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Abstract 
Aerospace systems are characterized by 

architectural complexity, dynamic interaction 
between subsystems, and complex functionality, 
understood only by teams from different 
disciplines. 20 years ago the major challenge was 
the multidisciplinary design of avionics. Over the 
past 20 years, design methods and tools have been 
developed to cope with these challenges. Today the 
complexity of networked electronics in aircraft and 
the interaction of hardware and software impose 
similar complexity and design challenges. 
According to Moore’s Law, closely followed by 
industry, the complexity of electronics increases by 
a factor 100 every 10 years, requiring to increase 
abstraction in the design methodology, in order to 
cope with this increase of complexity. This paper 
shows the move towards performance and mission 
level design and its advantages over functional level 
design approaches. 

The challenge of complexity 
Aerospace systems are characterized by 

architectural complexity, dynamic interaction 
between subsystems, and  complex interdisciplinary 
functionality. The design challenges presented by 
the avionics of these system with more than 1000 
electronic control units (ECUs), include not only 
the architectural and functional complexity of the 
avionics systems themselves, but also the 
complexity of the organizational structure of the 
design teams from mission specification, design, 
validation and verification, implementation, test, 
training, and operation. 

The introduction of stability augmentation 
systems in the 1960th and 1970th coupled different 
areas of engineering developments and caused 
interdisciplinary problems in the designs. Every 
aircraft prototype tested exhibited aero-servo-
elasticity problems. The analysis of these problems 
showed that the main cause for these problems was 

flawed specifications resulting from insufficient 
communication between design engineers of 
different areas, the believe that verification of 
implementation is sufficient to catch mistakes (e.g., 
Saab 39), and use of incompatible modeling 
techniques and tools. 

Multidisciplinary research led to modeling and 
design methodologies that considered engineering 
expertise and the limit of it for the design flow, e.g., 
for the development of integrated flight propulsion 
control systems. Multidisciplinary research 
sponsored by AFWAL [2] let to the development of 
generic software tools like Ctrl-C®, MatriX® and 
their derivatives Matlab® and Octave™, that 
permitted to combine functional level models from 
different disciplines to reduce these problems. 

 An example of successful multidisciplinary 
modeling can be found in the design of a transfer 
alignment filter. This filter is responsible for the 
transfer of navigational information from an aircraft 
navigation system to that of a missile under a wing. 
Early developments for this filter considered a rigid 
body connection between the aircraft and the 
missile, and treated all other effects as white noise, 
causing large alignment errors and large alignment 
times. Large research efforts and tests could not 
solve the problem. The availability of Ctrl-C 
permitted to easily combine models from structural 
dynamics, aerodynamics and flight control into a 
unified model. This permitted to identify structural 
flexing as the major problem for filter accuracy and 
alignment time. The inclusion of these effects 
improved the accuracy by more than a factor 100 
and reduced the alignment time by more than a 
factor 100 [2]. 

With the proliferation of electronics in nearly 
all type of engineering systems, and the rapid 
increase of the complexity of electronics and 
software, the major challenges of system 
development today are validated specifications, and 
the gap between system design and networked 
hardware/software implementation. 



In the 1970s chip masks were designed with 
CAD systems. In the 1980s chip complexity had 
increased by a factor of 100. Engineers could no 
longer handle this complexity. Languages like 
Verilog and VHDL were introduced to design chips 
at the logical level and translate designs into masks. 
At the beginning of the 1990s, the complexity had 
again increased by a factor of 100. Software tools 
like SPW® and COSSAP® were introduced to raise 
the abstraction of electronics design from the 
logical level to the functional level. This permitted 
e.g. the design of modems in 3 month. The problem 
remained to translate behavioral models into RTL 
level models and validation of the resulting RTL 
level models against design specifications at the 
behavioral level.  

