis allows to answer
sophisticated queries, but its use is often prevented by state-space explosion.

The remainder of this section concentrates on static analysis techniques, while dy-
namic analysis is not treated here. However, properties like boundedness and liveness are
implicitly checked during the reachability graph generation, which is the first step of the
numerical performance evaluation described in section 5.

For its qualitative analysis component, TimeNET makes use of recently developed
techniques for uncoloured Petri nets, which are based on convex geometry (Huck et al.
2000). Coloured object places and transitions are treated by unfolding them first to
elementary places and transitions. For the output of the results, this unfolding is reversed,
so that the process is transparent for the user.

In order to show small examples of qualitative net properties, the refined model of the
slewing picker arm is used in this section and will be explained first.

4.1 Model of the slewing picker arm

The Petri net model shown in figure 7 is a hierarchical refinement of the substitution
transition picker, that is part of the main structural model (shown in figure 5). It
specifies the inner behaviour of the slewing picker arm as well as the correlated control of
the turn table. The system states of the slewing picker arm are modelled by elementary
places and arcs (drawn thin in figure 7). The possible locations of work pieces are modelled
by the object places TurnTable and PalletExch (drawn thick). Because these places are
also visible on the upper model level, they are depicted with dashed circles.

The slewing picker arm can execute two useful actions: take a work piece from the
turn table to the upper pallet exchange and the reverse. The current state of the picker
arm (and of the turn table) corresponds to the location of the elementary token in the
model. Figure 7 shows the state after initialisation, where the token is in place Idle.
Either one of the two immediate transitions StartF and StartB can fire if the resources
are idle, thus starting one of the two transport actions. The decision is made by firing
guards (marking dependent boolean expressions) of the transition table entries. It ensures
that if the work plan models are correctly specified, the picker arm is only activated for
useful transport activities.

10
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Figure 7: Refined model of the slewing picker arm

Transitions with names beginning with G describe actions of the picker arm gripper
(lower, close, raise, open). The ArmTurn transitions model the turning of the picker arm,
and the turn table is described with transitions named TTurn.

After the firing of one of the two starting transitions, the corresponding transport
action begins. The different transitions become enabled and fire in succession. They
describe the individual steps of each transport.

4.2 Token game

Interactive simulation is important for gaining insight into the system behaviour. It can
not replace exhaustive analysis methods, but it is a way to build confidence in the model.
During a token game, TimeNET displays the state of the model and all possible activities
(by flashing all enabled transitions). The modeller chooses one of them to fire. By doing
S0, it is possible to test the behaviour of the net and to detect errors. Alternatively, an
automatic animation can be carried out, letting the modeller watch the changes in the
system’s state during a slow simulation. Section 6 describes how the token game facility
can also be used for the online control of the modelled manufacturing system.

4.3 Boundedness and safety

If a net is bounded, then for each place of the net there is an upper bound for the number
of tokens it holds. This notion should not be confused with the association of capacities
to places, which is possible in the used net class. If the upper bound equals one for all
places, then the model is called safe. The net properties boundedness and safety are
checked by means of place invariants: a net is bounded, if it is covered by invariants, i.e.
there is a place invariant for every place in the net. A place invariant y is a non-negative
integer vector with dimension equal to the number of places P in the net. The value
of the p-th element is a weight attached to the marking of the p-th place. The notion

11



of a place invariant is that the weighted sum of the tokens in a net is constant for any
firing sequence, or in other words, the weighted sum of any reachable marking m equals
the weighted sum of the initial marking mg. This is expressed by the token conservation

equation:
> ylp) -m(p) =Y y(p) - mo(p).

peEP peP

Place invariants can be computed independent from the initial marking of the net, their
computation therefore belongs to structural analysis. For the details on the computation
of place invariants, the reader is referred to (Colom and Silva 1991).

Once that the set of place invariants has been computed, boundedness and safety
properties of a net can be easily checked depending on the net’s initial marking. The
token conservation equation resp. the set of place invariants are also useful for reachability
queries, which will be covered in section 4.5.

TimeNET computes the set of place invariants and the bounds for each place. The
manufacturing system example is covered by place invariants and is therefore bounded.
Moreover it is safe, because all bounds equal one. This ensures that there can be no more
than one work piece at a time in one place in the model, as it is the case in reality. In
figure 7, the places belonging to one example place invariant are marked grey. For this
invariant, TimeNET produces the following textual output:

1 =
P1 + P2 + P3 + P4

+ P5 + P6 + P7 + P8
+ P9 + P10
+ Idle
+ P13 + P14 + P15 + P16
+ P17 + P18 + P19 + P20
+ P21 + P21

The set of places belonging to this invariant can hold at most one token, which corre-
sponds to the fact that the picker arm can only execute one action at a time: it is either
idle (place Idle), moves forward (places P1 through P10) or it moves backward (places
P13 through P21).

