
49. Internationales Wissenschaftliches Kolloquium
Technische Universität Ilmenau

27.-30. September 2004

Holger Rath / Horst Salzwedel

ANSI C CODE SYNTHESIS FOR MLDESIGNER

FINITE STATE MACHINES

Abstract

The complexity of systems using electronics increases rapidly, causing severe problems in
the validation of this systems. Formal specification methods have to be included in the
design flow, in order to achieve validation by design, to increase reliability, and to reduce
development time and costs.

Finite state machines (FSMs) are an important specification methodology to describe re-
active system processes, starting from system and mission level design to the partitioning
layer of hardware/software co-design.

This paper describes automated ANSI C code synthesis for FSMs of the system design tool
MLDesigner and shows, how automated code generation can be used to enable a seamless
design flow. In section 1, the major semantic features of MLDesigner FSMs are introduced.
An appropriate ANSI C code generator is described in section 2, including necessary trade-
offs as well as evaluation of standard implementation techniques. In section 3, the design
of a controller for a LEGO Mindstorms robot examplifies the usage of the implemented
code generator. Finally, section 4 draws conclusion about achieved results.

1 Semantic Features

MLDesigner FSMs are mainly based on statecharts, developed by David Harel, supple-
mented by a special hierarchy concept and some tool-specific model elements.

For interaction with its environment, a state machine possesses input ports to receive ex-
ternal events and output ports to send new created events. On the basis of this interface,
MLDesigner FSMs can be embedded at a higher modeling level into either a discret event
or dataflow model.
Inside a state machine, states can be nested to an arbitrary depth. In opposition to state-
charts, thereby only XOR-decomposition of states is supported. In MLDesigner, the AND-
decomposition of concurrency models is decoupled from state machines and can be modeled
outside in either a discret event or dataflow concurrency model of computation.
For each state machine, an initial state has to be defined for the top level as well as for
each level of a state hierarchy. Graphically, an initial state is determined by small black
circle with an arrow pointing to a state. All states without any child states are called leaf
states. For each state, entry and exit actions can be defined, which are executed when the
associated state is entered and left respectively.
Additionally, for each leaf state a so-called slave process can be defined, in the form of a
MLDesigner module or another FSM. With respect to such a slave model, the superordi-
nated state machine is called the master FSM. Compared to the direct XOR-decomposition
of states, the master-slave-concept represents a second variant to split the function of a state
machine hierarchically.
A special kind of states are the so-called history connectors. Inside a hierarchical state, a
history connector remembers, depending on its definition, the last current sub-state at the



same hierarchy level (static history) or the last current leaf state at the lowest hierarchy
level (recursive history).
State changes are described on the basis of transitions. In the form of a directed edge, a
transition points from a source state to a target state. Child states inside a hierarchical state
inherit all outgoing transitions of their parent state, whereby inherited transitions have a
higher priority for firing. In addition to actions, which are executed during a state change,
an event expression and a guard condition can be defined for each transition. The event
expression specifies the events to trigger a state change. Additionally, the guard condition
can be used to define event-independent state change conditions.
If the source state of a transition possesses a slave process, it has to be determined, if this
transition is preemptive of the appropriate slave model or not. When a FSM received new
events, first all outgoing preemptive transitions of the current state are checked for firing.
If none of them is able, on the basis of its event expression and guard condition, to perform
a state change, an existing slave model of the current state is executed. Afterwards all
outgoing non-preemptive transitions of the current state are checked for firing [1, 2].

In addition to the standard elements of statecharts and the master-slave-concept, MLDe-
signer FSMs support all important tool-specific model elements. Parameters can be used to
control a FSM functionality, whereby a parameter represents a constant value, which can
be set individually in every FSM instance block. Memory elements can be used to define
internal variables or to share external information with other MLDesigner modules. In ad-
dition to input ports, event elements can be used to indicate that a FSM can accept internal
or external asynchronous events. All these elements, including the input and output ports,
can be accessed by the actions associated with states and transitions [2, 4].

