
MISSION LEVEL DESIGN OF AVIONICS

Horst Salzwedel, MLDesign Technologies, Inc., Palo Alto, California

Abstract
Aerospace systems are characterized by

architectural complexity, dynamic interaction
between subsystems, and complex functionality,
understood only by teams from different
disciplines. 20 years ago the major challenge was
the multidisciplinary design of avionics. Over the
past 20 years, design methods and tools have been
developed to cope with these challenges. Today the
complexity of networked electronics in aircraft and
the interaction of hardware and software impose
similar complexity and design challenges.
According to Moore’s Law, closely followed by
industry, the complexity of electronics increases by
a factor 100 every 10 years, requiring to increase
abstraction in the design methodology, in order to
cope with this increase of complexity. This paper
shows the move towards performance and mission
level design and its advantages over functional level
design approaches.

The challenge of complexity
Aerospace systems are characterized by

architectural complexity, dynamic interaction
between subsystems, and complex interdisciplinary
functionality. The design challenges presented by
the avionics of these system with more than 1000
electronic control units (ECUs), include not only
the architectural and functional complexity of the
avionics systems themselves, but also the
complexity of the organizational structure of the
design teams from mission specification, design,
validation and verification, implementation, test,
training, and operation.

The introduction of stability augmentation
systems in the 1960th and 1970th coupled different
areas of engineering developments and caused
interdisciplinary problems in the designs. Every
aircraft prototype tested exhibited aero-servo-
elasticity problems. The analysis of these problems
showed that the main cause for these problems was

flawed specifications resulting from insufficient
communication between design engineers of
different areas, the believe that verification of
implementation is sufficient to catch mistakes (e.g.,
Saab 39), and use of incompatible modeling
techniques and tools.

Multidisciplinary research led to modeling and
design methodologies that considered engineering
expertise and the limit of it for the design flow, e.g.,
for the development of integrated flight propulsion
control systems. Multidisciplinary research
sponsored by AFWAL [2] let to the development of
generic software tools like Ctrl-C®, MatriX® and
their derivatives Matlab® and Octave™, that
permitted to combine functional level models from
different disciplines to reduce these problems.

 An example of successful multidisciplinary
modeling can be found in the design of a transfer
alignment filter. This filter is responsible for the
transfer of navigational information from an aircraft
navigation system to that of a missile under a wing.
Early developments for this filter considered a rigid
body connection between the aircraft and the
missile, and treated all other effects as white noise,
causing large alignment errors and large alignment
times. Large research efforts and tests could not
solve the problem. The availability of Ctrl-C
permitted to easily combine models from structural
dynamics, aerodynamics and flight control into a
unified model. This permitted to identify structural
flexing as the major problem for filter accuracy and
alignment time. The inclusion of these effects
improved the accuracy by more than a factor 100
and reduced the alignment time by more than a
factor 100 [2].

With the proliferation of electronics in nearly
all type of engineering systems, and the rapid
increase of the complexity of electronics and
software, the major challenges of system
development today are validated specifications, and
the gap between system design and networked
hardware/software implementation.

In the 1970s chip masks were designed with
CAD systems. In the 1980s chip complexity had
increased by a factor of 100. Engineers could no
longer handle this complexity. Languages like
Verilog and VHDL were introduced to design chips
at the logical level and translate designs into masks.
At the beginning of the 1990s, the complexity had
again increased by a factor of 100. Software tools
like SPW® and COSSAP® were introduced to raise
the abstraction of electronics design from the
logical level to the functional level. This permitted
e.g. the design of modems in 3 month. The problem
remained to translate behavioral models into RTL
level models and validation of the resulting RTL
level models against design specifications at the
behavioral level.

Today (2000s) the complexity of electronics
has increased by a factor of 10000 since integrated
functional level design tools have been introduced
for system design, and by a factor of 100 since
design of complex electronic moved from logical
level to functional level. Additionally, chips have
become systems and complex systems like aircraft,
spacecraft, automobiles and communication
systems are dominated by networked electronics
with embedded software. This compounds the
problem of the gap between design and
implementation. This increase in complexity has
caused major problems throughout the industry,
including,

- Flight control systems failures such as
those of Saab 39, Osprey, …

- The failure of the first Ariane 5 rocket
because of a value overflow. The
implementation was not tested against
the mission

- The development of the Teledesic
satellite system was discontinued after it
was found that major design
specifications had to be revised late in
the design

- In 1999 2 spacecraft to Mars failed
because of a mixup between units used
by different design teams

- The Boeing 702 series of spacecraft
exhibit major problems.