4.4 Liveness and dead states

A Petri net is live for an initial marking my, if, no matter what marking has been reached
from my, it is possible to fire any transition by progressing through some further firing
sequence. A dead state is a state in which no transition is able to fire. A dead state refers
to a deadlock in the system, e.g. caused by an incorrect management of shared resources.
A Petri net that is not live corresponds to a system which has dead parts.

In order to prove liveness and freedom from dead states, it is necessary to compute
the traps and siphons of a net. A trap is a set of places that remains marked once it is
marked. A siphon is a set of places that can not be marked again once it is unmarked.
Siphons are also named deadlocks, but may not be confused with the term deadlock as
used in connection with resource sharing or concurrent processing. The computation of
traps and siphons is a structural analysis technique. Details on this topic can be found
in (Ezpeleta et al. 1993).

For Petri nets that are at least extended free choice (Heiner 1998), liveness can be
proven efficiently by examining the deadlock-trap-property: A Petri net is live iff every
siphon contains a marked trap in the initial marking.

12



For nets that are not extended free choice, only freedom from dead states can be
proven with the deadlock-trap-property. In addition to the examination of the deadlock-
trap-property, as a necessary (but not sufficient) condition for liveness, it can be checked
if the net is covered with transition invariants.

For the model of the manufacturing system, liveness can not be proven because the
net is not extended free choice. However, the net is covered by transition invariants and
the examination of the deadlock-trap-property shows that there are no dead states.

An example for a siphon and a trap contained in it is shown in figure 7. Siphon
and Trap in this example comprise the same set of places, which is marked by a dotted
(dashed) box. For this set of places, TimeNET produces the following textual output:

1 =
P1 + P2 +P3 + P4
+ P11 + P12
+ Idle
+ P23 + P24
+ P19 + P20 + P21 + P22

In this equation, a place name refers to the number of tokens of any colour in it. The
trap is marked (Idle = 1) and it is contained in the siphon, therefore the deadlock-trap-
property is true for this small example.

4.5 Reachability queries

So far only context checking has been considered, by testing general properties like bound-
edness and freedom from dead states. An example for the verification of special properties
is given in the sequel.

In an early state of the model development, no constraints were made on the assign-
ment of the work pieces to the pallets. It quickly showed that this strategy results in a
deadlock where all places on the conveyor belts are occupied by work pieces. This happens
when the last empty pallet is occupied by a crude work piece on the first exchange place
(exchpll), so that there is no more empty pallet available to pick up the finished work
pieces from the second exchange place (exchpl2). The assignment strategy for empty
pallets had to be changed in such a way that there is always an empty pallet left to pick
up finished work pieces. This requirement had to be obeyed when experimenting with
different quantities of pallets, and different transport strategies for the rack storage.

To check such requirements, TimeNET offers a (sub-marking) reachability query. The
modeller specifies a marking for the places in consideration. The marking of the remaining
places is treated by means of don’t-care-conditions. If place invariants have already been
computed, TimeNET checks the reachability of a marking by testing the token conser-
vation equation. Otherwise, TimeNET tries to solve the state equation, which gives a
necessary condition for a marking m to be reachable from the initial marking my:

m =my+ C - z.

The state equation uses the incidence matrix C' of the net, which describes the net’s
firing behaviour, and the Parikh vector x, which counts occurrences of transition firings.
The state equation is useful in its inversion as sufficient condition for unreachability: a
marking m is unreachable, if there is no solution for z.

There are two possible answers to a reachability query, either ‘the marking is possibly
reachable’ or ‘the marking is unreachable’. The first answer is not of much use, since
it is still unknown if the marking is reachable or not. The second answer verifies the
unreachability of a certain (partial) marking.
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The critical situation described above is met when there are no more empty pallets
(object name P.empty) in the rack storage (object place rack) and the exchange places
(exchpll, exchpl2). The corresponding query looks like this:

0
0 AND exchpli(P.empty) = 0

rack(P.empty)
AND exchpl2(P.empty)

TimeNET computes that no marking is reachable that satisfies these equations, thus
making sure that the assignment strategy for empty pallets was correct.

4.6 Summary of qualitative model properties

As a conclusion of this section we summarise the properties that were checked by quali-
tative analysis for the manufacturing system (table 1).

