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Abstract — New aspects in Hardware Description 

Language’s (HDL) performance evaluation such as object-
orientation, system-level modeling, analog and mixed-signal 
modeling, software description and verification capabilities 
are analyzed in this paper. Features of mainstream HDLs 
and verification languages VHDL-AMS, Java, SystemC, 
AleC++, MLDesigner, OpenVera, the e language, PSL and 
SystemVerilog are compared in the context of these aspects. 
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I. INTRODUCTION 
ODERN system-on-a-chip (SoC) designs require 
powerful modeling languages covering embedded 

software, system architecture, register-transfer-level 
(RTL) design and verification. System architects need 
HDLs that can represent complex hardware/software 
interactions from abstract levels to detailed descriptions of 
hardware and software modules. At the same time, 
hardware designers need a powerful HDL that can express 
various analog, digital and non-electronic components at 
different levels of abstraction. Finally, both types of 
designers require Hardware Verification Languages 
(HVLs) for hardware and software validation. Therefore, 
in today’s HDL’s performance evaluation it is necessary to 
take care of several new aspects such as: object-
orientation, system-level modeling, analog and mixed-
signal modeling, software description and verification 
capabilities. These aspects should be carefully examined 
during evaluation of usability of particular HDL. 

Using examples and comparisons this paper analyzes 
strengths and weaknesses of some modern design lan-
guages in the context of the previously mentioned aspects. 
As broad as possible list of languages was considered. 
VHDL-AMS, Java, SystemC, AleC++ and MLDesigner 
and verification languages OpenVera, the e language and 
PSL are explored and compared. Also, SystemVerilog as a 
unified hardware description and verification language is 
explored. Modeling and verification features of these 
languages are contrasted and their role in modern mixed-
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signal SoC design and verification flow is analyzed. 

II. ANALOG, MIXED-SIGNAL AND SOC DESIGN 
LANGUAGES 

A. VHDL-AMS 
VHDL-AMS is an Analog and Mixed-Signal extension 

to the VHDL (Very High Speed Integrated Circuits Hard-
ware Description Language) [1]. It provides behavioral 
and structural description of both discrete and continuous 
hardware systems. Mixed-discipline models from different 
domains such as electrical, physical, and thermal can be 
described and simulated in a single language environment. 

Modeling of continuous systems is based on the theory 
of DAEs (Differential and Algebraic Equations). For 
representing the unknown continuous variables in the 
system of DAEs, VHDL-AMS introduces a new class of 
objects, the quantity. Additional across and through 
branch quantities are provided to support conservation 
semantics of the systems like electrical circuits. Fig. 1(a) 
illustrates declaration of two branch quantities, voltage 
v_in and current i_in. They are declared with reference to 
two terminals, t1 and t2. Terminals can be of different 
natures that represent distinct energy domains (electrical, 
thermal, etc.). 

terminal t1, t2: electrical; 
quantity v_in across i_in through t1 to t2; 

(a) 
i_in == v_in/100; 
i_in == C*v_in’dot; 

(b) 
Fig. 1 VHDL-AMS examples. (a) terminal and branch 
quantity declarations. (b) Simultaneous statements 

The system of DAEs can be described using 
simultaneous statements [1]. Fig. 1(b) shows simultaneous 
statements for resistor and capacitor, respectively. 

VHDL-AMS also supports small-signal frequency 
domain and noise simulation. It allows a designer to define 
small-signal stimulus in the frequency domain and noise.   

Since DAE solvers use numerical algorithms to solve 
the equation systems, VHDL-AMS enables a designer to 
specify individual tolerances for quantities, which must be 
satisfied by the simulator. 

B. Java 
Java is an object-oriented, general-purpose, concurrent, 

platform-independent programming language. It can be 
used for both software and the description of hardware [2]. 
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Unlike C/C++, in Java concurrency can be explicitly 
implemented by threads as shown in an example of coun-
ter model shown in Fig. 2. It is assumed that the class 
Counter and its method count are defined previously. 

class Count extends Thread { 
Counter cnt; 
public Count(Counter c) {cnt=c; start();} 
public void run() {for(int i=0; i<20;i++) 

cnt.count();}  

Fig. 2 Counter model in Java 

C. SystemC 
SystemC is a C++ class library used for system level 

modeling of concurrent systems [3].  It is a design 
language especially suitable for description of mixed 
hardware/software systems. 

