
A Framework For Mission Level Design
Thomas Liebezeit

Department of Automatic Control and System Engineering
TU Ilmenau, Germany

email: thomas.liebezeit@tu-ilmenau.de

Volker Zerbe
Department of System and Control Theory

TU Ilmenau, Germany
email: volker.zerbe@tu-ilmenau.de

Tino Löffler
Departmant of Media Technology

TU Ilmenau, Germany
email: tino.loeffler@stud.tu-ilmenau.de

ABSTRACT
In this paper we present the idea of Mission Level Design
(MLD) for complex systems. MLD can be thought of as
a test of a system design on an abstract level. Therefore,
the simulation of an overall system model is used to find
problems in the early design phases and gives developers
first results of system performance and characteristics. The
overall system model is configured by missions, which de-
scribe user requirements.

For this concept we present a framework consisting
of MLDesigner, MLEditor and MLVisor. MLDesigner is a
design tool of the latest generation. The new tools MLEd-
itor and MLVisor are used to handle and visualize/evaluate
missions.

KEY WORDS
Mission Level Design, system test, simulation, MLDe-
signer

1 Mission Level Design

1.1 Idea

Today more and more complex systems have to be devel-
oped. That’s why independent specialists design modules
described by the system specification. If there is an error
within the specification it will be found during the testing
period of the system. But this probably causes expensive
iterations back to the design phase. Therefore it would be
better to find this kind of errors in the early design phase.

Previous design concepts began to deal with more
complex systems by using levels of abstraction. This
started with hardware description languages and continued
with those for algorithms and systems. In this way, Mission
Level Design (MLD) is just another step to the consequent
formalization of the design process.

MLD deals with the fact that complex systems have
too many parameters to check them all in every possible sit-
uation. Therefore possible operational requirements have
to be defined and included in the formalization of the spec-
ification. This will be done by the definition of missions
which correspond to typical use cases.

The validation takes place by the simulation of
the overall system model configured by these missions.
Thereby, the overall system model is a generalized repre-
sentation of the system design. For this reason, MLD can
be thought of as a design test with a virtual prototype.

The aim of MLD is to find answers to the following
questions:

• Does the design reach or hold the key design parame-
ters?

• Do all the subsystems work correct in the overall con-
text?

• What will the ressource load be?

Through these questions, Mission Level Design aims
on the early design phases, where the system is divided into
its subsystems and resources are partitioned. Later in the
design phase, it can ensure that changes in subsystems have
no drawbacks to the overall system task.

1.2 Key parts

From the above mentioned view on MLD, the main parts
of the concept can be identifyed. These are: the overall
system model, the missions, the simulation and evaluation.

One remarkable aspect in this enumeration is, that
Mission Level Design unlinks the model and its param-
eters/missions. So, each mission configurates the system
model in another way. At the same time, the missions are
added to the system specification and build a tested operat-
ing range.

1.2.1 Overall system model

The overall system model is a representation of the system
design, that can be simulated. It describes the basic be-
haviour of its real counterpart on a generalized level. Gen-
eralized level means here that only the important aspects
are modelled. This is nesessary by the leak of information
during the early design phase.

The system modules represent the relevant system as-
pects:

• functional aspectswhich are the feasible parts of the
specification of the system or its components. They
describe the functional characteristics (continuous or
discrete systems, software), therefore the behaviour of
a system or component.

• architectural aspectswhich give a description of the
available resources. They are used to examine the per-
formance characteristics of a system or component.
Normally, one functional model is mapped to differ-
ent architectural models to find the best configuration.

• environmental aspectswhich describe relevant parts
of the surroundings.

The modules are configurable through their parame-
ters, and their hierarchical structure mirrors the system’s
future with its modules and submodules.

From the modelling point of view it is required to
have a great flexibility in choosing a modelling approach
for the system model. So, in the best solution every module
may be modelled with the best approach1 and the simula-
tion tool realises a mixed mode simulation.

1.2.2 Missions

For the simulational point of view missions are parameter
sets, while for the users they describe a typical use case
of the system. They are built from a subset of the overall
system model parameters.

In general, the following kinds of parameters can be
distinguished:

• design parametersare future key features of the sys-
tem; they are design goals, that may be tested in the
evaluation

• system parametersare characteristic module values
that do not change over all simulations; for example,
they describe the dimensioning of resources

• mission parametersare characteristic module values
used to describe missions; often they are starting val-
ues

• constantsare natural constants like the acceleration
of gravityg

The mission parameters build the missions whereas
each concrete value set forms a typical scenario for the fu-
ture use of the system. Whereas the other parameters de-
scribe the design of the system.

