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 ABSTRACT 
Complex systems are characterized by architectural complexity, dynamic interaction between 

subsystems, and complex functionality, understood only by teams from different disciplines. 20 years 
ago the major challenge was the multidisciplinary design of avionics. Over the past 20 years, design 
methods and tools have been developed to cope with these challenges. Today the complexity of 
networked electronics and the interaction of hardware and software impose similar complexity and 
design challenges. According to Moore’s Law, closely followed by industry, the complexity of 
electronics increases by a factor 100 every 10 years, requiring to increase abstraction in the design 
methodology, in order to cope with this increase of complexity. This paper shows the move towards 
performance and mission level design and its advantages over functional level design approaches. 

THE CHALLENGE OF COMPLEXITY 
Aerospace systems are characterized by architectural complexity, dynamic interaction between 

subsystems, and  complex interdisciplinary functionality. The challenges of designing these complex 
system with more than 1000 electronic control units (ECUs) include not only the architectural and 
functional complexity of the avionics systems themselves, but also the complexity of the 
organizational structure of the design teams from mission specification, design, implementation, test, 
training, and operation. 

The introduction of stability augmentation systems in the 1960th and 1970th coupled different areas 
of engineering developments and caused interdisciplinary problems in the designs. Every aircraft 
prototype tested exhibited aero-servo-elasticity problems. The analysis of these problems showed that 
the main cause for these problems was flawed specifications resulting from insufficient communication 
between design engineers of different areas, and use of incompatible modeling techniques and tools. 

Multidisciplinary research led to modeling and design methodologies that considered engineering 
expertise and the limit of it for the design flow, e.g., for the development of integrated flight 
propulsion control systems. Multidisciplinary research sponsored by AFWAL [2] let to the 
development of generic software tools like Ctrl-C®, MatriX® and their derivatives Matlab® and 
Octave™, that permitted to combine functional level models from different disciplines to reduce these 
problems. 



 An example of successful multidisciplinary modeling can be found in the design of a transfer 
alignment filter. This filter is responsible for the transfer of navigational information from an aircraft 
navigation system to that of a missile under a wing. Early developments for this filter considered a 
rigid body connection between the aircraft and the missile, and treated all other effects as white noise, 
causing large alignment errors and large alignment times. Large research efforts and tests could not 
solve the problem. The availability of Ctrl-C permitted to easily combine models from structural 
dynamics, aerodynamics and flight control into a unified model. This permitted to identify structural 
flexing as the major problem for filter accuracy and alignment time. The inclusion of these effects 
improved the accuracy by more than a factor 100 and reduced the alignment time by more than a factor 
100 [2]. 

With the proliferation of electronics in nearly all type of engineering systems, and the rapid 
increase of the complexity of electronics, the major challenge of system development has become  the 
gap between system design and networked electronics implementation. 

In the 1970s chip masks were designed with CAD systems. In the 1980s chip complexity had 
increased by a factor of 100. Engineers could no longer handle this complexity. Languages like 
Verilog and VHDL were introduced to design chips at the logical level and translate designs into 
masks. At the beginning of the 1990s, the complexity had again increased by a factor of 100. Software 
tools like SPW® and COSSAP® were introduced to raise the abstraction of electronics design from 
the logical level to the functional level. This permitted e.g. the design of modems in 3 month. The 
problem remained to translate behavioral models into RTL level models and validation of the resulting 
RTL level models against design specifications at the behavioral level. 

Today (2000s) the complexity of electronics has increased by a factor of 10000 since integrated 
functional level design tools have been introduced for system design, and by a factor of 100 since 
design of complex electronic moved from logical level to functional level. Additionally, chips have 
become systems and complex systems like aircraft, spacecraft, automobiles and communication 
systems are dominated by networked electronics. This compounds the problem of the gap between 
design and implementation. This increase in complexity has caused major problems throughout the 
industry, including,  

  

- Flight control systems failures such as the Saab 39 and Osprey 

- The failure of the first Ariane 5 rocket because of a value overflow. The implementation was 
not tested against the mission 

- The development of the Teledesic satellite system was discontinued after it was found that 
major design specifications had to be revised late in the design 

- In 1999 2 spacecraft to Mars failed because of a mix-up between units used by different 
design teams 

- The Boeing 702 series of spacecraft exhibit major problems. The development team cannot 
predict when the problem will be fixed 

- Electronic control units in automobiles exhibit failure rates of up to 3000ppm (required 
<10ppm) 

- Luxury class automobiles have to be recalled because of unwanted interactions between 
large number of networked electronic subsystems 



- The German automated toll collection system has been delayed because very little worked 
when independently developed subcomponents were put together. The development 
team cannot even predict when the problems will be solved 

All these examples exhibit similar problems in the design flow. The subsystems are designed from 
written specifications. When they are put together, the system does not work. The problems are fixed 
on a local level. Despite very high validation and test cost critical problems remain. 

 A recent ESPITI study shows which stage of 
a design flow causes critical problems in system 
design. The probability is nearly 60% that the 
specifications cause critical problems. The 
probability for critical problems caused by 
modeling and design is about 25% and less than 
20% by implementation. These critical problems 
could be in hardware or software, but often in the 
coupling between them. A major contributor to 
this problem is that the design is done at the 
functional level. However, complex systems can 
no longer be simulated as a whole at functional 
level. Specifications can therefore not be validated 
at this level of design abstraction. 

 

MISSION LEVEL DESIGN 
For the development of complex planetary and interplanetary space systems, detailed mission 

analysis precedes the design phase and implementation phase, in order to get validated, executable 
specifications for the overall system. During the design phase, all components of the design are 
validated against these specifications. Hardware in the loop test are performed to test the 
implementation against the design and the mission level specifications. This design approach led to 
highly reliable systems that roam the solar system up to the outermost planets.  