Today (2000s) the complexity of electronics 
has increased by a factor of 10000 since integrated 
functional level design tools have been introduced 
for system design, and by a factor of 100 since 
design of complex electronic moved from logical 
level to functional level. Additionally, chips have 
become systems and complex systems like aircraft, 
spacecraft, automobiles and communication 
systems are dominated by networked electronics 
with embedded software. This compounds the 
problem of the gap between design and 
implementation. This increase in complexity has 
caused major problems throughout the industry, 
including,  

- Flight control systems failures such as 
those of Saab 39, Osprey, … 

- The failure of the first Ariane 5 rocket 
because of a value overflow. The 
implementation was not tested against 
the mission 

- The development of the Teledesic 
satellite system was discontinued after it 
was found that major design 
specifications had to be revised late in 
the design 

- In 1999 2 spacecraft to Mars failed 
because of a mixup between units used 
by different design teams 

- The Boeing 702 series of spacecraft 
exhibit major problems. 

- Electronic control units in automobiles 
exhibit failure rates of up to 3000ppm 
(required <10ppm) 

- Luxury class automobiles have to be 
recalled because of unwanted 
interactions between large number of 
networked electronic subsystems 

The systems above exhibit the following 
problems in their design processes: 

From general requirements for the overall 
systems, written specifications and an overall 
architecture of networked systems is derived, 
Figure 1. 
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Figure 1: Architecture of networked system  

The subsystems and networks are designed by 
established processes, Figure 2.  
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Figure 2: Networked System  
Each of the design engineers/design teams 

makes certain assumptions about how their design 
will interact with near or far subsystems of other 
design teams. These assumptions will not be the 
same. Some will not be documented. Additionally, 
many subsystems may be reactive to the 
environment and hence events cannot be predicted. 
Hardware descriptions may be incompatible for 
those of different subsystems. Insufficient 
communication between design teams will prevent 
that all required information is passed. Simulations 



of the overall functional or implementation models 
are not possible and the overall system cannot be 
validated and verified on a computer. Coverage 
analysis does not cover performance values and 
constraints. Coverage analysis is not possible by 
hardware-in-the-loop simulation or hardware tests. 

When the independently developed subsystems 
are put together for the overall system, it first does 
not work. Problems are fixed on a local level. 
Validation against overall system requirements 
cannot be made since they are not executable and 
may be inconsistent. Far effects are often 
discovered late in the design or during operation by 
customers. 

A recent ESPITI study, Figure 3, shows which 
stage of a design flow causes critical problems in 
system design. The probability is nearly 60% that 
the specifications cause critical problems. The 
probability for critical problems caused by 
modeling and design is about 25% and less than 
20% by implementation. These critical problems 
could be in hardware or software, but often in the 
coupling between them. A major contributor to this 
problem is that the design are done at the functional 
level. However, complex systems can no longer be 
simulated as a whole at functional level. 
Specifications can therefore not be validated at this 
level of design abstraction. 

Figure 3: Critical problems in the design of 
complex systems 

In order to achieve the required up to a factor 
100 and more quality improvements in system 
development, all stages of the development process 
have to be significantly improved. The main effort 
has to concentrate on improving the quality of 
specifications and design, where most of the 
problems are. The following sections describe 

recent technology developments to achieve this 
quality improvements and significantly reduce 
development times. 

Improving quality of specifications 
Three developments have been most promising 

to solve the problem of inconsistent and wrong 
specifications and on meeting specifications in 
design. These are, 

• Making specifications executable 

• Finding a common base for the description 
of diverse requirements from different 
engineering disciplines that contribute to 
aerospace system design 

• Making it possible to test functional level 
designs against executable specifications of 
the overall system 

Making Specifications Executable 
For the development of complex planetary and 

interplanetary space systems, detailed mission 
analysis precedes the design phase and 
implementation phase, in order to get validated, 
executable specifications for the overall system. 
During the design phase, all components of the 
design and implementation are validated against 
these specifications. Where possible, hardware in 
the loop test are performed to test the 
implementation against the design and the mission 
level specifications. This design approach led to 
highly reliable systems that roam the solar system 
up to the outermost planets.  

