
49. Internationales Wissenschaftliches Kolloquium 
Technische Universität Ilmenau 

27.-30. September 2004 

 
Horst Salzwedel / Matthias Zens 
 
 

DEVELOPMENT OF EMBEDDED AUTOMOTIVE ELECTRONICS 
AT ARCHITECTURAL/PERFORMANCE LEVEL 
 
 

INTRODUCTION 
 

During research on solving multidisciplinary problems in flight control design [1], functional level 

design tools like Ctrl-C®, MatriX® and later Matlab® were developed. These generic tools 

permitted to easily combine models from different engineering disciplines and e.g. permitted to 

improve the accuracy of navigation alignment filters by more than a factor 100 and reduced the 

alignment time by more than a factor 100 [2]. In the mid 1980th these design tools were adopted for 

functional level design processes in automotive industry that are being used today. In the meantime, 

the complexity of electronics increased by nearly a factor 10000. Today’s automobiles include 

networked embedded systems with up to 100 electronic control units (ECUs) and cooperating 

hardware and software components. Since functional level design does not permit to simulate the 

overall system and the interaction of hardware and software, it does not provide validated executible 

specifications for the sub system designer. Neither the subsystems nor the overall system can be 

sufficiently validated. Subsystems like ECUs exhibit failure rates up to two orders of magnitude and 

more above those desired. Despite exponentially increasing validation cost, large scale recalls of 

automobiles accelerate because of problems with electronics, causing billions of € of losses for the 

automotive industry. 

During the last 10 years, the Mission Level Design flow [3] 

and Mission Level Design software [4] have been 

developed, that integrate the design flow for hardware and 

software from mission level to implementation. In this 

design methodology, most design decisions are done at the 

architectural/performance level early in the design process, 

permitting to to include requirements of the overall system 

and the ineraction of hardware and software. Development 

times for hardware and software were reduced by up to a 

factor 10 and system reliability has been increased. During a diploma thesis at Infineon [5], a Mission 

MISSION LEVEL

ARCHITECTURE/
PERFORMANCE LEVEL

DE, FSM, CT

FUNCTIONAL LEVEL
SDF, DDF, CT, DE, FSM

IMPLEMENTATION LEVEL
(Verilog, VHDL, SystemC)

SW Performance
Estimation

Validation of
Implementation

HW

HW SW

SW



Level Design approach was investigated for the design of architectures for electronic valve 

applications. 

Camless engines using electromagnetic valve actuators have 

demonstrated fuel savings of up to 20% [6]. Despite the large amount of 

electronics required to implement electronic vales, they are not 

permitted to be more expensive than current generation valves, driven by 

camshafts. The reliability also must be as high as that of mechanical 

valves. Optimizing cost and reliability of electronics means optimizing 

it’s architecture for the use cases, missions, of electromagnetic valve 

applications. This includes, 

• Analysis of actuator models 

• Development of control algorithms 

• Analysis of sampling frequency, accuracy and fault tolerance 

• Determination of required performance of processor and busses 

• Choice of the hardware architecture and hardware components to minimize cost 

Some of the models and strategies developed during this investigation are shown below. 
 
 

MODELING STRATEGY 
 

In order to achieve confidence in the design process, it is embedded in a validation environment, 

consisting of exchangible components for architectural models, environmental models and functional 

models of hardware and software. Use cases 

are driving simulation model and evaluation 

model, in order to asure that all design 

decisions are validated against the use or 

mission of the overall system.  

Architecture, functional and environmental 

components of the model are mapped into 

models of different execution domains of the software system MLDesigner[4]: 

• Architectural components like resource contention of CPU and bus, network topology, 

protocols of traffic flow, arbitration, buffers, RTOS and software execution are modeled in 

the decrete event domain (DE) 

• Sychronous and Dynamic Data Flow (SDF, DDF) are used to model functional behavior and 

algorithms 

Upper coil

Lower coil

Ancher

Spring

Valve

Valve seal

Valve shaft

Specifications with use cases

Architecture
model

Environmental
model

Functional model
Simulation

model
Evaluation

model

Overall System

S
ys

te
m

 le
ve

l
M

is
si

o
n 

le
ve

l



• The Finite State Machine (FSM) is used to model software, controllers and protocols 

• The Continuous Time Discrete Event Domain (CTDE) is used to model analog components 

like the mechatronic valve 

Because of the big difference between execution times for simulating architectural components and 

functional components, the strategy used here was to perform analysis and design as much as possible 

at the architectural/performance level and include functional components only when necessary. 