‘ Net property ‘ Explanation
ordinary the multiplicity of every arc equals one
not pure presence of self-loops
not extended simple does not belong to this net class,
liveness can not be proven by static analysis
strongly connected for each node of the net,
there exists an directed path to every other node
covered by place there exists a P-invariant which
invariants assigns a positive value to each place
bounded for every place, there is

an upper bound for the number
of tokens that the place can hold

safe not more than one token is on a place

covered by transition there exists a T-invariant

invariants which assigns a positive value to each transition
(necessary condition for liveness)

satisfies the every siphon contains a marked trap

deadlock-trap-property
net is free of dead states | at least one of the transitions

is enabled in all states

possibly live (a dynamic analysis of the net shows
that the net is really life)

Table 1: Qualitative net properties

Qualitative analysis of Petri nets allows to prove certain system properties, which is
an advantage over simulation languages. Especially static analysis techniques are compu-
tationally inexpensive in many cases, because they generate no state space. During the
design process, qualitative analysis naturally precedes a performance evaluation, because
it would be pointless to compute performance measures for an incorrect system.

5 Performance evaluation

After the qualitative properties of a manufacturing system have been analysed, its perfor-
mance and dependability can be evaluated. Questions on the throughput, utilisation, work
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in process, and others are answered. Different variations of the system and their resulting
performance and dependability measures can thus be computed and compared. The aim of
this investigation is to obtain a better understanding of the correlations between details of
the manufacturing system (e.g. the buffer capacities) and the main performance measures
(e.g. the throughput). Proposals can be derived in order to increase the manufacturing
system’s productivity.

For the application example, the aim is to evaluate the throughput of work pieces. A
performance measure is defined in the model, which gives the throughput of all finished
work pieces per hour. This can be done using the throughput TP [output] of a transition
that each work piece passes exactly once like output.

In this paper the focus is on steady-state performance evaluation (and not on tran-
sient), which computes the performance of a system in equilibrium (provided that it ex-
ists). Direct numerical analysis, approximate analysis, or discrete-event simulation can be
used to obtain the desired measures from the model. All three methods are implemented
as modules of TimeNET, as depicted in figure 1. The advantages and disadvantages of
the three algorithms depend heavily on the actual model and the performance measures
of interest (state space size, numerical stiffness, rare events, etc.). Unfortunately thus no
automatic decision can be made which method will be the best one. Already the definition
of ‘best’ at least necessitates the specification of a balance between required speed and
result exactness. Therefore, the modeller decides which method is applied, or can compare
the results of different ones, as it is done in the following subsections for the application
example. The throughput of the modelled manufacturing system is computed with the
different algorithms, facilitating a comparison of results and computational efforts. The
TimeNET tool is used for all evaluations.

Although the used class of coloured Petri nets offers advanced modelling facilities
for manufacturing systems, the underlying stochastic process is the same as for a be-
haviourally equal uncoloured model. The techniques developed for these net types can
therefore be adapted to the coloured case. Analysis and simulation methods for eD-
SPNs (Ciardo et al. 1994; German 1994) are applied to the models. However, it should
be noted that the algorithms directly use the coloured model, and not an unfolded one as
some other approaches/tools do.

5.1 Numerical analysis

In order to evaluate the performance of a manufacturing system, delays are associated
with the transition firings. In stochastic Petri nets, exponential distributions are used
for the firing delays due to analytical simplicity. However, the fixed processing time of
a certain workpiece or a transport delay should better be modelled using deterministic
times. It has been shown that the results obtained from models with different distributions
may vary significantly (German 1994). To obtain more realistic results, analysis methods
for models incorporating non-exponentially distributed firing times have to be used.

The firing delay of transitions considered in the techniques used here can either be
zero (immediate), exponentially distributed, deterministic, or belong to a class of general
distributions called expolynomial. Such a distribution function can be piecewise defined
by exponential polynomials and has finite support. It can even contain jumps, making it
possible to mix discrete and continuous components. Many known distributions (uniform,
triangular, truncated exponential, finite discrete) belong to this class.

If no more than one general or deterministic transition is enabled in each marking, a
semi-regenerative stochastic process underlies the Petri net model (Ciardo et al. 1994).
The type of process depends on the types of allowed firing delays and whether certain
transitions are enabled together in one marking or not.
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Techniques for uncoloured nets (German 1994; German et al. 1995) are adopted here
for the analysis of the dedicated Petri net models. This is possible because both model
types have the same underlying stochastic process. At the level of the (reduced) reach-
ability graph they can both be analysed in the same way. The reachability graph of the
coloured model is computed directly without a prior unfolding.

5.2 Approximate analysis

For many systems of real-life size the state space is too large to be handled. This is
called the state explosion problem and necessitates advanced techniques to overcome this
limitation. The idea of decomposition methods is to divide the whole system into smaller
subsystems, so that the computation of the whole state space can be avoided.