Today components and subcomponents like telecommunication systems, operational 
infrastructure, embedded systems, and processors have complexities that far exceed those of early 
spacecraft to the outer planets. Even with our improved computational capabilities, it is no longer 
possible to simulate the HW/SW implementation of components and subcomponents against the 
mission requirements. This led to failures like the first Ariane 5 and the 1999 missions to Mars. 

 MISSION LEVEL DESIGN 
Mission Level Design (MLD) [4] is a hierarchical approach that generalizes the design approach 

for deep space missions: 

1. A validated and executable mission is the behavior of the system that uses a component to 
be designed 

2. Validated specifications of the functional behavior are generated by validating the high 
level architecture and performance of the component against the mission level 
requirements 



3. The functional behavior of HW and SW is verified and validated separately and in 
combination against the specifications stemming from the architectural/performance model 

Experience shows that 80-90% of the design decisions can be made at stage 2 of this approach. 

In a Mission Level Design flow, the top-level architecture and performance requireme nts are 
modeled using discrete event (DE) models and finite state machines (FSM). Initial HW models 
abstract resources such as memory, buses, CPU cycles, 
etc into quantity and server resources. Software is 
modeled by their execution time on a target HW (this is 
later updated with estimated values from the SW 
performance estimator.) The mission model may be 
diverse and is typically modeled by DE, FSM and 
continuous time (CT) models. Challenges that have to 
be addressed at the architectural/performance level 
include [5,6], 

• Dealing with complex architectures, with 
complex functionality in each subsystem 
und a high degree of concurrent 
processing, 

• Dealing with dynamic events with complex 
interactions between subsystems, 

• Dealing with data, tasks & architecture dependent interactions, and 

• Dealing with use cases and mission scenarios 

Design iterations at this level of abstraction reduces the risk of design errors by testing the design 
early in the design  process, where errors are easy to fix. Experts suggest that design at the 
performance/architectural level can determine as much as 80-90% of a system’s total cost, 
performance and time to market. 

Functional level models in electronic design for signal processing and control applications 
typically also require Synchronous Data Flow (SDF) and Dynamic Data Flow (DDF) execution models 
for descriptions of signal processing algorithms. Descriptions by FSMs permit to apply formal methods 
for verification, and significantly reduce the risk of construction errors. 

The SW performance estimator [7] determines the number of cycles, an embedded SW takes to 
execute on a processor as a function of compiler optimization. This updated value is used in the 
architecture/performance model to check the design against the specifications of the overall system.  

The design and analysis software system MLDesigner [8], has been developed to implement the 
Mission Level Design flow. Besides the execution models mentioned above, it also includes a 
SystemC execution model, in order to validate RTL level implementations against behavioral models 
of the design. Conversion utilities translate models from 1st generation products, such as Ptolemy, 
BONeS and COSSAP into XML model descriptions of MLDesigner. Interfaces permit co-simulation 
with the “children” Matlab, SatLab and Octave of the matrix language tool Ctrl-C and with 
Mathematica. Code-generators generate code for HW and embedded SW [9]. Socket interfaces provide 
the ability to dynamically interface to other design tools, to internet resident applications and to 
hardware. Applications include embedded system design, processor and computer architecture 
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performance analysis, SOC co-design, wireless chip, handset and system architectural performance, 
and production, workflow and design process design and analysis. 

 SOFTWARE DEVELOPMENT 
Software development plays an increasing role in the design of avionics systems. The 

development of UML significantly increased the design of software from given specifications. The 
major challenges are that the high probability of 
critical problems due to specifications, Figure 1, 
and the developed software is not validated 
against the use of it together with the hardware. 
To overcome this problem, software development 
can be integrated in a mission level design flow 
for software development, verification and 
alidation 

An executable and validated model of the 
architectural/performance level specifications is 
developed from mission level use cases, 
environmental models and other specifications. 
This model includes a consistent data transport 
model, that typically takes 80% of the 
development time  when performed at the 
functional level. Moving the data transport to the 
front end of the design significantly reduces the 
development time. We compared this design flow 
with an UML design flow for the development of an embedded software system for the ESA packet 
utilization standard (PUS). The UML design flow took 6 month; the mission-level design flow took 10 
days. 

In the MLDesigner (right hand side) design flow [9], a FSM model of the embedded SW is 
developed in MLDesigner. It uses the verifier of the MLDesigner FSM for verification and validates 
the FSM model by simulation in a virtual test environment of the target system. The ANSI C-code 
generator generates the code for the verified and validated software model for the target system. The 
execution time of the generated code is determined by the software performance estimator and 
compared with the assumptions in the architecture/performance model. 

In the MLDesigner/UML design 
flow [11], a FSM model of the SW is 
developed in the UML tool Real Time 
Rational Rose®. The RTRR FSM 
model, shown on the left, is translated 
into an MLDesigner FSM model, 
shown right. The model is verified 
with the MLDesigner verifier, in order 
to check for construction errors. The 
validation is done the same way as that 
in the MLDesigner only design flow. 
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 Applications 
In [10] a new Mission Level Design approach for the HW/SW co-design for the terrain following system of 

an aircraft. All components are modeled at the architectural/performance level. The MLDesigner module for the 
overall model includes architectural components and functional components. The architectural module includes 
elements like power generation, terrain flight control, TMLLFC, and full duplex Ethernet bus, AFDX. The 
functional module shows the components of the TMLLFC, and the FSM model shows the Guidance mode of the 
TMLLFC. Additionally an MLDesigner operating system kernel model has been developed to perform a 
performance analysis of the overall system, consisting of hardware, software and operating system. 
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