1.2.3 Simulation and Evaluation

The simulation of a mission means that a concrete value set
is applied to the overall system model and run by the simu-
lation tool. That is why MLD can be described as missions

1e.g. FSM (finite state machine), DE (discrete event), . . .

in a virtual world, building up the aspects of the system
model. Depending on the model a mixed mode simulation
tool will be needed for the simulation.

For the evaluation all missions have to be simulated.
The analysis of that simulation output enables conclusions
for the system design. Because of the systems complexity,
a semi-automatic test for design parameters violations is as
helpful as a mission specific visualization.

The questions mentioned in the introduction to MLD
mirror the main conclusions in terms of the system design,
that can be reached by the method. A guaranteed error-
free behaviour under operational conditions is essential for
mission critical systems or systems with high financial risk.

1.3 MLD design steps

The parts, identified before, lead to the following steps for
the system designer:

1. design of the overall system model

2. defining missions and setting system parameters

3. simulating the configured missions

4. evaluating the simulation output

Depending on the results of the evaluation, a redesign of
the system may be necessary or the design or system pa-
rameters have to be adopted to better values. This may be
caused by financial or technical decisions.

Insofar, the above steps are only a small part of the
whole design cycle characterized by Schorcht [6].

2 Framework for MLD

Proceeding to the pure idea of Mission Level Design, the
question could come up whether there exist any software
tools that support this design method?

For our research on the topic to design an autonomous
underwater vehicle within the DeepC project [5, 7], we
have decided to use MLDesigner [4]. It conforms to many
of the demanded features for model design on the one hand,
and on the other to those of simulation, as well.

Unfortunately, MLDesigner does not support config-
urable parameter sets yet. That’s why we have imple-
mented two addional tools2. Firstly, MLEditor for the mis-
sion handling and secondly MLVisor for the mission spe-
cific evaluation.

Figure1 shows the connection of the task to the tools
and clarifies the design steps again.

2As MLDesigner is only available for Linux, both tools were pro-
grammed at this platform with help of the QT library [1], too.

Figure 1. MLD design steps

2.1 MLDesigner

We are using MLDesigner for the modelling of the overall
system model and for the simulation.

It’s a hybrid simulation tool because it supports the
simulation of different model approaches in one model.
Thus, there exist basic primitives for different domains:
time discrete, synchronous data flow, finite state machines
and continuous time models. These are needed for a rapid
design test. If all primitives are ready to use in a library,
the modelling can be done simply by assembling the prim-
itives.

Additionally, its important to have the freedom to ex-
pand the feature set. MLDesigner enables the implementa-
tion of own primitives. Therefore, it has a build-in source
editor and a very useful documentation. The primitives are
implemented by the use of C++ templates.

The modeler can define own data structures within the
model. Above that MLDesigner offers basic visualization
plots.

Figure 2. MLDesinger

Modelling The modelling of the overall system model
happens by taking primitives from the library and placing
them into the model. Their inputs and outputs are linked
by lines. The parameters of the system, the subsystem and
the primitives are assigned next. The modeler labels them
with tags which describe their type (#MP[#pt]#xxx 3,
#SP[#pt]#yyy 4). These labels are a MLEditor expan-
sion and not a part of the original MLDesigner workflow.

When the overall system model is finished so far, the
modeler adds probs. These special primitives were writ-
ten to put information into the simulation database (SDB).
The probs are designed to work together with MLVisor.
They will deposit the data for each project in an own SQL
database during the simulation. Now, they are only config-
ured by setting the needed information like database name
or data stream name.

At this state the model can’t be simulated, because all
parameters are taged.

Simulation All configured models are simulated in
MLDesigners simulation mode. At this time, the output
data gets written to the SDB.

The database consists of three different types of ta-
bles:

• INDEX TABLE
name type meaning
id int automatic index
mission int misson number
simulation int simulation number
date string date, time
host string host name
user string user name

• DESCRIPTION TABLE
name type meaning
id int automatic index
object string name of data stream
description string its description

• tabels named like:id object
name type meaning
id int automatic index
names sting names of data stream

components (object.name)

The tables are filled with the simulated data values and the
general data.