An algorithm for the approximate analysis of GSPNs (Ajmone Marsan et al. 1984)
based on decomposition has been presented in (Pérez-Jiménez et al. 1998; Campos et al.
1994). This section describes a new variant of an approximate evaluation method (Freiheit
and Zimmermann 1998) for the special class of coloured stochastic Petri nets described
in section 3.

The main advantage of decomposition approaches is that the analysis of small sub-
systems needs less memory. Despite the need to iteratively repeat the algorithm, the
approximate results are computed faster than with standard methods. The disadvantage
is that only approximate performance results are computed, although experiences show
that the error is acceptable in most cases.

In the method presented here, a net called basic skeleton contains a simplification of
the whole original net. Additionally, for every subsystem a low-level system is derived,
in which only the corresponding subsystem is simplified. The set of low-level systems
and the basic skeleton are then used by an iterative algorithm to compute approximate
performance measures of the original model.

The approximation technique presented in this section is applied to the throughput
computation of the manufacturing system example described before.

5.2.1 Partition and aggregation

Low-level systems and a basic skeleton are derived from the whole system first. The
state space of the low-level systems and the basic skeleton is usually smaller than the
original one by more than one order of magnitude. In each low-level system one or more
subsystems are kept and the other subsystems are aggregated. In the basic skeleton all
subsystems are aggregated.

For each substitution transition (and thus each submodel) one subsystem is generated.
A path-wise aggregation method is employed. In (Pérez-Jiménez et al. 1998) the aggre-
gation method is based on implicit places. In this approach not only a complex structural
analysis of the system is necessary, but also a computation to avoid spurious states. The
path-wise aggregation presented here is much simpler, although experiences show that the
approximation results are the same. The idea is that each path corresponds to a possible
token flow through the system, which must not be destroyed during the aggregation. In
the following some important terms are introduced.

N = (P,T,F) is a net if P and T are disjoint sets of places and transitions and
F C(PxT)U(T x P) is the set of arcs. The places connected to a subsystem are called
buffers. The set of buffers is denoted with B C P and the set of subsystems § C N
(S; = (P, T;, F;) with S =81 US,U...US, where S; N SyN...N S, =0. The preset of
B is denoted by *B, and the postset B®, respectively. These definitions denote the set of
transitions having buffer places as output or input, respectively.
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The set of transitions IT; C T; (OT; C T;), where for each ¢t € IT; (t € OT;) is
t € B* (t € *B) is called input (output) transitions' of the subsystem S;. There is a
path between an input transition ¢; € I7T; and an output transition 5 € OT; if and only
if (t1,t2) € F;*, where F;* is the transitive closure of F;. A path between (t1,%2), where
t1 € IT; and to € OT; is called longest path if there is no path between t,,t, C T; with

(tl, tz) C (tm, ty).

longest path

path L ﬁ;:/ path

|‘_¢‘| subsystem?2

Figure 8: Paths and a longest path

Figure 8 shows an example to explain the term longest path. There are three paths
in subsysteml: (ity,ot1), (ity, ots), and (it1,ot2), but only the last one is a longest path,
because it includes the former ones.

There are two different aggregation rules, which are used both for the structural model
and the work plan models. The first aggregation rule is called general aggregation rule.
The rule is partitioned into two steps. The first step adds a new place for each longest path
of a subsystem, resulting in the extended subsystem. In the second step the longest path is
deleted, while the associated new place is kept. Additionally each timed input transition
is changed to an immediate one. The obtained model is called aggregated subsystem.

buf_fferl buffer3 buf_ferl itl ot buffer3

Pnewl1

butf_erz buffer2 it2

Pnew?2

buf_f_erS

Figure 9: General aggregation rule

Figure 9 shows an example for the application of this aggregation rule. If there is at
least one longest path between two different transitions ¢, € I'T; and t9 € OT;, add a new
place s with (¢1,s) UF; and (s,t9) UF;. Thus, from the original subsystem .S; the extended

!Please note that IT; N OT; = () does not necessarily hold

17



subsystem Si'" is derived. After this first step the places and transitions in the longest
path(s) are deleted while the new place(s) are kept. The resulting subsystem S; is the
aggregated subsystem.

In figure 9, it1 and it2 are input transitions, and ot is an output transition. There
are two paths between it1 and ot: P1 and P2. That is why a new place Pnewl is added.
The path between it2 and ot is handled in the same way by adding the new place Pnew?2.
In the next step the original paths P1 and P2 are deleted and the new places are kept,
resulting in the aggregated subsystem.

