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Abstract 
 
In this paper we describe a system, which incorpo-
rates the optical flow to navigate in unknown envi-
ronments. With the ability to identify and track mov-
ing objects it will be able to compute their trajectory 
and future positions to avoid collisions with them. 
The system incorporates an algorithm, which elimi-
nates the optical flow induced by the motion of the 
camera (egomotion). 
 
Real-world and synthetic data is used in all stages of 
the development of the system, simulation is used as a 
primary design aid.  
 
Keywords: digital signal processing, optical flow, 
tracking 
 
 
1 Introduction 
 
Our goal is to design and implement an integrated 
navigation and tracking module which incorporates 
optical flow as well as acceleration sensors and Kal-
man filter algorithms.  
 
The system will be simulated at mission level, which 
includes functional model, architectural model and 
environmental model. The functional model contains 
the estimation of the optical flow, while the architec-
tural model contains description of actual hardware 
and corresponding properties. The environmental 
model creates a test scenario, where the whole system 
can be simulated in (e.g. a car on a street with build-
ings and pedestrians).  
 
One of the main components of the system is the 
optical flow computation which will be described in 
this paper. It is responsible for the estimation of the 

flow and the correction of the flow induced by the 
motion of the camera. 
 
 
2 Optical Flow 
 
The optical flow is the projection of the environment 
of a moving camera onto the image plane of the cam-
era. It is used in various applications from recovering 
the motion of the camera (egomotion) [5, 8] to recon-
struction of the surrounding environment as in [9]. 
For a detailed description of computation methods 
and comparisons see [1, 2, 4, 6]. 
 
 
2.1 Optical Flow in Biology 
 
Optical flow can be found in biology [3], too: two 
elements of the facet eye of a fly create a motion 
detector which measures the movement of the world 
seen through the facets. 
  
Flies use this visual technique to stabilize their flight: 
if they turn to the left (by wind) the seen image 
moves to right. If the fly follows the movement of the 
image she is able to compensate the disturbance. 
 
 
2.2 Egomotion and Optical Flow 
 
Camera motion causes three primary forms of optical 
flow which can occur in any combination: 
 

• Translation of the camera in the image plane 
or by rotation (small angles) about an axis 
perpendicular to the optical axis results in 
parallel flow vectors of equal length. 

• Rotation is caused by rotating the camera 
about the optical axis. 

 



 
 

Figure 1: Optical flow visualization tool 
 

• A movement of the camera along the optical 
axis results in scaling. 

 
An example of the optical flow is shown in Figure 1 
together with our visualization tool. The flow shows 
the result of shifting the image by 5.3 pixel to the 
right and 5.1 pixel to the bottom, a rotation about 
2.54 degree counter-clockwise and scaling by a factor 
of 1.014. For comparison, the images depicted in 
figure 4 at the end of this article differ by these 
movements. 
 
 
3 Correction of Self-caused Flow 
 
As stated in the introduction we want to eliminate 
that part of the flow which is caused by the move-
ment of the camera. The correction algorithm starts 
with the computation of the optical flow in 16 x 12 = 
192 evenly distributed areas with the method used in 
[4] and [9]. 
 
Because the computations in each flow region are 
independent from other regions this is a good posi-
tion to divide the problem in smaller and independent 
problems and to do it in parallel.  
 

Equations 1 and 2 show the method of least squares 
applied to the sum of the three possible motions. A is 
the set of flow areas, the effect of translation is de-
scribed by t , rotation by r  and scaling by s , while 

 denotes the measured values. The indices m x  and 
 stand for the horizontal and vertical direction, 

respectively. 
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Derivation of equation 2 shows that it is possible to 
compute translation, rotation and scaling independ-
ently of the others. Based on the flow in the 192 
areas, the horizontal and vertical translation, the 
rotation about the optical axis and the scaling are 
estimated using equation 3.  
 



To simplify the computation of the rotation and to 
allow the simple application of the least squares 
method, we use a Taylor expansion of the sin(  and 

 function. Therefore  simplifies 
)x

)cos(x )sin(x x  to 
while cos(  simplifies to 1. )x
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Based on the global parameters horizontal and verti-
cal translation, rotation about the center of the image 
and scaling, it is possible to compute a correction 
term for each flow area. By this means the flow 
caused by the egomotion of the camera will be elimi-
nated.  
 
