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ABSTRACT
In this paper we present a new method to estimate optical
flow for large displacements. It is based on prediction of
global flow field parameters, performs better than multi-
resolution estimation methods and has been verified using
standard test sequences as well as real-world data. Global
flow field parameters can be estimated from optical flow
measurements in all flow regions. They can then be used to
predict the flow in optical flow regions of the next frame.
This technique reduces the complexity in comparison to
hierarchy-based methods, while the flow field parameters
can also be used to compensate optical flow produced by
egomotion.
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1. Introduction

In recent research much attention has been paid to more
precise estimation techniques of optical flow, which are
computationally expensive. Most of these techniques use
more than 2 frames to estimate the flow and cannot achieve
real-time performance (see [1] for a possible solution).

Another disadvantage of the published methods is that
they only work well for small optical flow. But compu-
tational efficiency and the property to estimate large dis-
placements accurately are important preconditions for op-
tical flow techniques in navigation.

2. Review: Optical Flow

Optical flow is based on the constant-brightness assump-
tion. In equation 1,E is the brightness of the image,Ex, Ey,
andEt are derivatives in horizontal, vertical and temporal
direction, respectively.

Exu+Eyv+Et = 0 (1)

Optical flow can not be computed locally, since flow
velocity has horizontal and vertical componentsuandv, but

Figure 1. Relationship between image, flow regions, vec-
tors and field

only one independent and measurable variable is available
at each point of an image.

To solve the problem, an additional constraint condi-
tion is needed. Horn [2] uses the spatial smoothness of the
optical flow as a constraint. However, there is no plausi-
ble model to justify the assumption that minimal variation
of the optical flow over the image approximates the motion
field. We parametrize the optical flow and use the assump-
tion that the flow is constant in small image regions. So one
can use multiple pixels to estimate the two unknown veloc-
ity components with the method of least squares. In equa-
tion 2,u andv denote the horizontal and vertical component
of the flow, whileEx, Ey andEt denote spatial (horizontal
and vertical) and temporal derivatives.
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For a better understanding of the dependencies be-
tween image, flow vectors, flow regions and flow field, see
figure 1. For a detailed review of optical flow estimation,
we refer to [3, 4, 5].



Figure 2. Multi-resolution estimation

3. Treatment of Large Displacements

There are several possibilities to estimate large displace-
ments of single flow regions with sufficient accuracy:

• increased size of flow regions

• computation of flow at multiple resolutions

• prediction of global flow field parameters

3.1 Increased size of flow regions

For this paper we compute optical flow by equation 2 (for
further details see [6, 7]). By increased size of the flow re-
gion larger displacements can be estimated. For regions of
size 12×12 pixels estimates are accurate for displacements
of up to 2 pixels in each direction.

Unfortunately, the regions can not be enlarged too
much: the assumption that optical flow is constant in small
areas does not hold for large regions — averaging effects
occur.

3.2 Multi-resolution estimation

The optical flow can be estimated at different levels of an
image hierarchy, starting at the top level (coarsest reso-
lution). For each level of the hierarchy, image rows and
columns are downsampled by a factor of 2 and the measur-
able displacements double. Flow vectors at a given leveln
are projected to the leveln−1 to reduce the remaining flow
there (see figure 2).

This technique has also limits: the number of levels
can not be increased infinitely. The top level of the hierar-
chy must be sufficiently large for at least one flow region.

Figure 3 (left) shows the results of flow estimation
over the first 20 frames of the “translating tree” sequence.
Each frame is shifted about 2 pixels to the left in compari-
son to the previous frame. Estimation is done between the
first frame and all other frames, so the flow between frame
1 and 11 is 20 pixels to the left. One can see that a 3-level
hierarchy (each new level has been downsampled and fil-
tered by a 3×3 separable low-pass filter) with flow regions
of size 12× 12 can handle flows up to 12 pixels/frame,
higher flows lead to unusable results.

3.3 Prediction of global flow field parameters

For a given flow field it is possible to estimate parameters
describing the movement of the camera (egomotion). Ro-
tation about an axis perpendicular to the optical axis (yaw,
pitch) causes a translation of the projected image in hori-
zontal and vertical directiontx andty, while rotation about
the optical axis (roll) causes a rotation of the projected im-
age about the image center (α). If the camera moves for-
ward or backward along the optical axis, a zoom effectz
applies to the image. These parameters are computed as
shown in equation 3.

tx = ∑a∈Amx(x,y)
|A|

ty =
∑a∈Amy(x,y)

|A|
(3)

z =
∑a∈Axmx(x,y)+∑a∈Aymy(x,y)

∑a∈A(x2 +y2)

α =
∑a∈Axmy(x,y)+∑a∈Aymx(x,y)

∑a∈A(x2 +y2)

In the equation above,mx(x,y) and my(x,y) denote
the computed flow vector components in a flow region at
position(x,y), sums include all flow regions of the image.

Given a set of 6 to 8 previously computed param-
eter quadruples, it is possible to estimate a linear model
for each parameter by the method of least squares. Based
on this model we can extrapolate the 4 parameters for the
next frame and tune the flow regions accordingly. The flow
regions will be pre-adjusted to the predicted flow, hence
the remaining flow will be small enough (less than 3 pix-
els/frame) to be handled by a flow region.

Figure 3 (right) shows the results of flow estimation
over the same series of 20 frames as above. Here the flow
can be estimated accurately at up to 40 pixels/frame (this
result can not be achieved with a more than 3-level multi-
resolution estimation because another level is not large
enough to contain a flow region).

Figure 4 shows frames 1, 10, and 25 of the “diverging
tree” sequence (top row) and corresponding optical flow in
form of needle diagrams (bottom row, middle and right).
The lower left graph shows the performance of the global
parameter based method on the whole sequence.

4. Comparison

A comparison of the three methods gives the following re-
sults:

1. increased size of flow regions

− problems at image borders (large flow regions
result in no flow vectors at the borders)

− the flow is not constant in large flow regions, this
leads to estimation of mean values for the flow

+ no special adaption of the algorithm is necessary
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Figure 3. Comparison between multi-resolution and global prediction based estimation (translating tree sequence)

2. computation of the flow at multiple resolutions

− hierarchy construction and the increased number
of flow fields lead to higher computational com-
plexity

− wrong flow estimation at a high hierarchy level
affects all lower levels and leads to large errors

+ good results for flow fields which are hard to es-
timate with the model used in method 3 (prob-
lem example: a car moves from left to right in
front of a fixed camera)

3. prediction of global flow field parameters

− bad results for flow fields which are hard to es-
timate with the given model (i.e. the camera
moves in a static environment)

± lower computational complexity than method 2
but estimation of flow field parameters is neces-
sary

+ theoretically the largest range for displacements,
it is not required that the top level of the hierar-
chy contains a flow region

5. Conclusion

A new method to estimate the optical flow for large dis-
placements has been presented. The results are compara-
ble or better than those from multi-resolution estimation
methods. For image sequences with small dimensions,
hierarchy-based estimation methods do not have enough
levels to handle large displacements well. In such cases,
the new method performs as good as on other image di-
mensions.

The estimation of global flow field parameters and
model estimation not only allows the prediction of the next
quadruple of parameters but also the possibility to compen-
sate the optical flow produced by egomotion. This informa-

tion can be used to track dynamic objects from a moving
camera as described in [8].

Both methods have their benefits and drawbacks, a
combination of them could overcome their limitations. So
the next step is to combine multi-resolution and global pa-
rameter based estimation of optical flow.
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Figure 4. Examples for optical flow in the diverging tree sequence