The second aggregation rule is called one-transition rule. It is used in the special case
when a transition ¢ is connected either with one buffer (by a loop) or with two or more
buffers both by an input and an output arc. The aggregation rule is simple: transition ¢
is kept and no place is added.

bufferl iotl P1 bufferl iotl P1 bufferl iotl

Pnew1

buffer3 buffer3 buffer3

iot2 iot2 iot2

Figure 10: Combination of general and one-transition rule

In the example shown in figure 10 both aggregation rules are applied. The one-
transition rule is applied twice, because both input and output transitions iotl and
iot2 are connected with buffers both by an input and an output arc. The transitions
are kept following the one-transition rule. However, there is also a path between these
transitions. The general aggregation rule requires a new place Pnewl to be added. During
the second step of the rule, P1, T1, P2 are deleted to aggregate the subnet.

After generating the low-level subsystems and the basic skeleton for the structural
model, the same has to be done for each work plan model. The aggregation rules for both
model parts are the same. The strong relationship between net elements in the work plan
models and the structural model is kept after the aggregation.

Low-level systems and basic skeleton

In the following step the aggregated subsystems are derived. They are called low-level
systems and denoted by LS; (i € {1,...,k}). Each LS; is obtained from the net N by
aggregating one or more extended subsystems S;-“ and by keeping the other subsystems
Sl; j such that S;-“ U Sﬁ = ST. In the example presented here two low-level systems LS
and LSy are derived. In LS) the subsystem rconveyor is aggregated and the others are
extended (see figure 11).

In the original model there were five combinations of paths between the buffers exchpli,
exchpl2, and rack. New work pieces (A.crude) are moved from rack to exchpll while
finished work pieces are moved from exchpl2 to rack. Additionally it is possible that
empty pallets are going both from rack and from exchpll to exchpl2. The last possible
way of empty pallets goes from exchpll to the rack. Thus, the transportation of both
crude work pieces and empty pallets between rack and exchpll is possible. Therefore
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Figure 11: Low-level system example

it is important to distinguish between different colours in the rconveyor subsystem (see
table 3) during the throughput computation.

In LS5 of the manufacturing system example the subsystem rconveyor is extended
and the others are aggregated. Due to the aggregation of the subsystem conveyors the
subsystems drilll, drill2, and mill are deleted. The reason for this is that there is a
longest path in subsystem conveyors which includes all transitions connected with the
buffers convpl2, convpl3, and convpl4, while these buffers are not connected to other
subsystems.

Figure 12 shows the basic skeleton of the example. In the basic skeleton all subsystems
are aggregated. For the aggregation of both the hcrane and the picker subsystems the
combination of the two aggregation rule is applied (see figure 10), while the conveyors
subsystem is aggregated only using the general aggregation rule once.

Only the transitions input and output are kept from the original model. In the follow-
ing subsection the iterative computation of the manufacturing system example throughput
is explained.

5.2.2 TIterative throughput approximation algorithm

In this section the low-level systems and the basic skeleton are used to iteratively com-
pute an approximation of the model throughput. The applied technique is based on the
response time approximation method presented in (Pérez-Jiménez et al. 1998; Campos et
al. 1994; Pérez-Jiménez et al. 1996).

During the algorithm, the service rates of the output transitions are adjusted in order
to achieve a balance between the throughput values of all extended subsystems and the
basic skeleton. The results of the iterative approximation algorithm are independent from
the initial service rates of the output transitions of the aggregated model parts. In the
non-aggregated parts the transitions always keep the initial service rates of the original
model. For each LS; the sojourn time of the added new places in the extended subsystems
for each work piece (colour) are computed. Then the service rates of the corresponding
transitions of the basic skeleton are changed for each work piece, such that the sojourn
time of the same tokens are equal. The obtained service rates of the output transitions
t € OT; in all LS; with j # i is then set according to the values in the basic skeleton.
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Figure 12: Basic skeleton of the manufacturing system example

conveyors_in
hcrane_out eyors.

exchpll

The procedure is repeated until convergence is reached.

Algorithm

derive LS; (i € {l,...,n}) and BS
initialise all t € (IT; U OT;) in LS; (j # 1)
and in BS with any service rate p;
keep the original service rates for all
te€ (IT; UOT;) in LS;
repeat
for k:=1ton do
compute sojourn time of all different work-
pieces in the new places
repeat
adjust the service rates pu; in BS
compute sojourn time of the same different work
pieces in the same new places in BS
until sojourn time of the new places are equal
change the new service rates for the corres-
ponding transitions t in all LS; 7 # k
end for
until convergence

In the manufacturing system example first the sojourn time of tokens in the new
places Pnew2, Pnew3, and Pnew4 in the non-aggregated parts of the low-level system LS
is computed while the service rates of the output transitions rconveyor_outl. .3 is set to
1. Changing the service rates of the output transitions hcrane_out, conveyors_out and
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picker_out of the basic skeleton the same sojourn time of the places Pnew2, Pnew3, and
Pnew4 has to be reached. The obtained service rates of the output transitions hcrane_out,
conveyors_out and picker_out are set in the low-level system LS5. The sojourn time of
place Pnewl is computed distinguishing between the sojourn times of crude and finished
work pieces, and empty pallets. If the token sojourn times of Pnew1 for the different colours
is the same in the basic skeleton, the obtained service rates of rconveyor_outl..3 are
set in the low-level system LS] and the procedure starts again. This pattern is repeated
until convergence is reached.