Today components and subcomponents like 
telecommunication systems, operational 
infrastructure, embedded systems, and processors 
have complexities that far exceed those of early 
spacecraft to the outer planets. Since Shannon’s law 
on algorithmic complexity asks for more than 
Moore’s law on processor performance can deliver, 
it is no longer possible to simulate the HW/SW 
implementation of components and subcomponents 
against the mission requirements. Additionally, a 
design engineer can no longer comprehend the 
complexities of a design at a functional level. 
Designs have to be performed at higher levels of 
abstraction. 
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In Ref. [3] is a hierarchical Mission Level 
Design (MLD) approach is developed, that 
generalizes the design approach for deep space 
missions and makes design decision where 
quantitative information is first available: 

1. A validated and executable mission is 
the behavior of the system that uses a 
component to be designed 

2. Validated specifications of the 
functional behavior are generated by 
validating the high level architecture 
and performance of the component 
against the mission level requirements  

3. The functional behavior of HW and 
SW is verified and validated separately 
and in combination against the 
specifications stemming from the 
architectural/performance model 

The top-level architecture and performance 
requirements are modeled using discrete event (DE) 
models and finite state machines (FSM), Figure 4. 

MISSION LEVEL

ARCHITECTURE/
PERFORMANCE LEVEL

DE, FSM, CTHW SW

Figure 4: Design stage 1:
Definition of mission and top-

level architecture
 

 Initial HW models abstract resources such as 
memory, busses, CPU cycles, etc into quantity and 
server resources. Software is modeled by their 
execution time on a target HW (this is later updated 
with estimated values from the SW performance 
estimator.) The mission model may be diverse and 
is typically modeled by DE, FSM and continuous 
time (CT) models. Challenges that have to be 
addressed at the architectural/performance level 
include [4,5], 

• Dealing with complex architectures, 
with complex functionality in each 

subsystem und a high degree of 
concurrent processing, 

• Dealing with dynamic events with 
complex interactions between 
subsystems, 

• Dealing with data, tasks & architecture 
dependent interactions, and 

• Dealing with use cases and mission 
scenarios 

Architectural/performance models have the 
required quantitative information to make decision 
on what components have to be implemented in 
HW and which in SW. 

Design iterations at this level of abstraction 
reduces the risk of design errors by testing the 
design early in the design  process, where errors are 
easy to fix. Experts suggest that design at the 
performance/architectural level can determine as 
much as 80-90% of a system’s total cost, 
performance and time to market. 

Some system developments for which this 
level of abstraction have been used are, 

• Development of specifications for an Air 
Traffic Management (ATM) system (Case 
1 of Ref. [4]). Figure 5 shows the required 
PDF for an ATM for an Inmarsat type 
satellite 

 

Figure 5: Required satellite PDF for ATM 

• Development of a performance level model 
of HW and SW of a terrain following 
system, Figure 6. 



Figure 6: Performance level model of HW  and SW 
of a terrain following system 

• Development of a virtual prototype for an 
optical avionics network [6], Figure 7. 

Figure 7: Optical WDM avionics network 

• Development of specifications for a global 
satellite based communication system 

• Development of an automated data 
communication system between aircraft 
[DARPA project] 

• Development of a new design flow for 
automotive electronics 

• Architectural development time for a 
general purpose processor has been reduced 
by a factor 7 

• The number of design iterations for a 
wireless communication processor was 
reduced by a factor 3 

• Development time for an embedded SW for 
satellite communications (ESA PUS 
standard) was reduced by factor 10 

XML, a common description language for 
diverse specifications and models 

Documents currently describe all phases of 
product development. These are textural 
requirements and specifications, models, 
simulations, tests, etc. at different development 
stages. Standardized descriptions like UML can be 

used for specifying models, however, they are not 
sufficient to specify the diverse technologies being 
used in the design of aerospace systems and their 
avionics. UML is not sufficient to describe diverse 
models of executable specifications. 

Figure 8: XML descriptions and mappings for a 
design process 

XML is a framework for definition of domain 
specific description languages and for standardizes 
description of documents. For the definition and 
validation of a XML dialect the XML language 
XML Schema can be used. Because of the formal 
structure of XML documents, they can be translated 
in other XML dialects, or other documents, like 
targeted software. XML is therefore an ideal base 
for describing all phases of system development. 
XML documents, models, netlists, schemata can be 
used by requirement tracking systems, to assure that 
design rules are followed. XML can be the base 
between different hardware and software 
descriptions and as a basis for translations between 
them. It is therefore increasingly used for 
development of complex embedded systems in 
aircraft and spacecraft systems, or other electronic 
systems like software radio.  