- Electronic control units in automobiles
exhibit failure rates of up to 3000ppm
(required <10ppm)

- Luxury class automobiles have to be
recalled because of unwanted
interactions between large number of
networked electronic subsystems

The systems above exhibit the following
problems in their design processes:

From general requirements for the overall
systems, written specifications and an overall
architecture of networked systems is derived,
Figure 1.

DEVICE 1 DEVICE 2

DEVICE 3

Figure 1: Architecture of networked system

The subsystems and networks are designed by
established processes, Figure 2.

DEVICE 1 DEVICE 2

DEVICE 3

4

5

6

7

Figure 2: Networked System
Each of the design engineers/design teams

makes certain assumptions about how their design
will interact with near or far subsystems of other
design teams. These assumptions will not be the
same. Some will not be documented. Additionally,
many subsystems may be reactive to the
environment and hence events cannot be predicted.
Hardware descriptions may be incompatible for
those of different subsystems. Insufficient
communication between design teams will prevent
that all required information is passed. Simulations

of the overall functional or implementation models
are not possible and the overall system cannot be
validated and verified on a computer. Coverage
analysis does not cover performance values and
constraints. Coverage analysis is not possible by
hardware-in-the-loop simulation or hardware tests.

When the independently developed subsystems
are put together for the overall system, it first does
not work. Problems are fixed on a local level.
Validation against overall system requirements
cannot be made since they are not executable and
may be inconsistent. Far effects are often
discovered late in the design or during operation by
customers.

A recent ESPITI study, Figure 3, shows which
stage of a design flow causes critical problems in
system design. The probability is nearly 60% that
the specifications cause critical problems. The
probability for critical problems caused by
modeling and design is about 25% and less than
20% by implementation. These critical problems
could be in hardware or software, but often in the
coupling between them. A major contributor to this
problem is that the design are done at the functional
level. However, complex systems can no longer be
simulated as a whole at functional level.
Specifications can therefore not be validated at this
level of design abstraction.

Figure 3: Critical problems in the design of
complex systems

In order to achieve the required up to a factor
100 and more quality improvements in system
development, all stages of the development process
have to be significantly improved. The main effort
has to concentrate on improving the quality of
specifications and design, where most of the
problems are. The following sections describe

recent technology developments to achieve this
quality improvements and significantly reduce
development times.

Improving quality of specifications
Three developments have been most promising

to solve the problem of inconsistent and wrong
specifications and on meeting specifications in
design. These are,

• Making specifications executable

• Finding a common base for the description
of diverse requirements from different
engineering disciplines that contribute to
aerospace system design

• Making it possible to test functional level
designs against executable specifications of
the overall system

Making Specifications Executable
For the development of complex planetary and

interplanetary space systems, detailed mission
analysis precedes the design phase and
implementation phase, in order to get validated,
executable specifications for the overall system.
During the design phase, all components of the
design and implementation are validated against
these specifications. Where possible, hardware in
the loop test are performed to test the
implementation against the design and the mission
level specifications. This design approach led to
highly reliable systems that roam the solar system
up to the outermost planets.

Today components and subcomponents like
telecommunication systems, operational
infrastructure, embedded systems, and processors
have complexities that far exceed those of early
spacecraft to the outer planets. Since Shannon’s law
on algorithmic complexity asks for more than
Moore’s law on processor performance can deliver,
it is no longer possible to simulate the HW/SW
implementation of components and subcomponents
against the mission requirements. Additionally, a
design engineer can no longer comprehend the
complexities of a design at a functional level.
Designs have to be performed at higher levels of
abstraction.

V-Model ESPITI-STUDY

0 %

Spec/
Arch. Dev.