Table 1 shows an excerpt from the SDB. The IN-
DEX TABLE knows two simulation runs for different mis-
sions. For simulation run 319 two data streams called BAT-
TERY and POSAUV are stored. Their value tables are
134 BATTERY and 134POSAUV, because the simulation
run 319 has the internal id 134. POSAUV consists of the
subitems x, y, z, roll, pitch, yaw and time and can be iden-
tified as the AUV Position by the descirbtion in DESCRIP-
TION TABLE.

3mission parameter (pt {optional}: required plugin type for MLEdi-
tor; xxx : standard value)

4system parameter (pt {optional}: plugin type;yyy : name)

INDEX TABLE
id mission simulation host user date
133 2 318 localhost tvl 30.06.
134 3 319 localhost tvl 30.06.

DESCRIPTION TABLE
id object describtion
1 POSAUV AUV Position
2 BATTERY battery charge

133 PosAUV
id time x y z roll pitch yaw
1 0.0 1.0 1.0 1.0 0.0 0.0 0.0
2 0.1 1.0 0.99 1.01 0.0 0.0 0.0
. .

134 PosAUV
id time x y z roll pitch yaw
1 0.0 1.0 0.0 0.0 0.0 0.0 0.0
2 0.1 1.0 0.0 0.0 0.0 0.01 0.0
. .

134 BATTERY
id time battery
1 0.0 100.0
2 60.0 97.521
.

Table 1. Example from SDB

2.2 MLEditor

For the mission handling we have developed a special tool,
called MLEditor. It is able to scan the MLDesigner models
for parameter tags5. For these it allows type dependent the
definition of missions or the assignment of values. Config-
ured overall models can be written.

MLEditor presents the found parameters ordered in a
model tree (see Figure3). This has the advantage of a much
better overview over the parameters and their connection to
the model. It also ensures, that multiple parameters with
the same name may exist. The presentation is ordered by
type.

For mission parameters the tool allows the creation of
missions. Therefore all of them are editable in a table. If
no value is assigned, the standard value will be used.

To handle the different parameter data types6, MLEd-
itor uses a plugin system. With this, the input of the various
data7 turns out to be easy.

5This is easy, because MLDesigner uses a XML structure for the model
files.

6double, string, composed data structure, etc.
7For our research we implemented a plugin for AUV mission plans.

It allows the input of a mission with different manoeuvres like descent
phase, maeanders or other path elements in 3D space. This plugin realizes
a complex protocol and supports the user on inputing the numerous partial
parameters. To improve the user’s convenience, the plugin additionally
offers a preview.

Figure 3. MLEditor

Expl Names
id name paramlist
.
17 high priority AUV/AFS/CS/SonarCtrl::priority
18 Sonar::range AUV/AFS/Sonar::range
.

Expl MP
id . . . a18 . . .
1 . . . 100 . . .
2 . . . #MLESTD# . . .
3 . . . 80 . . .

.

Expl SP
id . . . a17 . . .
1 . . . 10 . . .

Table 2. Example from PDB

The complete parameter data is stored in a parame-
ter database (PDB)8. Therefore, three database tables are
used for each project. The first is named ProjectNames
and hold an id, the name and the complete model path for
each parameter. ProjectMP, the second table, consists of
the values for all mission parameters. The table columns
are labeled like ’a17’. This means, that this is the column
for the parameter whose id is 17 in ProjectNames. The
first row is filled with the standard values and the remain-
ing ones are used to store the missions. At last, the third
table ProjectSP holds the system and design parameters.
It is organized identically to ProjectMP with the only dif-
ference, that these parameters have only one value.

Table2 presents an example PDB. For project Expl
one mission (Sonar::range) and one system parameter (pri-
ority high) are shown. The mission parameter has the stan-
dard value of 100. In mission 1 this will be used, whereas
for mission 2 the value changes to 80. The system parame-
ter priority high has the value of 10 for all simulations;

8Note: This is not identical with the simulation database (SDB).

When reopening a project, the contents of the PDB is
synchronized with the overall system model.

2.3 MLVisor

Figure 4. MLVisor

MLVisor (Figure4), our visualization and evaluation
tool, helps us to handle the huge amount of simulation out-
put data.

The general information are read form the SDB by the
application so that the user can select a simulation run. The
presentation is ordered by mission and simulation number.
For the selected mission all data streams are acquired and
will be presented to the user while choosing data for dis-
playing (see Figure5).

Figure 5. Assignmet widget for data streams to plugin

The visualization itself is realized by plugins. There
exist two types of plugins for MLVisor. The first one allows
the data preprocessing. It creates new data streams as a
function of one or more input streams9. For this reason,
they quasi are invisible, only their output streams appear in
the selection list. The second type of plugins does the real

9For example, we implemented a plugin, that computes the histogram
of a data stream.

visualization. For the user such a plugin is a window within
the tool. Typical data views are already programmed.