Design to specification 
Model based design techniques have been 

developed in the 1980th to integrate the functional 
design process of systems. With inclusion of high-
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level architectural/performance abstraction for 
specification development, an integrated design 
process has to be developed, including appropriate 
design software for the design of HW and SW, in 
order to avoid design gaps, that reduce the gains 
made with developments at the architectural/ 
performance level.  

Integrating the design process 
Figure 9 depicts an integrated design process 

from mission level requirements to implementation. 

Figure 9: Integrated mission level design 
process 

Having developed models of executable 
specifications that meet the mission requirements 
we can determine for which subsystems there are 
existing of the shelf products, what new HW and 
new SW has to be developed, including the 
corresponding specifications. The functional level 
development can now commence. Functional level 
models in electronic design for signal processing 
and control applications typically require 
Synchronous Data Flow (SDF) and Dynamic Data 
Flow (DDF) execution models for descriptions of 
signal processing or control algorithms. 
Descriptions by FSMs permit to apply formal 
methods for verification, and significantly reduces 
the risk of construction errors in HW and SW (more 
about this in the section on validation and 
verification). However, it will generally not be 
possible to validate the SW with the developed HW 
at the functional level for the overall system. 

The SW performance estimator [6] determines 
the number of cycles, an embedded SW takes to 
execute on a processor as a function of compiler 
optimization. This updated value is used in the 
architecture/performance model to check the design 
against the specifications of the overall system.  

 

Design software for the mission level design 
process 
The design and analysis software system 
MLDesigner [7], has been developed to implement 
the Mission Level Design flow, Figure 10. 

Figure 10: Components of MLDesigner software 
system 

 To meet the diverse requirements of an integrated 
design flow from mission level requirements to 
implementation, a single kernel, multi-domain 
software system has been developed. All models are 
saved in XML. A SystemC execution model 
permits to validate RTL level implementations 
against behavioral models of the design. 
Conversion utilities translate models from 1st 
generation products, such as Ptolemy, BONeS and 
COSSAP, and from UML design tools into XML 
model descriptions of MLDesigner. Interfaces 
permit co-simulation with the “children” Matlab, 
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SatLab and Octave of the matrix language tool Ctrl-
C and with NS2.  

Code-generators generate code for HW and 
embedded SW [8]. Socket interfaces provide the 
ability to dynamically interface to other design 
tools, to internet resident applications and to 
hardware. 

MLDesigner is extensible; users can add 
design domains, and add application libraries to 
augment the existing libraries. Development of new 
primitives (basic building blocks) in C, C++ is 
guided with automated templates. Primitive blocks 
can be compiled to conceal the implementation 
detail of the IP. Some of the current applications, 
including embedded system design, processor and 
computer architecture performance analysis, SOC 
co-design, wireless chip, handset and system 
architectural performance, and production, 
workflow and design process design and analysis. 

SW design to validated specifications 
Software development plays an increasing role 

in design of avionics systems. The development of 
UML significantly increased quality of the designed 
software from given specifications. The major 
challenges is the 60% probability of critical 
problems due to incorrect specifications, and the 
developed software is not validated within the 
networked environment of the overall system. To 
overcome this problem, software development may 
be integrated in a mission level design flow, Figure 
11, where specifications for the integrated HW/SW-
system are validated before SW development and 
the developed SW is verified together with the HW 
model before implementation. 