5.3 Simulation

For many models the restriction of not more than one enabled non-exponential transition
per marking is violated. A substitution of the non-exponential firing delays with expo-
nential ones makes an analysis possible, but might result in significant errors. Another
problem of all analysis methods is the size of the reachability graph. Not only the compu-
tational complexity grows, the analysis may become impossible for some models of realistic
size due to memory space restrictions. Approximate methods like the one proposed in
section 5.2 reduce this problem, but there is a limit on the manageable complexity as well.

Discrete-event simulation is still applicable for the performance evaluation in these
cases. However, other problems arise with the statistical evaluation of the samples and
the accuracy of the results. The reason for this is that the simulation is a stochastic
experiment. All samples drawn during the simulation run are random variables. The
user-specified performance measures can only be obtained by estimating the mean value
of the sampled data. The precision of this estimate has to be calculated as well, based
on the confidence interval derived from the sample variance. Standard methods require
that the input data satisfies certain properties like independence or normal distribution.
However, simulating the Petri net behaviour does not fulfill them, thus necessitating
special algorithms for a valid computation of the accuracy. One of them is the efficient
simulation component (Kelling 1995) of the tool TimeNET, that has been adapted to the
special class of coloured Petri nets used in this paper.

Before a simulation run is started in TimeNET, the user specifies the desired accuracy
of the performance measures in terms of the confidence interval and the maximum relative
error of the final result. The initial transient phase of the simulation run of a steady-state
evaluation is detected and ignored. Variance estimation of the samples is performed by
spectral variance analysis, allowing a robust estimation even for correlated samples as
they are common if only one replication of the simulation process is running.

The length of a simulation run is decreased with a parallelisation of simulation pro-
cesses. Each of them simulates the whole net and sends sample packets to a central
process. As long as the model can be handled on one workstation, this approach is sim-
pler to implement and more efficient than parallel simulation with a distributed model.
The central process monitors the accuracy and stops the simulation after reaching the
specified threshold.

The simulation of the system can e.g. be used to evaluate the expected number of
tokens in the different places of the model. This corresponds to checking at which places
of the system the work pieces spend most of the time. Bottlenecks are thus detected,
because they are resource(s) that delay the work pieces more than the others.

5.4 Performance evaluation of the example

The three performance evaluation methods described above have been used for the di-
rect numerical throughput computation of the application example. Table 2 compares
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computational effort and achieved accuracy of the three methods. The CPU times were
measured on a Sun Ultra 5 workstation running at 333 megahertz.

Numerical [terative Simulation
Technique analysis | approximation | 99%, 1% | 98%, 2% | 90%, 10%
Throughput 19.67 19.12 19.59 19.48 20.75
Error 0% 2.8% 0.4% 1.0% 5.5%
CPU Time (sec) | 1625 186 4176 1104 56

Table 2: Accuracy and computational effort of different evaluation techniques

The numerical analysis method (see section 5.1) yields the most exact results. For
the modelled system it calculates a throughput of 19.6692 work pieces per hour. The
computation took approx. 27 minutes and generated an CTMC of 41279 states for the
original model. The approximation algorithm could deliver its result after approx. 3
minutes, because the sizes of the CTMCs it had to cope with were about one magnitude
smaller than for the original model: it generated two low level systems with 1128 and 306
states, and a basic skeleton with only 15 states. For the initialization of the algorithm,
service rates of all output transitions of the aggregated parts in the low-level systems and
the basic skeleton were set to 1. Convergence was reached after only three iterations.
Table 3 shows the computed sojourn time of tokens in the new places. With an error of
less than 3%, the approximation algorithm shows a good relation between result quality
and computational effort.