Modeling

Implementation

60 %20 % 40 %

Critical problem

In Ref. [3] is a hierarchical Mission Level
Design (MLD) approach is developed, that
generalizes the design approach for deep space
missions and makes design decision where
quantitative information is first available:

1. A validated and executable mission is
the behavior of the system that uses a
component to be designed

2. Validated specifications of the
functional behavior are generated by
validating the high level architecture
and performance of the component
against the mission level requirements

3. The functional behavior of HW and
SW is verified and validated separately
and in combination against the
specifications stemming from the
architectural/performance model

The top-level architecture and performance
requirements are modeled using discrete event (DE)
models and finite state machines (FSM), Figure 4.

MISSION LEVEL

ARCHITECTURE/
PERFORMANCE LEVEL

DE, FSM, CTHW SW

Figure 4: Design stage 1:
Definition of mission and top-

level architecture

 Initial HW models abstract resources such as
memory, busses, CPU cycles, etc into quantity and
server resources. Software is modeled by their
execution time on a target HW (this is later updated
with estimated values from the SW performance
estimator.) The mission model may be diverse and
is typically modeled by DE, FSM and continuous
time (CT) models. Challenges that have to be
addressed at the architectural/performance level
include [4,5],

• Dealing with complex architectures,
with complex functionality in each

subsystem und a high degree of
concurrent processing,

• Dealing with dynamic events with
complex interactions between
subsystems,

• Dealing with data, tasks & architecture
dependent interactions, and

• Dealing with use cases and mission
scenarios

Architectural/performance models have the
required quantitative information to make decision
on what components have to be implemented in
HW and which in SW.

Design iterations at this level of abstraction
reduces the risk of design errors by testing the
design early in the design process, where errors are
easy to fix. Experts suggest that design at the
performance/architectural level can determine as
much as 80-90% of a system’s total cost,
performance and time to market.

Some system developments for which this
level of abstraction have been used are,

• Development of specifications for an Air
Traffic Management (ATM) system (Case
1 of Ref. [4]). Figure 5 shows the required
PDF for an ATM for an Inmarsat type
satellite

Figure 5: Required satellite PDF for ATM

• Development of a performance level model
of HW and SW of a terrain following
system, Figure 6.

Figure 6: Performance level model of HW and SW
of a terrain following system

• Development of a virtual prototype for an
optical avionics network [6], Figure 7.

Figure 7: Optical WDM avionics network

• Development of specifications for a global
satellite based communication system

• Development of an automated data
communication system between aircraft
[DARPA project]

• Development of a new design flow for
automotive electronics

• Architectural development time for a
general purpose processor has been reduced
by a factor 7

• The number of design iterations for a
wireless communication processor was
reduced by a factor 3

• Development time for an embedded SW for
satellite communications (ESA PUS
standard) was reduced by factor 10

XML, a common description language for
diverse specifications and models

Documents currently describe all phases of
product development. These are textural
requirements and specifications, models,
simulations, tests, etc. at different development
stages. Standardized descriptions like UML can be

used for specifying models, however, they are not
sufficient to specify the diverse technologies being
used in the design of aerospace systems and their
avionics. UML is not sufficient to describe diverse
models of executable specifications.

Figure 8: XML descriptions and mappings for a
design process

XML is a framework for definition of domain
specific description languages and for standardizes
description of documents. For the definition and
validation of a XML dialect the XML language
XML Schema can be used. Because of the formal
structure of XML documents, they can be translated
in other XML dialects, or other documents, like
targeted software. XML is therefore an ideal base
for describing all phases of system development.
XML documents, models, netlists, schemata can be
used by requirement tracking systems, to assure that
design rules are followed. XML can be the base
between different hardware and software
descriptions and as a basis for translations between
them. It is therefore increasingly used for
development of complex embedded systems in
aircraft and spacecraft systems, or other electronic
systems like software radio.

Design to specification
Model based design techniques have been

developed in the 1980th to integrate the functional
design process of systems. With inclusion of high-

T
ra

nf
or

m
at

io
n

V
al

id
at

io
n

V
al

id
at

io
n

T
ra

nf
or

m
at

io
n

Transformation

Transformation

TransformationRequirements

Code

Perfor-
mance Function

Archi-
tecture ...

XML non-XML

Requirementspec.