• 1D-LED-Plugin: can be used to visualize binary data.
The plugin presents a table of settable size, where the
fields can be filled with named LEDs. The LED color
changes from green to red in dependence of the value.
For non-binary data a threshold is used for the trans-
formation to binary type.

• 1D-Bar-Plugin: presents one or more small bars that
show the current value between minimum and maxi-
mum (see Figure6). An alarm level is supported on
which the color of the bar changes to a settable color.
The plugin shows the current value as tooltip.

Figure 6. 1D-Bar-Plugin

• 2D-Plugin: is used for all 2 dimensional plotting, such
as value over time or value over value. It is based
on the Qwt library [2] and therefore supports different
styles, colors, and a legend. The plugin allows it to
save the contents to a picture.

Figure 7. 2D-Plugin

• 3D-Plugin: enables the visualization of high dimen-
sional data in a virtual environment. The plugin de-
fines the world and may be filled with objects which
are coupled to data sets (3D or 6D). For the ob-
jects’ representation the user can choose between ba-
sic primitives (cone, cube, cylinder, sphere) or own
3D-models (*.vrml or *.iv). Figure8 shows a vrml
model of an AUV used by the plugin. Three different
camera styles are selectable (free, view object, chase
camera with own dynamics). Additionally, it is pos-
sible to plot the traces of the object positions. The
plugin was implemented with the help of the Coin li-
brary [3] which is an implementation of the SGI Open
Inventor API.

Figure 8. 3D-Plugin

• semi-automatic evaluation: This plugin tests the vi-
olation of system or design parameters. Therefore it
can read the values from the PDB. Only if a violation
occurs the visualisation is done. This just-in-case pre-
sentation is not realizable by preprocessing plugins.

Furthermore, it is possible to implement own plugins for
special visualization tasks10.

One of the design goals of MLVisor was it to have
a synchronous visualization of asynchronous data. That’s
why, MLVisor possesses a timeline and most of the plugins
are able to be set in an animation mode. In this mode they
synchronize their presentation to the global time. For ex-
ample, the 2D plugin fades in a line symbolizing the time.
Others, as the 3D plugin show a real animation. So, the 3D
objects are moving in the 3D world. To smooth the anima-
tion, linear interpolation is used. The animation velocity is
settable to adopt different time scales.

Another main feature of MLVisor is its ability to store
the plugin configuration. The user can get mission spe-
cific evaluation interfaces just by putting them together by

10For example, we have programmed a artifical horizon. This aeronau-
tic instrument shows an aircraft’s attitude by showing the pitch and roll in
relation to the ground. We use it for a better understanding of the AUV’s
manouevres.

several clicks. Mission specific means, that such a configu-
ration can be used for different simulation runs of the same
mission, or possibly even for other missions.

Additionally, MLVisor contains the basic features of
managing the missions in the SDB.

3 Conclusion

We have presented the idea of Mission Level Design, which
means system design test for defined missions by the use of
simulation.

Furthermore, we have shown how this concept can be
implemented in a framework of software tools to enable the
practical usage. Therefore, we have introduced MLEditor
and MLVisor as add-ons for MLDesigner. While MLEd-
itor handels the usage of missions and system parameters,
MLVisor allows the mission specific visualisation and eval-
uation.

References

[1] QT Library, Trolltech: http://www.trolltech.com

[2] Qwt Library: http://qwt.sourceforge.net

[3] Coin Library: http://www.coin3d.org

[4] MLDesigner: http://www.mldesigner.com

[5] DeepC project: http://www.deepc-auv.de

[6] Gunar Schorcht: Entwurf integrierter Mobilkommu-
nikationssysteme, Logos Verlag 2001

[7] Liebezeit, Th.; Zerbe, V.: Mission Level Design
for Autonomous Underwater Vehicles. In: Proc.-CD
First International NAISO Congress on Autonomous
Intelligent Systems (ICAIS’2002) Geeloang, Aus-
tralia Feb. 2002 auf Missionsebene

	1 Mission Level Design
	1.1 Idea
	1.2 Key parts
	1.2.1 Overall system model
	1.2.2 Missions
	1.2.3 Simulation and Evaluation

	1.3 MLD design steps

	2 Framework for MLD
	2.1 MLDesigner
	2.2 MLEditor
	2.3 MLVisor

	3 Conclusion