Subsystem | New place p Sojourn time fy in BS Sojourn time
Sk (Colour) forpin LS |te€ OTyin LS | for pin BS
rconveyor | Pnewl 0.095063 0.0227272 0.095605
(A.finished)
Pnewl 0.117001 0.0555555 0.116851
(A.crude)
Pnewl 0.095063 0.0243902 0.095605
(Pallet.empty)
hcrane Pnew3 0.183017 0.0294117 0.183017
conveyors | Pnew2 0.252994 0.0217666 0.252995
picker Pnew4 0.139954 0.0384615 0.139954

Table 3: Results after the final iteration of the approximation algorithm

For the simulation (see section 5.3), three runs with different accuracies have been
carried out. Table 2 shows confidence level and relative error in percent. It can be seen
that the computational effort increases dramatically with the desired accuracy. For a
desired relative error of 1%, the computation took about 70 minutes.

The simulation facility was used to evaluate the rack conveyor by using the experiment
feature of TimeNET. This feature allows the automatic execution of a series of evaluations
for the same model, but with a changing parameter. For the application example, a
factor W was introduced as a parameter that is taken as a multiplier for all firing delays
associated to elements of the rack conveyor. In the range from 0.4 up to 5.0 for W, the
throughput was analysed by simulation. Figure 13 shows the results graphically, making
evident the high influence of the speed of the rack conveyor.
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Figure 13: Throughput of the system

For the application example, the results showed that (in accordance with the obser-
vation of the real system) the rack conveyor is the main bottleneck of the system. For
a planned real life production system, this would surely be not acceptable, because the
usually expensive processing stations should be utilised more than a transport facility.
For this reason, the increase of throughput was evaluated, that would be possible with
a hypothetical speedup of the rack conveyor. In reality, during the system design, this
would have led to selecting a faster version of it. From the resulting throughput values and
the associated profit of work pieces as well as additional costs for a faster rack conveyor,
the system can be optimised.

6 Online control of the application example

After the planned system has been designed and its performance evaluated and possibly
improved, the final step is to bring the specified behaviour into reality. Input and output
signals are assigned to transitions of the model, making possible the direct online control
of the designed system. Thus only one model is used throughout the whole design process.
It should however be noted that the aim of this paper is not synthesis, PLC program gen-
eration, nor verification of control strategies. The purpose is rather to show that the used
class of Petri nets is applicable for the different life cycle phases without major changes
in the model. It is easily possible to integrate control rules in the model. Afterwards, the
influence on the system behaviour (liveness, performance) can be analysed. Finally the
behaviour specified in the model is directly executed.

To allow the control of a real-world process using the Petri net model, possibilities
for its interaction with the outside world have to be added to the otherwise autonomous
model. From the model’s point of view, input and output signals are necessary. They
should be added in a simple way, following the meaning of the performance model elements
in a natural way. This is possible without problems, because the used kind of coloured
Petri net models strongly observe the modelled system’s structure.
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Only ‘active resources’ like machines, transport facilities etc. are controllable. Their
activities are modelled by transitions, who can either move tokens (transport) or change
token colour (processing). A transition becomes enabled, when its guard function evalu-
ates to true, the necessary input tokens are available, and enough space for added tokens
is free in the subsequent places (if they have a restricted capacity). This is the point of
time at which the firing time of the transition starts running. The actual firing with the
corresponding marking change takes places when the firing delay has elapsed. It then
appears natural to assign single controllable activities to transitions. When the transition
becomes enabled, a start (output) signal is sent from the model to the process (e.g. a
motor is switched on). After termination of the activity (e.g. a sensor detects the stop
position), an (input) signal from the process is sent to the model, which then initiates
the instantaneous transition firing. This model interpretation only changes the model
behaviour by adopting the unknown delays of external activities. Therefore, results of the
qualitative analysis still hold.

Transitions with associated input signals are called ezternal, all others internal. As-
sociating output signals to a transition does not change its firing semantic in the model.
Opposed to that, external transitions fire if and only if they are enabled and receive their
input signal. The firing delay being specified in the model for external transition is ignored
during the online control. The modeller should be careful with cases in which external
transitions can be disabled by the firing of other transitions, because their input signal
could then be lost. Conflicts of this type can be automatically detected from the model
structure. However, they are not generally forbidden, because there are cases in which
this behaviour is useful.

It is possible to assign any number of input and output signals to a transition. All
output signals are being sent when the transition becomes enabled, while the arrival of
any one of the input signals triggers the firing of the transition. Transitions with output
signals but without input signals (or vice versa) are allowed as special cases. An example
of an activity which can be finished at any time without having been started before is
e.g. the failure of a machine. A sensor which detects this failure can trigger the firing
of an associated transition in the model. The firing time of internal transitions keeps its
semantics from the autonomous model. During the online control of a production process,
the usually unit-less numbers have to be interpreted e.g. as seconds. They can be used to
control the timing of activities without stop positions and to detect deadline violations.