Simulations

Designdocument

Architecturedescr.

Documentation

TestcasesSystem Design

Testcases

level architectural/performance abstraction for
specification development, an integrated design
process has to be developed, including appropriate
design software for the design of HW and SW, in
order to avoid design gaps, that reduce the gains
made with developments at the architectural/
performance level.

Integrating the design process
Figure 9 depicts an integrated design process

from mission level requirements to implementation.

Figure 9: Integrated mission level design
process

Having developed models of executable
specifications that meet the mission requirements
we can determine for which subsystems there are
existing of the shelf products, what new HW and
new SW has to be developed, including the
corresponding specifications. The functional level
development can now commence. Functional level
models in electronic design for signal processing
and control applications typically require
Synchronous Data Flow (SDF) and Dynamic Data
Flow (DDF) execution models for descriptions of
signal processing or control algorithms.
Descriptions by FSMs permit to apply formal
methods for verification, and significantly reduces
the risk of construction errors in HW and SW (more
about this in the section on validation and
verification). However, it will generally not be
possible to validate the SW with the developed HW
at the functional level for the overall system.

The SW performance estimator [6] determines
the number of cycles, an embedded SW takes to
execute on a processor as a function of compiler
optimization. This updated value is used in the
architecture/performance model to check the design
against the specifications of the overall system.

Design software for the mission level design
process
The design and analysis software system
MLDesigner [7], has been developed to implement
the Mission Level Design flow, Figure 10.

Figure 10: Components of MLDesigner software
system

 To meet the diverse requirements of an integrated
design flow from mission level requirements to
implementation, a single kernel, multi-domain
software system has been developed. All models are
saved in XML. A SystemC execution model
permits to validate RTL level implementations
against behavioral models of the design.
Conversion utilities translate models from 1st
generation products, such as Ptolemy, BONeS and
COSSAP, and from UML design tools into XML
model descriptions of MLDesigner. Interfaces
permit co-simulation with the “children” Matlab,

MISSION LEVEL

ARCHITECTURE/
PERFORMANCE LEVEL

DE, FSM, CT

FUNCTIONAL LEVEL
VALIDATION

IMPLEMENTATION LEVEL
(Verilog, VHDL, SystemC)

SW Performance
Estimation

Validation of
Implementation

HW

HW SW

SW

HW DESIGN SW DESIGN

Uni f ied User In te r face
X M L M o d e l D e s c r i p t i o n

S i m u l a t i o n s
C G : C , S y s t e m C , V H D L

M L D e s i g n e r
Kernel

In
-/

O
ut

p
ut

s

So c ke t
S oc ke t

D ir e c t

D e s i g n D o m a i n s

text

Pto lemy 1

B O N e S

C O S S A P

S y s t e m C
U M L R T

text

Other
S imu la t ion

Tools

A p p l i c a t i o n s
H a r d w a r e

Socke t In te r faces

t e x t

Librar ies

M L D e s i g n e r
B a s e

Library
A d d - o n

L ib ra r ies
U s e r -

d e v e l o p e d
Librar ies

C o n v e r s i o n
Uti l i t ies

t e x t

Mat lab

S a t L a b

Mathemat ica

Program Inter faces

D ir ect

O c t a v e

Disc re te Even t

F in i teSta teMach ine

D
i r

ec
t

Synchronous Da ta F low

DynamicData F low

Sys tem C

Con t i nuous T ime
Disc re te Event

N e w D o m a i n s

NS2

SatLab and Octave of the matrix language tool Ctrl-
C and with NS2.

Code-generators generate code for HW and
embedded SW [8]. Socket interfaces provide the
ability to dynamically interface to other design
tools, to internet resident applications and to
hardware.

MLDesigner is extensible; users can add
design domains, and add application libraries to
augment the existing libraries. Development of new
primitives (basic building blocks) in C, C++ is
guided with automated templates. Primitive blocks
can be compiled to conceal the implementation
detail of the IP. Some of the current applications,
including embedded system design, processor and
computer architecture performance analysis, SOC
co-design, wireless chip, handset and system
architectural performance, and production,
workflow and design process design and analysis.