SystemC defines data types dedicated to hardware 
modeling such as bit and bit vector types. Hardware or 
software description is encapsulated inside a C++ class 
called module. Modules are similar to VHDL-AMS 
entity/architecture pairs and they represent basic building 
blocks of a hierarchical system.  

A code fragment for counter model in SystemC is 
shown in Fig. 3. It is assumed that method do_count is 
defined later. 

class counter: public sc_module { 
public: 

sc_in<bool> clk, enable, reset, q; 
... 
counter(sc_module_name cnt): sc_module(cnt) { 

SC_METHOD(do_count); 
sensitive << clk.pos() << reset; 
}  

Fig. 3 Counter model in SystemC 
Ports are created from existing SystemC template 

classes. A SystemC model can be simulated by compiling 
it with a standard C++ compiler and it uses a discrete-
event simulation model much like VHDL’s. 

D. AleC++ 
AleC++ (Analog and Logic Electronic C++) is a 

proprietary object-oriented HDL developed for use in the 
simulator Alecsis [4]. It can be used for modeling of both 
discrete and continuous hardware systems from various 
domains at different levels of abstraction. AleC++ 
provides some additional useful features, both for 
modeling hardware components and system-level 
descriptions, not found in other design languages [4]. 

VHDL-AMS uses process statements for defining 
synchronization of discrete-event models. For analog 
models processes are not used. AleC++ uses processes for 
both discrete and continuous parts of the model. Compo-
nent definition, called module in AleC++, can contain any 
number of processes. Processes give the designer full 
control over the execution of the model. 

AleC++ provides structural and behavioral modeling 
styles as well as the combination of the two. Contributions 
to the system of equations describing model can be defi-
ned by explicitly writing equations and modifying contri-
butions of structurally connected built-in or previously 
defined models. The second approach is based on descri-

bing equivalent circuits of semiconductor components, so 
every engineer is familiar with this approach and it is easy 
to learn. One more important issue is that errors in such 
model can be easily detected comparing to the model 
consisting of equations. 

In AleC++ it is possible to declare and define functions 
with a variable number of arguments as in C/C++. Besides 
this, the number of parameters passed to the model and the 
number of formal signals that are terminals of a module 
can be variable. It is useful for describing the regular 
structures and logic blocks with variable number of 
input/output signals. 

A part of AleC++ code for modeling a diode is shown 
in Fig. 4. 

module new_diode::ndio(anode,cathode) 
action() { 
process per_iteration { 
diode_current = calculate_current(anode-

cathode); 
Fig. 4 AleC++ model 

Since AleC++ is a superset of C++, it can be used for 
modeling of hardware/software systems [4]. This gives 
designers an opportunity to describe both hardware and 
software components using one uniform design language. 

III. VERIFICATION LANGUAGES 

A. Mission-level design and verification 
MLDesigner is the next generation system design tool. 

It is a multi-domain simulator that for the first time 
permits the seamless integration of the design flow from 
mission/operational level to implementation tradeoff and 
test of complex design [5]. The design flow may include 
for example terrain models, embedded system design and 
hardware/software partitioning. You can construct a 
system model through the graphical editor  by using the 
Tcl/Tk command language.  

(Embedded System
model)

(Environment model)

 
Fig. 5 System model in MLDesigner 

You may specify the functionality of your modules by 
hierarchical block diagrams and principally  by  embedded 
C/C++ primitives. Multi-domain simulation modules can 
be combined and simulated together. Discrete event, finite 
state machines, continuous time/discrete event, dynamic 
data flow and high order function domains are supported. 
Fig. 5 shows the top level model of a multi domain virtual 
prototype embedded in an underwater environment 
Without a virtual prototype, design teams must accept 
significant risk in the development process. Proper 
verification requires modeling of the operational, or 
mission environment. Simply put, the mission 
environment ensures that the design is validated in the 
context of operational conditions. 



 

B. Verification languages 
Among standalone verification languages three most 

prominent are OpenVera, the e language and PSL [6]. 
They provide constrained random test case generation, 
designer-inserted assertions and automated functional 
coverage checking to quantitatively estimate how much of 
a design has been tested. Assertions are statements that 
describe designer intent. They can express complex 
temporal properties of the design under test which can be 
checked in simulations or in formal verification. 
Functional coverage checking is based on monitoring 
values of variables and state transitions. Each of these 
values are placed in “bins” and in the end the simulator 
reports which bins were empty indicating what behavior 
has yet to be exercised. 