2 ANSI C Code Generation

On the basis of an integrated code generator, ANSI C code synthesis has been developed for
single MLDesigner FSMs as well as for complete FSM modules, which consist at the lowest
module level just of interacting state machines. Main application field of this code generator
is the automatic creation of controller software for embedded and real-time systems. Since
micro-controllers of such systems are generally characterized by limited memory resources
and high performance conditions, some trade-offs had to be made between the semantic
features of MLDesigner FSMs and the functional range of the code generator.
In this context, the code generator accepts only one hierarchy approach. Because XOR-
decomposition of states, especially in connection with object-oriented concepts like gener-
alization and specialization, is more important for modern design of reactive systems, the
master-slave-concept is not supported. Another limitation has been made in connection
with data types of specific FSM elements, like input/output ports, parameters and memory
elements. To avoid critical memory fragmentation effects at run-time, the code generator
accepts only data types of a fixed memory size. The set of these data types comprises
integer and floating point numbers, enumerations and fixed sized character strings, integer
vectors and floating point vectors. Additionally, composite data structures of these data
types are supported. Before ANSI C code is generated for either a single state machine or
FSM module, the code generator verifies the semantical correctness of all involved FSMs
and checks, if the additional semantic limitations have been considered during modeling [2].

The most critical part of automated code synthesis for state machines is the representation of
events, states and transitions. Standard implementation techniques, using a so-called nested
switch statement or a state table, are not qualified for MLDesigner FSMs, because they are



State3

H*

State0

State1

State4

State2

State5
T0

T1T2T3

T4T5

(a) hierarchical

T0

T1

T2T3

T4T5

T0

T0

T3

S0

S1

S2

S3
H0

(b) flat

Figure 1: Example FSM

mostly applicable to classical flat state machines. Furthermore, in the application field of
embedded and real-time systems, these approaches cannot be used to implement FSMs with
a larger number of states. The performance of a nested switch statement decreases with an
increasing number of cases and the state table technique requires a large two dimensional
array, which is typically sparse and wasteful. [2, 3].

The code generator for MLDesigner FSMs uses a new developed technique, which is able
to implement hierarchical states, inclusive of history connectors. This technique has some
parallels to the state table approach, but without any waste of memory resources.
First of all, hierarchical state machines have to be flatten, whereby only leaf states are
considered as transition source states. In doing so, inherited transitions are multiplied
and directly connected to leaf source states. History connectors are flatten by a list of all
possible target states. Figure 1 shows an example hierarchical FSM and its appropriate flat
representation. The internal identifiers of the flat state machine are listed in table 1.

Name State3 State4 State2 State5 State1 State0 History in State0
Identifier S0 S1 S2 S3 S4 S5 H0

Table 1: Example Internal Identifiers

The core of this implementation technique is the so-called state transition list (STL), de-
termined by an one dimensional array of size n, where n is the number of possible state
changes inside the flat state machine representation. Each array cell is a state transition
function, defined as a pair of a state and an outgoing transition (Si, Tj). A state transition
function handles a complete state change, including performance of all associated state and
transition actions. The complete list is sorted in two different ways. First, STL entries are
ordered by their state index in terms of all possible state changes, starting from a specific
state, represent a contiguous sublist. Secondly, within each sublist, state transition func-
tions are sorted by their transition priority. Table 2 shows the state transition list for the
example FSM in figure 1.

To ensure a fast FSM execution, the implementation technique defines two additional integer
arrays of size m, where m is the number of states inside the flat state machine representation.
For each state, the value of the StartIdx array determines the index of the first STL entry
belonging to this state and the value of the EndIdx array refers to the last STL entry
respectively. In other words, all possible state changes, starting from a state Si and sorted



STL Index 0 1 2
STL Entry (S0, T0) (S0, T3) (S0, T5)
STL Index 3 4 5
STL Entry (S1, T0) (S1, T3) (S1, T4)
STL Index 6 7 8
STL Entry (S2, T0) (S2, T2) (S3, T1)

Table 2: Example State Transition List

by transition priority, are given by the list:

STLSi = (STL[StartIdx[Si]], STL[StartIdx[Si] + 1], . . . , STL[EndIdx[Si]]) (1)

For the example FSM in figure 1, both arrays are defined as shown in table 3 and table 4.

Index 0 1 2 3
Value 0 3 6 8

Table 3: Example StartIdx Array

Index 0 1 2 3
Value 2 5 7 8

Table 4: Example EndIdx Array

Similar to the state transition list, each history connector is implemented on the basis of a
so-called history target list (HTL). This list is also defined as an one dimensional array of
size k, where k is the number of possible target states of a particular history. HTL entries
are history target functions, defined as pairs of a history connector and one of its target
states (Hi, Sj). Table 5 describes the history target list of the example history connector.