SW design to validated specifications
Software development plays an increasing role

in design of avionics systems. The development of
UML significantly increased quality of the designed
software from given specifications. The major
challenges is the 60% probability of critical
problems due to incorrect specifications, and the
developed software is not validated within the
networked environment of the overall system. To
overcome this problem, software development may
be integrated in a mission level design flow, Figure
11, where specifications for the integrated HW/SW-
system are validated before SW development and
the developed SW is verified together with the HW
model before implementation.

 An executable and validated model of the
architectural/performance level specifications is
developed from mission level use cases,
environmental models and other specifications. This
model already includes a consistent data transport
model, that typically takes 80% of the development
time when performed at the functional level.
Moving the data transport to the front end of the
design significantly reduces the development time.
We compared this design flow with an UML design
flow for the development of an embedded software
system for the ESA packet utilization standard
(PUS). The UML design flow took 6 month. In the

mission-level design flow the data definition and
transport problem was solved within one day and
the total development took 10 days.

MISSION LEVEL

ARCHITECTURE/
PERFORMANCE LEVEL

DE, FSM, CT

SW
Performance
Estimation

HW SW

SW Development
with UML

Import into MLD -
> Verification

SW Development
with MLD

Automatic Code
Generation

Validation of SW with HW/SW model

Figure 11: Integration of UML software

development into a mission level design flow

In the MLDesigner (right hand side) design
flow [8], a FSM model of the embedded SW is
developed in MLDesigner. It uses the verifier of the
MLDesigner FSM for verification and validates the
FSM model by simulation in a virtual test
environment of the target system. The ANSI C-code
generator generates the code for the verified and
validated software model for the target system. The
execution time of the generated code is determined
by the software performance estimator and
compared with the assumptions in the
architecture/performance model.

In the MLDesigner/UML (left hand side)
design flow [10], a FSM model of the SW is
developed in the UML tool Real Time Rational
Rose®. The sequential RTRR FSM model of the
SW, is translated into an MLDesigner parallel
Statechart FSM model, required for combination
with HW models and saved in XML, Figure 12.
The validation is again done in two stages. The
validation with the networked environment of the
overall system is done at the architectural/
performance level. The validation and verification
with the target HW is done at the functional level or
hardware-in-loop testing.

Figure 12: Mapping from RTRR model to
MLDesigner model

Validation and verification
Significant progress has been made during the

last decade in model checking based on FSM type
model descriptions. The basic model can be
transformed into edge labeled Mealy machines,
state labeled Kripke machines or state and edge
labeled Moore machines. Exhaustive model
checking can find most construction errors in the
designs. However, the complexity cannot exceed
certain limits. The main bottlenecks are verification
of the networked overall system; particularly
performance and load limited characteristics.

The analysis of architectural and performance
limitations of the system and complex interactions
of subsystems can only be determined with
architectural/performance models that include
models of hardware, software and the operating
system, driven by the test vectors of the missions of
the system [9], Figure 13.

Detailed timing analysis of hardware and the
use of resources like CPU, bus, memory, battery
can be determined for mission level requirements

and mission level use cases. As an example, the
results from [13], Figure 14, show resource usage
by control processing, processor, and channels.

Figure 13: Integrated architectural and
functional system analysis architecture

Figure 14: Performance level analysis results

Exhaustive hardware-in-the-loop test of
complex networked systems are no longer possible.
However, an integrated mission level design flow,
that passes the mission level requirements directly
to the test vectors of the hardware-in-the-loop test,
can concentrate test on where the system is being
used and increase the test coverage.

References [11,12] show that the reliability
and failure effects analysis and safety analysis of an
avionics system can be performed at the
architectural/performance level. The model of the
avionics system as well as the model of the
reliability analysis model are modeled with the
same design tool, making a close integration in an
integrated mission level design flow possible.
Signal flow type models as well as event driven
failure models have been analyzed. The latter
requiring the development of mapping of
development models into event driven failure mode
models, in order to integrate this approach without
translation errors due to manual translation.