Decisions that can be made through performance evaluation are, optimization of the bus architecture, 

memory architecture, and transport protocols. Results we get from these simulations are usage of 

resources, delays, and throughput, permitting to perform hardware/software partitioning and sizing of 

resources like busses, CPUs and memories. A resource instruction model was developed to map 

functions into architectures. 

 
 

MODELING 
 

The electromechanically actuated valve 

includes upper and lower magnetic coils, that 

move an anchor plate up and down. The 

anchor plate has a pre-set tension by the 

spring. A spring also surrounds the valve, 

attached to the anchor shaft. The model 

therefore consists of an electromagnetic model 

and a mass-spring model. The spring-mass 

dynamics as well as the 

electromagnetic actuation of the 

valve are modeled in the CTDE 

domain of MLDesigner. The 

primitive HandleInit receives 

the initialization message and 

distributes the discrete events to 

the continuous components of the 

model. The module Disturbance 

belongs to the simulation model and inserts disturbance forces on the valve. 

Electromagnetic model
upper coil

Mechanical model
(spring-mass model)Translation to

coil position
Electromagnetic model

lower coil

Disturbance force
generator

Force

Force

Force

Position

Velocity

CurrentVoltage

Voltage Current



The functional model consists of discrete controllers and an analog section describing the physics. 

For the inner loop current control, a 

PI controller was developed. A 

Tustin transformation was used to 

convert the analog control law into 

the z domain, in order to maintain 

phase information. For the out loop 

position controller, again a PI 

controller was developed. Critical is that the controller achieves a “soft landing” of the valve. The 

anchor speed must be as close as possible to 0  m/sec when it reaches the upper coil. A hold current is 

activated in the upper coil well before the anchor reaches its upper limit. The speed of the anchor is 

controlled by managing the valve energy. Losses due to friction and electromagnetic disturbances are 

compensated for. Both controllers are synchronized and are executed at the same sampling rate. For 

the functional model, the algorithms are timeless and are activated only at discrete times. Therefore 

both the functional model, as well as the architectural model is implemented in the DE domain.  

The functionality of a subcomponent of a 

system consists of the functional 

algorithm and the resources and time 

delays it needs for execution. The 

algorithm is mapped into a timeless 

function and into the architecture of the 

system and its resources. 

 

 
INSTRUCTION RESOURCE MODEL 

 

The critical element for the simulation of real time embedded systems is the Instruction Resource 

Model (IRM).  It links (maps) the 

function of a data flow model to the 

resource that will execute it and 

schedules it, in order that it will 

execute at the right time. Execution 

requests of a data flow model are 

send to a central server, which 

Position
Control

Current
Control

Actuator
Model

A/D D/A Interface

PWM
Generation

Sensor

Generated Voltages
PWM

Currents in Coils,
Position

Desired
Voltage

Desired
Curent

Measured
Current

Position

Discrete
Simulation

Analog
Simulation

Functionality

Functional Element

Architecture,
Resources of the System

Mapping &
Scheduling

Combine Function and
Architecture

Delay = Execution Time
Computed by the Resource

Model

Function
(timeless)

Module 1

Function element 1

Function 1 Zentralized
Delay a

Function element 2

Function 2
Zentralized

Delay b

Function element 3

Function 3
Zentralized

Delay c

Zentral server
executes and

schedules delay

Translation table
(Function <->

Execution time)

Scheduling
1. Function2 with delay b
2. Function 1 with delay a
3. Function 3 with delay c

Mapping to Resources
a=1µs
b=2µs
c=5µs



sends an achnoledgement to the function when the resource has executed the function. The elgorithmic 

execution of the function is executed in the function of the data flow graph itself. The IRM therefore 

performes the function of a real time operating system (RTOS). 

The execution times of the different functions may be determines from, 

1. Known values of a previously use of the algorithm on the target processor 

2. Software performance estimation from the C-code. In Ref. 7 an instruction set simulator is 

added to MLDesigner, which executes the compiled code at the desired optimization level 

and returnes the execution time to the event loop of the DE scheduler. 