OpenVera is a concurrent, object-oriented language de-
veloped for writing testbenches to enable efficient verifi-
cation of complex hardware designs [7]. It provides const-
ructs for generating constrained random values to be ap-
plied to the hardware design under test. Also, it contains 
constructs for monitoring what values particular variables 
take on during the simulation that enables to estimate how 
much of a design’s behavior has been checked in simu-
lation. In addition, there is the ability to specify temporal 
assertions which enable to check whether certain system’s 
behaviors ever appear during the simulation. 
SystemVerilog 3.1a incorporated much of these 
OpenVera’s verification capabilities.      

The e language is an object-oriented verification lan-
guage that provides similar constructs like OpenVera for 
constrained random values generation, checking functio-
nal coverage and specification and checking of assertions 
[6]. 

The Property Specification Language, PSL [6], has nar-
rower focus than OpenVera and e, since it is intended just 
to specify temporal properties (assertions), but it provides 
more formal semantics. PSL provides four levels of as-
sertion constructs. The lowest, Boolean level enables to 
specify Boolean expressions on signals in the design under 
test. The second is temporal layer that allows a designer to 
specify properties that hold across multiple clock cycles. 
For example, always !(a & b) states that the signals a 
and b will never be true simultaneously in any clock cycle, 
while  always (a -> next[2] b) means that b must be 
true two cycles after each cycle in which a is true. The 
third, verification level is related to a binding between 
assertions defined with expressions from the Boolean and 
temporal layer and modules in the design under test. The 
fourth, modeling layer enables to include Verilog, 
SystemVerilog or VHDL code inline in a PSL description 
and provide additional details about the design under test. 

Some features of PSL for specifying assertions are 
incorporated into SystemVerilog 3.1a. 

C. SystemVerilog 
SystemVerilog is a set of extensions to the IEEE 1364-

2001 Verilog [8]. These extensions provide features for 
system level modeling along with verification capabilities. 
The combination of Verilog HDL and such extensions 

make SystemVerilog to be Hardware Description and 
Verification Language (HDVL). 

It incorporated some of the features already found in 
VHDL-AMS, such as strong type system, time units, enu-
merated types, record types (structs), multidimensional 
arrays, separate entity and architecture, iterated and condi-
tional instantiations and configurations [8]. 

There are also features that have been requested by 
VHDL engineers that are readily available in Sys-
temVerilog. ‘ifdef conditional compilation enables selec-
tion between different design implementations and test-
bench options. The fork-join statement allows for the 
spawning of multiple processes and optionally waiting for 
all the processes to complete before continuing execution 
of other processes and code. Multiple concatenation and 
replication enables replication of the contents of a bit or 
range of multiple bits. SystemVerilog also provides an ob-
ject-oriented programming model. It supports virtual 
methods and classes, single inheritance, data and method 
overloading, static data members and constructors. 

Additional SystemVerilog features not found in VHDL 
include logic-specific processes, implicit port connections, 
unions and interfaces. Logic-specific processes extend 
Verilog’s always blocks for modeling combinational, 
latched or clocked processes. 

Another important feature of SystemVerilog is the 
Direct Programming Interface (DPI). It allows designers 
to easily call C/C++ functions from within SystemVerilog  
and vice versa. It also gives an opportunity to enable using 
SystemC codes together with SystemVerilog. 

SystemVerilog also includes many verification features 
found in OpenVera, e and PSL languages. Specifically, it 
contains constrained random values generation and func-
tional coverage checking taken from OpenVera and 
temporal assertions coming from PSL. 

An example of SystemVerilog assertions is shown in 
Fig. 6 [6]. It describes a temporal property stating that ack 
signal must rise between one and two cycles after each 
time req is true. The property samples req and ack signals 
at clock rising edge. After that it is necessary to create a 
checker to assert that this property holds.  

property req_ack; 
 @(posedge clk) 
  req ##[1:2] $rose(ack); 
endproperty 
as_req_ack: assert property(req_ack); 

Fig. 6 SystemVerilog assertions 

IV. HDL’S PERFORMANCE EVALUATION 
Table 1 shows a feature-by-feature comparison of 

different HDLs. Column HVL relates to hardware 
verification languages OpenVera, e and PSL. It presents 
capabilities of all analyzed languages and can be used to 
evaluate language’s performances in various application 
areas. 