Specifications with use cases

Architecture
model

Environmental
model

Functional model
Simulation

model
Evaluation

model

Overall System

S
ys

te
m

 le
ve

l
M

is
si

on
 le

ve
l

Optimizing the design process
Research has started to model and simulate

quality processes and design processes in the design
of complex hardware and software. It is expected
that this research will increase the quality in
development of embedded system by a factor 100.
First results look very promising. However, this
research is concentrated currently at the
development process of electronic control units. It
is too early to draw general conclusions from this
research.

Conclusions
This paper shows some recent developments in

system development methodologies and design
software to solve the complexity problem in
avionics design. It is shown how modeling and
simulation at the architectural/performance level
permits to develop executable specifications,
significantly reducing the probability of critical
design errors and reducing the number of design
iterations and hence reducing cost of development.
An integrated design process is described that
integrates the design from mission level
requirements to hardware/software implementation
and verification.

Critical issues are standardization of models at
the architectural performance level, validation at the
architectural/performance level. To be solved is the
problem that electronic hardware becomes obsolete
much faster than software and will not be available
for the lifetime of an aerospace system. How can
hardware be replaced without changing the
embedded software.

REFERENCES
[1] Salzwedel, Horst, James H. Vincent, 1984,

Modeling Identification and Control of Flexible
Aircraft, AFWAL-TR-84-3032.

[2] Salzwedel, Horst, R. Calhoun, and Lt. P.
Murdock, May 1985,Unbiased Transfer Alignment
Filter Design for Air Launched Weapons, National
Aerospace and Electronics Conference, Dayton,
Ohio.

[3] Schorcht, Gunar, July 2000, Design of
Integrated Mobile Communication Systems at

Mission Level, Dissertation at Ilmenau Technical
University.

[4] Schorcht, Gunar, Ian Troxel, Keyvan
Farhangian, Peter Unger, Daniel Zinn, Colin Mick,
Alan George, and Horst Salzwedel, 2003, System-
Level Modeling with MLDesigner, Proc. of 11th
IEEE/ACM International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS),
Orlando, FL, October 12-15, 2003.

[5] Ian Troxel, W. Chris Catoe, Ramesh
Balasubramanian, Alan D George, HCS Research
Lab., Jeremy D. Wills, Sung J. Kim, Gregory A.
Arundale, Rockwell Collins, John L. Meier,
Boeing, Colin K. Mick, MLDesign, November
2004, LION: Virtual Prototyping for Advanced
Optical Military Networks, MILCOM 2004,
Monterey, CA.

[6] Lohfelder, Thomas, Holger Rath, Horst
Salzwedel, 27-30 September 2004, Software
Performance Estimation for a Mission Level Design
Flow, 49th International Scientific Colloquium,
Ilmenau.

[7] MLDesigner® Manual v2.5, 2004,
http://www.mldesigner.com

[8] Rath, Holger ,Horst Salzwedel, 27-30
September 2004, ANSI C Code Generation for
MLDesigner Finite State Machines, 49th
International Scientific Colloquium, Ilmenau.

[9] Paluch, Nils, Achim Schönhoff, EADS, 27-
30 September 2004, Anwendung von C-Design für
verteilte Echtzeitsysteme, 49th International
Scientific Colloquium, Ilmenau.

 [10] Baumann, Tommy, Horst Salzwedel, 27-30
September 2004, Integrating UML Software
Models in an Integrated Mission Level Design Flow
for the Design of Hardware and Software, 49th
International Scientific Colloquium, Ilmenau.

[11] Nicol, Davis M., Daniel L. Palumbo (NASA),
Michael L. Ulrey (Boeing), 1995, A Graphical
Model-Based Reliability Estimation Tool and
Failure Mode & Effects Simulator, IEEE 1995
Proceedings Annual Reliability and Maintainability
Symposium.

[12] Ulrea, Michael L. (Boeing), Daniel L. Palumbo
(NASA), David M. Nicol (College of William and

Mary, Williamsburg), 1996, Case Study: Safety
Analysis of the NASA/Boeing Fly-By-Light
Airplane Using a New Reliability Tool, IEEE 1996
Proceedings Annual Reliability and Maintainability
Symposium.

 [13] Salzwedel, Horst, Matthias Zens, 24-30
September 2004, Development of Embedded
Automotive Electronics at Architectural/
Performance Level, 49th International Scientific
Colloquium, Ilmenau.