3. Execution of the VHDL code of the hardware 

4. Measuring the execution time with a scope on the real hardware 

In this development, methods 3 and 4 have been used. 

 
 

SIMULATION AND ANALYSIS 
 

For the functional evaluation of the electronic valve control system, the effects of sampling time and 

time delays on the system were investigated. The main measure of acceptance was the maximum 

landing speed of the valve. The accuracy for 

current, position and PWM and ist impact on 

maximum landing speed were determined. For 

reliability analysis, the error rates of data 

transport on the busses were investigated. The 

graph shows that at position has to be measured to 

at least 14 bits. 

For the architectural evaluation, the timing characteristics of the electronics are analyzed and 

validated. This included the analysis of all the control loops, determination of the level of usage of the 

resources, and analysis of the distribution of tasks of individual control loops over the resources of 

centralized and decentralized architectures. For decentralized partitioning, 1 Infineon XC164 

processor was selected for voltage 

control, A/D, and D/A conversion of 1 

valve, and an Infineon TC1796 

processor for outer loop position control 

of 8 valves. The simulation was 

performed only with the architectural 

performance model since the functional evaluation was done before, significantly shortening the 

Valve Control Unit
(VCU)

TC1796

Current Control
Unit

(CCU0)
XC164

Current Control
Unit

(CCU1)
XC164

Current Control
Unit

(CCU3)
XC164

Current Control
Unit

(CCU2)
XC164

Current Control
Unit

(CCU5)
XC164

Micro Link Serial
Bus Interface

(MLI1)

Current Control
Unit

(CCU4)
XC164

Current Control
Unit

(CCU6)
XC164

Current Control
Unit

(CCU7)
XC164

Micro Link Serial
Bus Interface

(MLI0)



simulation times. The simulation results of this architecture show the usage of the resources: control 

loop processing, VCU, MLI0 channel and MLI1 channel [5]. 

 
 

CONCLUSION 
 

We have shown that complex automotive electronics can be developed, analyzed and optimized by an 

integrated simulation containing mission, architecture, and function of hardware and software. This 

methodology automatically validates the design against mission level requirements and significantly 

reduces requirements for redesign after test and hence reduces development time. The Instruction 

Resource Model can separate function from architecture and model RTOSs. 

 

 
References: 
[1] Horst Salzwedel, James H. Vincent Modeling, Identification and Control of Flexible Aircraft, AFWAL-TR-84-3032, 1984.  
[2] Horst Salzwedel, R. Calhoun, and Lt. P. Murdock, Unbiased Transfer Alignment Filter Design for Air Launched Weapons, National Aerospace 
      and Electronics Conference, Dayton, Ohio, May 1985.  
[3] Gunar Schorcht, Design of Integrated Mobile Communicatio n Systems at Mission Level, Dissertation at Ilmenau Technical University, July 
     2000.  
[4] MLDesigner® Manual v2.4, http://www.mldesigner.com 
 [5] Matthias Zens, Development of Methods for Analysis of Electronic Valve Control Architectures (German), Diploma Thesis, Ilmenau Technical 
       University, 2003, http://www-sst.theoinf.tu-ilmenau.de/studentsWorks/works/documents/2003/Diplom2003_MatthiasZens.pdf 
[6] K. Manon McNair, Matthias Zens, Horst Salzwedel, System-Level Partitioning Using Mission-Level Design Tool for Electronic Valve 
      Application, SAE World Congress, Detroit, March 2003. 
[7] Thomas Lohfelder, Modeling Operating Systems in MLDesigner, Diploma Thesis, Ilmenau Technical University, 2004. 

 
Authors: 
Horst Salzwedel, Ilmenau Technical University, Helmholtzring 1, D-98693 Ilmenau 
Phone: +49-3677-691316, Fax: +49-3677-691285, Email: horst.salzwedel@tu-ilmenau.de 
Matthias Zens, Lauterbach Datentechnik GmbH, Fichtenstr. 27, D-85649 Hofolding 
Phone : Tel ++49 8104 8943-166, Fax ++49 8104 8943-170, Email : matthias.zens@lauterbach.com 