 An executable and validated model of the 
architectural/performance level specifications is 
developed from mission level use cases, 
environmental models and other specifications. This 
model already includes a consistent data transport 
model, that typically takes 80% of the development 
time when performed at the functional level. 
Moving the data transport to the front end of the 
design significantly reduces the development time. 
We compared this design flow with an UML design 
flow for the development of an embedded software 
system for the ESA packet utilization standard 
(PUS). The UML design flow took 6 month. In the 

mission-level design flow the data definition and 
transport problem was solved within one day and 
the total development took 10 days. 
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Figure 11: Integration of UML software 

development into a mission level design flow 

In the MLDesigner (right hand side) design 
flow [8], a FSM model of the embedded SW is 
developed in MLDesigner. It uses the verifier of the 
MLDesigner FSM for verification and validates the 
FSM model by simulation in a virtual test 
environment of the target system. The ANSI C-code 
generator generates the code for the verified and 
validated software model for the target system. The 
execution time of the generated code is determined 
by the software performance estimator and 
compared with the assumptions in the 
architecture/performance model.  

In the MLDesigner/UML (left hand side) 
design flow [10], a FSM model of the SW is 
developed in the UML tool Real Time Rational 
Rose®. The sequential RTRR FSM model of the 
SW, is translated into an MLDesigner parallel 
Statechart FSM model, required for combination 
with HW models and saved in XML, Figure 12. 
The validation is again done in two stages. The 
validation with the networked environment of the 
overall system is done at the architectural/ 
performance level. The validation and verification 
with the target HW is done at the functional level or 
hardware-in-loop testing. 



 

Figure 12: Mapping from RTRR model to 
MLDesigner model 

Validation and verification 
Significant progress has been made during the 

last decade in model checking based on FSM type 
model descriptions. The basic model can be 
transformed into edge labeled Mealy machines,  
state labeled Kripke machines or state and edge 
labeled Moore machines. Exhaustive model 
checking can find most construction errors in the 
designs. However, the complexity cannot exceed 
certain limits. The main bottlenecks are verification 
of the networked overall system; particularly 
performance and load limited characteristics. 

The analysis of architectural and performance 
limitations of the system and complex interactions 
of subsystems can only be determined with 
architectural/performance models that include 
models of hardware, software and the operating 
system, driven by the test vectors of the missions of 
the system [9], Figure 13.  

Detailed timing analysis of hardware and the 
use of resources like CPU, bus, memory, battery 
can be determined for mission level requirements 

and mission level use cases. As an example, the 
results from [13], Figure 14, show resource usage 
by control processing, processor, and channels. 

Figure 13: Integrated architectural and 
functional system analysis architecture 

Figure 14: Performance level analysis results 

Exhaustive hardware-in-the-loop test of 
complex networked systems are no longer possible. 
However, an integrated mission level design flow, 
that passes the mission level requirements directly 
to the test vectors of the hardware-in-the-loop test, 
can concentrate test on where the system is being 
used and increase the test coverage. 

References [11,12] show that the reliability 
and failure effects analysis and safety analysis of an 
avionics system can be performed at the 
architectural/performance level. The model of the 
avionics system as well as the model of the 
reliability analysis model are modeled with the 
same design tool, making a close integration in an 
integrated mission level design flow possible. 
Signal flow type models as well as event driven 
failure models have been analyzed. The latter 
requiring the development of mapping of 
development models into event driven failure mode 
models, in order to integrate this approach without 
translation errors due to manual translation. 
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Optimizing the design process 
Research has started to model and simulate 

quality processes and design processes in the design 
of complex hardware and software. It is expected 
that this research will increase the quality in 
development of embedded system by a factor 100. 
First results look very promising. However, this 
research is concentrated currently at the 
development process of electronic control units. It 
is too early to draw general conclusions from this 
research. 

Conclusions 
This paper shows some recent developments in 

system development methodologies and design 
software to solve the complexity problem in 
avionics design. It is shown how modeling and 
simulation at the architectural/performance level 
permits to develop executable specifications, 
significantly reducing the probability of critical 
design errors and reducing the number of design 
iterations and hence reducing cost of development. 
An integrated design process is described that 
integrates the design from mission level 
requirements to hardware/software implementation 
and verification.  

Critical issues are standardization of models at 
the architectural performance level, validation at the 
architectural/performance level. To be solved is the 
problem that electronic hardware becomes obsolete 
much faster than software and will not be available 
for the lifetime of an aerospace system. How can 
hardware be replaced without changing the 
embedded software.  
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