Estimation of Optical Flow for Large Displacements

Torsten Radtke and Horst Salzwedel
Technische Universität Ilmenau
Germany

Estimation of Optical Flow for Large Displacements

Overview

- Introduction
- Adjusting of flow regions
- Multi-resolution estimation
- Prediction of global flow field parameters
- Example flow
- Comparison
- Conclusion and Future Work

Estimation of Optical Flow for Large Displacements

Introduction

- Disadvantages of actual optical flow estimation methods:
- computationally expensive
- use more than 2 frames
- work well only for small displacements
- Needs for navigation applications:
- computationally efficiency (real-time processing)
- estimation of large displacements

Estimation of Optical Flow for Large Displacements

Large displacements - why?

- Imagine the following example:
- camera mounted inside a car
- sharp turn to the left leads to large optical flow to the right
- flow of 25 pixels/frame and more
- How can we manage it?
- multi-resolution estimation
- prediction of global flow field parameters

Estimation of Optical Flow for Large Displacements

Adjusting of flow regions

- A flow region can compute a flow of 2 to 3 pixels per frame accurately
- In general, flow regions in successive frames have the same position
- If we adjust the flow region in the second frame to the predicted flow
- the remaining flow is smaller
- we can handle large flows (if we have a good prediction)

Estimation of Optical Flow for Large Displacements

Multi-resolution estimation

- Create an image hierarchy
- downsample image rows and columns by a factor of two
- apply a low-pass filter (for more accurate derivative computation)
- Estimation of optical flow at different levels of resolution
- start at top of the hierarchy
- compute flow at a given level of the hierarchy
- project it to the next lower level and adjust the flow regions

Estimation of Optical Flow for Large Displacements

Prediction of global flow field parameters

- Estimate a linear model of global flow field parameters
- 4 to 6 previously computed parameter quadruples
- method of least squares
- Based on this model, extrapolate the 4 parameters for the next frame
- Adjust the flow regions to fit the predicted flow

$$
\begin{aligned}
t_{x}=\frac{\sum_{a \in A} m_{x}}{|A|} & z=\frac{\sum_{a \in A} x m_{x}+\sum_{a \in A} y m_{y}}{\sum_{a \in A}\left(x^{2}+y^{2}\right)} \\
t_{y}=\frac{\sum_{a \in A} m_{y}}{|A|} & \alpha=\frac{\sum_{a \in A} x m_{y}+\sum_{a \in A} y m_{x}}{\sum_{a \in A}\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

Estimation of Optical Flow for Large Displacements

Optical flow visualization

Estimation of Optical Flow for Large Displacements

Example flow for the diverging tree sequence (frame 10 and 25)

Estimation of Optical Flow for Large Displacements

Comparison (1)

hierarchical estimation
prediction-based estimation

Estimation of Optical Flow for Large Displacements

Comparison (2)

- Multi-resolution estimation:
- higher complexity through hierarchy construction
- wrong flow estimation at high hierarchy level affects all lower levels
- limited number of hierarchy levels
+ no dependence on a camera motion model
- Prediction-based estimation:
- dependence on camera motion model
\pm estimation of flow field parameters leads to slightly higher complexity
+ largest range for displacements

Estimation of Optical Flow for Large Displacements

Conclusion and Future Work

- Results of the new method are comparable or better than those of multi-resolution estimation methods
- Good performance for small images
- Estimation of global flow field parameters also allows the compensation of optical flow produced by egomotion
- Acceleration of estimation algorithms with SIMD-enhanced microprocessors (AltiVec, 3DNow!, ...)