The remaining flow is caused by dynamic image 
contents like moving or changing persons and ob-
jects, or uncertainties and errors of the computation 
of the optical flow. A threshold will be applied to 
separate significant and insignificant flow vectors. If 
significant flow vectors were encountered, they have 
to be grouped together to track objects instead of 
flow vectors. One important thing here is the merging 
and separation of objects (e.g. a person gets in a car 
or separation of a person from a group).  
 
Figure 2 shows a frame of a test sequence while the 
corresponding optical flow is shown in Figure 3 in 
form of a “needle” plot. One can see the large magni-
tudes of the flow vectors in the bottom right of the 
image, as the camera “overtakes” the car. Please note 
that the printed image has been enhanced in bright-
ness and contrast. 
 
 
3.1 Limits 
 
Computation of the optical flow is restricted by the 
quality of the image because numerical derivations 
have to be computed. So the image has to be 

“smooth” which can be achieved by application of 
low-pass filters like the 3 x 3 separable filter with 
coefficients [0.25 0.5 0.25] we used, or lossy wavelet 
compression algorithms [7].  
 
The correction algorithm which eliminates the self-
caused flow has limits caused by the size of the flow 
region and the height of the image pyramid. All the 
limits stated below are valid for an image size of 512 
x 256 pixel and a pyramid height of 5 with 128 flow 
regions of size 12 x 12. 
 

 
 

Figure 2: Sample frame of the test sequence 
 
 

 
 

Figure 3: Needle plot of optical flow 
 
The translational movement can be estimated accu-
rately at speeds up to 48 pixel/frame in any direction. 
Estimation of the rotational movement is limited to 5 
degree/frame, here the rotation of the single flow 
region prevents further rotation range enhancements. 
For the estimation of zoom a similar reason prevents 
the accurate computation of larger zoom speeds: the 



size of flow regions change. We found a limit of 
about 5 percent/frame. 
 
 
3.2 Visualization 
 
We use visualization of the flow in two cases: the 
flow estimated from a sequence of images is visual-
ized and the effect of translation, rotation and scaling 
can be visualized in real-time with our tool (see fig-
ure 1). Both are used to verify numerical results. 
 
If the computed flow vectors are changed by a ran-
dom error, it is even possible to test the algorithms 
for recognition and tracking of moving objects with-
out using real-world images. Because of the usage of 
the NEXTSTEP tools InterfaceBuilder and Pro-
jectBuilder and the Objective-C programming lan-
guage, it is possible to concentrate on the primary 
algorithms rather than on the graphical user interface. 
 
 
4 Future Work 
 
4.1 Accelerometers 
 
Another way to compute egomotion is to filter and 
integrate measured acceleration of the camera/system 
by an IMU (inertial measurement unit). In conjunc-
tion with the optical flow we have two possibilities to 
keep track of the new information: 
 

• a more accurate estimation of the egomo-
tion, or 

• the possibility to map the surrounding ter-
rain based on unreliable position data in op-
position to [9] who uses high precision posi-
tion data 

 
 
4.2 Hardware/Software Realization 
 
For an integrated system we need a stand-alone hard- 
and software realization to compute the optical flow 
in real-time. We therefore compare different hard-
ware approaches like digital signal processors and 
SIMD enhanced microprocessors (PowerPC G4, 
Pentium III/4, AMD Athlon).  
 
A DSP implementation of the computationally ex-
pensive optical flow computation has been finished. 
For the usage of SIMD enhanced MPUs an important 
criterion is the support of high level language exten-

sions like vector data types. To our knowledge this 
feature is available only for the PowerPC G4. 
 
 
5 Conclusion 
 
In this paper we presented the optical flow estimation 
part of an integrated navigation and tracking module. 
We use the optical flow to track dynamic objects, 
which cause optical flow while they move or change. 
An important property is the ability to remove the 
optical flow induced by the motion of the camera. 
 
Two primary application fields of our system are 
optical tracking and counting of moving objects in-
corporating a moving camera and collision warning 
systems for cars. 
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Figure 4: 2 images which differ by the movements shown in figure 1
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