HTL Index 0 1 2
HTL Entry (H0, S0) (H0, S1) (H0, S2)

Table 5: Example History Target List

In addition to the implementation of FSMs, the developed code generator outputs a com-
plete run-time environment, including a minimal real-time operating system (RTOS) and
dynamic memory management. Principle task of this run-time environment is to control
the execution of involved FSMs. In conjunction with real-time conditions, the generated
run-time environment can be configured for a specific target platform [2].

3 Example

As an example for the usage of ANSI C code synthesis for MLDesigner FSMs, this section
describes the design of a controller for a LEGO Mindstorms robot, running on a Hitachi
H8 micro-controller.

The underlying robot represents a machine to sort different colored blocks in reference to
their color lightness. Thereby, only two cases are considered: dark and bright colored blocks.
While the machine is running, blocks are moving one after another on a conveyor belt until
a sensor has been reached and activated by the first block. In reaction, the conveyor belt
stops and color lightness of this block is determined by a light sensor. The measured value
is compared to a threshold and, based on the result, a sorter unit unloads the block to
either left or right side. Once the sorter unit is ready again, the conveyor belt moves on.



Additionally, in case of interferences, a start/stop button is present to pause the procedure
immediately and to continue it with a second press.

To develop the block sorter controller by using automated ANSI C code synthesis, first
the complete function of the robot has to be modeled on the basis of MLDesigner FSMs.
Since the robot mainly consists of a conveyor belt and a sorter unit, the control function is
decomposed into a conveyor belt controlling FSM and a state machine, which handles the
sorter unit. To recompose the control function, a Conveyor Belt FSM instance and a Sorter
FSM instance are interconnected inside a higher level FSM module. This controller FSM
module also defines the input/output interface of the controller.

Before the controller FSM module is used as input model for the code generator, it is vali-
dated by an appropriate simulation model, including a virtual 3D validation environment.

Figure 2 shows a MLDesigner screenshot with the 2 state machines, the controller FSM
module and the appropriate simulation model. The virtual 3D validation environment and
the real LEGO Mindstorms block sorter robot are pictured in figure 3.

Figure 2: MLDesigner Block Sorter Models

After validation and automated ANSI C code generation, the actuator/sensor interface of
the resulting code has to be configured using a C API for LEGO Mindstorms motors
and sensors. Finally, the compiled code can be uploaded to the Hitachi H8 micro-controller
and the controller can be tested in interaction with the real motors and sensors.

4 Conclusion

Automated ANSI C code synthesis for MLDesigner FSMs, presented in this paper, fills the
gap between high level design methodologies and low level application code for reactive
systems. With respect to a few reasonable limitations, the developed code generator
supports almost all semantic features. Since standard implementation techniques are



(a) virtual (b) real

Figure 3: Block Sorter Robot

not applicable to MLDesigner FSMs, a complete new implementation approach has been
described. Finally, an example design has shown, how the implemented code generator can
be used to enable a seamless design flow for a controller of an embedded system.

References
[1] Holger Rath, Specification of the MLDesigner Finite State Machine Model, Student research project, Ilmenau Technical

University, 2002.

[2] Holger Rath, ANSI C Code Synthesis of MLDesigner Finite State Machines, Diploma thesis, Ilmenau Technical University,
2003.

[3] Miro Samek, Pratical Statecharts in C/C++, CMP Books, 2002.

[4] MLDesigner User’s Manual, Version 2.4, http://www.mldesigner.com, 2004.

Author Information:
Dipl.-Inf. Holger Rath
Mission Level Design GmbH
Ehrenbergstrasse 11
98693 Ilmenau
Tel: (+49) 3677 / 4625-36
E-mail: holger.rath@mldesigner.de

Prof. Horst Salzwedel
Ilmenau Technical University
Faculty of Informatics and Automation
Department System and Control Theory
P.O. box 100565
98684 Ilmenau
Tel: (+49) 3677 / 69-1316
E-mail: horst.salzwedel@tu-ilmenau.de

Trademarks:
MLDesigner is a trademark of MLDesign Technologies, Inc.