Since modern, mixed-signal SoC designs include 
different electrical and nonelectrical components, as well 
as embedded software, models written in VHDL-AMS 
could become too low-level and the appropriate simulators 



 

too slow for validating a complete system. 
TABLE 1: LANGUAGE FEATURES COMPARISON 

Langu-
age 

/Feature 

VHDL- 
AMS Java SystemC HVL   AleC++ 

System 
Veri-
log 

Analog 
& 
Mixed-
Signal 

+    +  

System 
design  + +  + + 

Software  + +  + + 
Time and 
hardware 
construct 

+  + + + + 

Object 
oriented  + + + + + 

Verifi-
cation Partial   +  + 

RTL 
modeling +    + +   

Software  + +  + Partial 

VHDL-AMS is not appropriate for specifying software 
and components at higher levels of abstraction. In 
addition, it is not suitable to directly specify partial 
differential and algebraic equations necessary for 
modeling micro-electro-mechanical and 
microelectrofluidic systems. Because of component-level-
oriented modeling features it can not be used to describe 
system-level behavior, as well. 

SystemC fills a gap between traditional HDLs and 
software programming languages. It provides some advan-
tages over general-purpose programming languages, such 
as C++ and Java. Such software programming languages 
are based on sequential programming and therefore they 
are not suited for the modeling of concurrent processes. 
Also, system and hardware components require a 
specification of delays, clocks and time that are not pre-
sent in C++ and Java. Signals and ports used for commu-
nication in hardware models are different from constructs 
used in software programming. Data types existing in C++ 
and Java are not suitable for describing hardware 
implementation. SystemC provides the flexibility of ope-
rating with a general-purpose programming language 
together with data types and constructs necessary for hard-
ware modeling. It can be used for architectural tradeoffs 
and early application software verification enabling much 
higher simulation speeds than possible with signal-
oriented languages like VHDL-AMS or SystemVerilog. 
However, just as VHDL-AMS is not an optimal language 
for system-level modeling and high performance system 
prototypes, SystemC is not the right language for hard-
ware description at gate level. Moreover, SystemC does 
not support modeling and simulation of continuous-time, 
mixed-signal and multidiscipline systems. There is cur-
rently an ongoing effort to enhance SystemC with appro-
priate constructs for analog and mixed-signal modeling 
similar to that found in VHDL-AMS [9]. Also, synthesis 
of SystemC designs is much restricted in terms of lan-
guage coverage and vendor support and the language does 
not have support for verification. 

AleC++ inherited object-orientation from C++. Since 

modeling is an object-oriented problem by its nature this is 
a very useful feature. VHDL-AMS does not support ob-
ject-orientation in its formal definition, although there are 
some attempts to implement it. Being a superset of C++, 
AleC++ is suitable for description of software modules as 
well. It enables full-chip mixed-signal simulation at dif-
ferent levels of abstraction together with embedded soft-
ware modules. Many of the features it provided at the time 
of the development now are included in standard design 
languages. 

Standalone verification languages will probably 
disappear and their features will become parts of modern 
HDLs, like SystemVerilog. 

SystemVerilog provides hardware designers with the 
ability to use Verilog to describe concise, synthesizable 
RTL.  It also provides creation of efficient testbenches and 
assertions for simulation-based and formal property verifi-
cation. With no third-party languages needed for verifi-
cation, the simulators that support SystemVerilog should 
be faster than current approaches. Although it has system-
level modeling capabilities similar to SystemC, it is consi-
dered that SystemC is more focused on systems and soft-
ware and that the two languages are complementary. Sys-
temVerilog supports modeling of only discrete systems 
and continuous and mixed-signal systems can not be 
described.  

V. CONCLUSION 
Successful mixed-signal integrated circuits and SoC 

design and implementation depends on the ability to 
combine the strengths of today’s HDLs and HVLs in 
developing a complex design. Designers should be aware 
of presented new aspects in HDL’s evaluation process 
while choosing the proper language for the design task at 
hand. 
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