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INTRODUCTION

During research on solving multidisciplinary problemsin flight control design [1], functional level
design tools like Ctrl-C®, MatriX® and later Matlab® were developed. These generic tools
permitted to easily combine models from different engineering disciplines and e.g. permitted to
improve the accuracy of navigation alignment filters by more than a factor 100 and reduced the
dignment time by more than a factor 100 [2]. In the mid 1980™ these design tools were adopted for
functional level design processes in automotive industry that are being used today. In the meantime,
the complexity of eectronics increased by nearly a factor 10000. Today’s automobiles include
networked embedded systems with up to 100 electronic control units (ECUs) and cooperating
hardware and software components. Since functional level design does not permit to smulate the
overall system and theinteraction of hardware and software, it does not provide validated executible
specifications for the sub system designer. Neither the subsystems nor the overall system can be
sufficiently validated. Subsystemslike ECUs exhibit failure rates up to two orders of magnitude and
more above those desired. Despite exponentially increasing validation cost, large scale recalls of
automobiles accel erate because of problemswith electronics, causing billions of € of lossesfor the
automotive industry.

Duringthelast 10 years, the Mission Level Designflow [3]

and Misson Level Design software [4] have been e
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software from mission level to implementation. In this H;ERSRMN%ELECE;W N
design methodology, most design decisions are done at the S pertomanc
architectural/performancelevel early in the design process, s e
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factor 10 and system reliability hasbeenincreased. During adiplomathesisat Infineon[5], aMission



Level Design approach was investigated for the design of architectures for electronic valve

applications.
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Some of the models and strategies developed during this investigation are shown below.

MODELING STRATEGY

In order to achieve confidence in the design process, it is embedded in a validation environment,
consisting of exchangible componentsfor architectural models, environmental models and functional
B models of hardware and software. Use cases

Specifications with use cases I are driving smulation model and evaluation
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components of the model are mapped into
models of different execution domains of the software system MLDesigner[4]:

Architectural components like resource contention of CPU and bus, network topology,
protocols of traffic flow, arbitration, buffers, RTOS and software execution are modeled in
the decrete event domain (DE)

Sychronous and Dynamic Data Flow (SDF, DDF) are used to model functional behavior and
agorithms



The Finite State Machine (FSM) is used to model software, controllers and protocols

The Continuous Time Discrete Event Domain (CTDE) is used to model analog components

like the mechatronic valve
Because of the big difference between execution times for simulati ng architectural components and
functional components, the strategy used here wasto perform anaysis and design as much as possible
a the architectural/performance level and include functiona components only when necessary.
Decisionsthat can be made through performance eval uation are, optimization of the busarchitecture,
memory architecture, and transport protocols. Results we get from these simulations are usage of
resources, delays, and throughput, permitting to perform hardware/software partitioning and Szing of
resources like busses, CPUs and memories. A resource instruction model was developed to map

functions into architectures.

MODELING
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The functional model consists of discrete controllers and an analog section describing the physics.
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For the inner loop current control, a
Pl controller was developed. A
Tustin transformation was used to
convert the analog control law into
the z domain, in order to maintain
phase information. For the out loop

position controller, again a Pl

controller was developed. Critical is that the controller achieves a“soft landing” of the valve. The

anchor speed must be as close as possible to 0 mv/sec when it reachesthe upper coil. A hold currentis

activated in the upper coil well before the anchor reachesits upper limit. The speed of the anchor is

controlled by managing the valve energy. L osses dueto friction and electromagnetic disturbancesare

compensated for. Both controllers are synchronized and are executed at the same sampling rate. For

the functional model, the algorithms are timeless and are activated only at discrete times. Therefore
both the functional model, as well as the architectural model isimplemented in the DE domain.
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delays it needs for execution. The
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Modé (IRM). It links (maps) the
function of adataflow model tothe
resource that will execute it and
schedules it, in order that it will
execute at the right time. Execution
requests of a data flow mode are

send to a central server, which



sends an achnoledgement to the function when the resource has executed the function. The elgorithmic
execution of the function is executed in the function of the data flow graphitself. The IRM therefore
performes the function of areal time operating system (RTOS).
The execution times of the different functions may be determines from,
1. Known values of apreviously use of the algorithm on the target processor
2. Software performance estimation from the G-code. In Ref. 7 an instruction set smulator is
added to ML Designer, which executes the compiled code at the desired optimization level
and returnes the execution time to the event loop of the DE scheduler.
3. Execution of the VHDL code of the hardware
4. Measuring the execution time with a scope on the real hardware

In this development, methods 3 and 4 have been used.

SIMULATION AND ANALYSIS

For the functional evaluation of the electronic valve control system, the effects of sampling time and
time delays on the system were investigated. The main measure of acceptance was the maximum
landing speed of the valve. The accuracy for wammm taraw sees i

current, position and PWM and ist impact on _

maximum landing speed were determined. For

reliability analysis, the error rates of data

transport on the busses were investigated. The . — .,
graph showsthat at position hasto be measured to | il
at least 14 bits.

For the architectural evaluation, the timing characteristics of the electronics are analyzed and
validated. Thisincluded the analysis of al the control loops, determination of theleve of usage of the
resources, and analysis of the distribution of tasks of individual control loops over the resources of

centralized and decentralized architectures. For decentralized partitioning, 1 Infineon XC164
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simulation times. The simulation results of thisarchitecture show the usage of the resources: control

loop processing, VCU, MLI10 channd and MLI1 channel [5].
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CONCLUSION

We have shown that complex automotive el ectronics can be devel oped, analyzed and optimized by an
integrated simulation containing mission, architecture, and function of hardware and software. This
methodol ogy automatically validatesthe design against mission level requirements and significantly
reduces requirements for redesign after test and hence reduces development time. The Instruction
Resource Modd can separate function from architecture and model RTOSs.
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