Petri nets have been often considered for control of manufacturing systems (Holloway
et al. 1997). Some approaches to interpret a Petri net model for control use different
methods to exchange information between model and process. Sometimes the token con-
tents of places (the marking) is used to generated the model output. This is e.g. the
case in GRAFCET (David 1995; David and Alla 1992) and related methods. The en-
abling of transitions that depend on external information can also be done with control
places (Holloway and Krogh 1994); the models are then called controlled Petri nets. An-
other possibility is the association of control procedures with transitions (Martinez and
Silva 1984). Coloured Petri nets are used for the control of a manufacturing system e.g.
in (Kasturia et al. 1988; Martinez et al. 1987). In (Feldmann et al. 1995), transitions
modelling processing steps are hierarchically refined and input/output signals are asso-
ciated with the subtransitions. Generally, control design based on a Petri net model is
advantageous with respect to a state machine description, because they are able to capture
parallelism in a much clearer way.

The application of the control technique is explained using the submodel of the slew-
ing picker arm as shown in figure 7. The different steps for the two possible transport
actions are described by sequences of elementary transitions and places. Each transition
corresponds to one controllable activity.
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After the inclusion of the work plan information in the transition tables of the model,
transitions StartF and StartB can only fire if tokens that correspond to work pieces to
be transported are located in places TurnTable and PalletExch. Firing guards (marking
dependent boolean expressions) of the transition table entries are used for this. It ensures
that if the work plan models are being specified correctly, the picker arm is only activated
for useful transport orders. Modelling errors or wrong transport strategies leading e.g. to
deadlocks or bottlenecks can be detected by the different analysis techniques.

After the firing of one of the two starting transitions, the corresponding transport
action begins. The transitions describe the individual steps of each transport, and have
input and output signals associated to them. As an example, transition TTurnB1 models
the movement of the turn table into the backward position. When the transition becomes
enabled, the turn table motor is switched on by the associated output signal. When the
final position is reached, the corresponding sensor is activated and the input signal leads
to the firing of the transition.

Motivated by the use of separate models for structure and work plans of a production
system, the task of designing the control system can be divided in two steps. The specifi-
cation of the work plans ensures that the manufacturing system produces (in the model)
the desired products. However, the afterwards automatically generated main model does
not necessarily have to be free of deadlocks nor optimal with respect to some performance
measures like the throughput. The model can be analysed and the problems detected,
leading to control strategies that improve the system behaviour. In any state of the pro-
duction system, the controller can only forbid activities that would otherwise be possible.
This corresponds to disabling transitions inside the model. Using marking dependent
guard functions, this can be done easily with the used class of Petri nets. The guard func-
tion of a transition (or of one firing possibility) is a boolean function of the net marking,
which has to be true to allow the enabling. The second step of the control design thus
corrects and optimises the production process. Finally, the model based online control
ensures the execution of the specified behaviour.

With the control module of the design engine, production processes can be controlled
by activating the control during the token game facility. This is especially important for
debugging and demonstration purposes. Two variations of the token game are available:
interactive (the user controls the firing of enabled transitions) and animation (simply a
simulation). Both show the marking and state changes and can thus be used for online
control and visualisation of the production process. The animation can be stopped at
any time for manual control. Therefore the control of the modelled production process is
seamlessly integrated in the modelling and evaluation tool.

The online control is implemented in TimeNET in the following way: during a token
game with activated control, an additional process monitors the model state. If a state
change enables a transition, its possible output signals are sent to the production process.
The sensor states are checked additionally by this process. If a sensor state change is
detected, which is associated to an input signal, the corresponding transition(s) are fired
if they are enabled in the model and the displayed model state is updated. Internal
transitions may fire independently from input signals, only depending on their associated
firing time. The correspondence between transitions and signals for models of controllable
systems is described in a file.

7 Conclusion

This paper describes the recently developed design engine TimeNET for the modelling,
analysis, and control of manufacturing systems. There is no need to change model or
description method between the stages of design and operation. This avoids additional
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effort for model conversion, making the design process more efficient. A dedicated class
of coloured Petri nets is used to describe structure as well as work plans of the system.

Different analysis techniques can be applied to the automatically generated composed
model. The paper presents adapted and new techniques to compute qualitative and quan-
titative properties of the analysed production process. For the evaluation of the system
performance three different algorithims are offered: direct numerical analysis, iterative ap-
proximation, and simulation. Finally, the model can be used to evaluate control strategies
and to directly control the manufacturing system based on the model.

The different parts of the design engine are described in the paper using an application
example, showing the usefulness of an integrated technique for the different phases in the
life cycle. In a previous work (Zimmermann et al. 1996b), parts of the tool presented here
have been successfully applied to a real life industrial example of complex size.
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