
EUROCON 2005 Serbia & Montenegro, Belgrade, November 22-24, 2005

Abstract — New aspects in Hardware Description

Language’s (HDL) performance evaluation such as object-
orientation, system-level modeling, analog and mixed-signal
modeling, software description and verification capabilities
are analyzed in this paper. Features of mainstream HDLs
and verification languages VHDL-AMS, Java, SystemC,
AleC++, MLDesigner, OpenVera, the e language, PSL and
SystemVerilog are compared in the context of these aspects.

Keywords — Hardware description languages, hardware
verification languages, Java, SystemC, SystemVerilog,
VHDL-AMS.

I. INTRODUCTION
ODERN system-on-a-chip (SoC) designs require
powerful modeling languages covering embedded

software, system architecture, register-transfer-level
(RTL) design and verification. System architects need
HDLs that can represent complex hardware/software
interactions from abstract levels to detailed descriptions of
hardware and software modules. At the same time,
hardware designers need a powerful HDL that can express
various analog, digital and non-electronic components at
different levels of abstraction. Finally, both types of
designers require Hardware Verification Languages
(HVLs) for hardware and software validation. Therefore,
in today’s HDL’s performance evaluation it is necessary to
take care of several new aspects such as: object-
orientation, system-level modeling, analog and mixed-
signal modeling, software description and verification
capabilities. These aspects should be carefully examined
during evaluation of usability of particular HDL.

Using examples and comparisons this paper analyzes
strengths and weaknesses of some modern design lan-
guages in the context of the previously mentioned aspects.
As broad as possible list of languages was considered.
VHDL-AMS, Java, SystemC, AleC++ and MLDesigner
and verification languages OpenVera, the e language and
PSL are explored and compared. Also, SystemVerilog as a
unified hardware description and verification language is
explored. Modeling and verification features of these
languages are contrasted and their role in modern mixed-

Bojan Anđelković and Vančo Litovski are with the Faculty of
Electronic Engineering, University of Niš, Serbia & Montenegro (e-mail:
(abojan, vanco)@elfak.ni.ac.yu).

Volker Zerbe is with the Computer Science and Automation Faculty,
Technical University of Ilmenau, Germany (e-mail: volker.zerbe@tu-
ilmenau.de).

signal SoC design and verification flow is analyzed.

II. ANALOG, MIXED-SIGNAL AND SOC DESIGN
LANGUAGES

A. VHDL-AMS
VHDL-AMS is an Analog and Mixed-Signal extension

to the VHDL (Very High Speed Integrated Circuits Hard-
ware Description Language) [1]. It provides behavioral
and structural description of both discrete and continuous
hardware systems. Mixed-discipline models from different
domains such as electrical, physical, and thermal can be
described and simulated in a single language environment.

Modeling of continuous systems is based on the theory
of DAEs (Differential and Algebraic Equations). For
representing the unknown continuous variables in the
system of DAEs, VHDL-AMS introduces a new class of
objects, the quantity. Additional across and through
branch quantities are provided to support conservation
semantics of the systems like electrical circuits. Fig. 1(a)
illustrates declaration of two branch quantities, voltage
v_in and current i_in. They are declared with reference to
two terminals, t1 and t2. Terminals can be of different
natures that represent distinct energy domains (electrical,
thermal, etc.).

terminal t1, t2: electrical;
quantity v_in across i_in through t1 to t2;

(a)
i_in == v_in/100;
i_in == C*v_in’dot;

(b)
Fig. 1 VHDL-AMS examples. (a) terminal and branch
quantity declarations. (b) Simultaneous statements

The system of DAEs can be described using
simultaneous statements [1]. Fig. 1(b) shows simultaneous
statements for resistor and capacitor, respectively.

VHDL-AMS also supports small-signal frequency
domain and noise simulation. It allows a designer to define
small-signal stimulus in the frequency domain and noise.

Since DAE solvers use numerical algorithms to solve
the equation systems, VHDL-AMS enables a designer to
specify individual tolerances for quantities, which must be
satisfied by the simulator.

B. Java
Java is an object-oriented, general-purpose, concurrent,

platform-independent programming language. It can be
used for both software and the description of hardware [2].

New Aspects in
HDL’s Performance Evaluation

Bojan Anđelković, Vančo Litovski and Volker Zerbe

M

Unlike C/C++, in Java concurrency can be explicitly
implemented by threads as shown in an example of coun-
ter model shown in Fig. 2. It is assumed that the class
Counter and its method count are defined previously.

class Count extends Thread {
Counter cnt;
public Count(Counter c) {cnt=c; start();}
public void run() {for(int i=0; i<20;i++)

cnt.count();}

Fig. 2 Counter model in Java

C. SystemC
SystemC is a C++ class library used for system level

modeling of concurrent systems [3]. It is a design
language especially suitable for description of mixed
hardware/software systems.

SystemC defines data types dedicated to hardware
modeling such as bit and bit vector types. Hardware or
software description is encapsulated inside a C++ class
called module. Modules are similar to VHDL-AMS
entity/architecture pairs and they represent basic building
blocks of a hierarchical system.

A code fragment for counter model in SystemC is
shown in Fig. 3. It is assumed that method do_count is
defined later.

class counter: public sc_module {
public:

sc_in<bool> clk, enable, reset, q;
...
counter(sc_module_name cnt): sc_module(cnt) {

SC_METHOD(do_count);
sensitive << clk.pos() << reset;
}

Fig. 3 Counter model in SystemC
Ports are created from existing SystemC template

classes. A SystemC model can be simulated by compiling
it with a standard C++ compiler and it uses a discrete-
event simulation model much like VHDL’s.

D. AleC++
AleC++ (Analog and Logic Electronic C++) is a

proprietary object-oriented HDL developed for use in the
simulator Alecsis [4]. It can be used for modeling of both
discrete and continuous hardware systems from various
domains at different levels of abstraction. AleC++
provides some additional useful features, both for
modeling hardware components and system-level
descriptions, not found in other design languages [4].

VHDL-AMS uses process statements for defining
synchronization of discrete-event models. For analog
models processes are not used. AleC++ uses processes for
both discrete and continuous parts of the model. Compo-
nent definition, called module in AleC++, can contain any
number of processes. Processes give the designer full
control over the execution of the model.

AleC++ provides structural and behavioral modeling
styles as well as the combination of the two. Contributions
to the system of equations describing model can be defi-
ned by explicitly writing equations and modifying contri-
butions of structurally connected built-in or previously
defined models. The second approach is based on descri-

bing equivalent circuits of semiconductor components, so
every engineer is familiar with this approach and it is easy
to learn. One more important issue is that errors in such
model can be easily detected comparing to the model
consisting of equations.

In AleC++ it is possible to declare and define functions
with a variable number of arguments as in C/C++. Besides
this, the number of parameters passed to the model and the
number of formal signals that are terminals of a module
can be variable. It is useful for describing the regular
structures and logic blocks with variable number of
input/output signals.

A part of AleC++ code for modeling a diode is shown
in Fig. 4.

module new_diode::ndio(anode,cathode)
action() {
process per_iteration {
diode_current = calculate_current(anode-

cathode);
Fig. 4 AleC++ model

Since AleC++ is a superset of C++, it can be used for
modeling of hardware/software systems [4]. This gives
designers an opportunity to describe both hardware and
software components using one uniform design language.

III. VERIFICATION LANGUAGES

A. Mission-level design and verification
MLDesigner is the next generation system design tool.

It is a multi-domain simulator that for the first time
permits the seamless integration of the design flow from
mission/operational level to implementation tradeoff and
test of complex design [5]. The design flow may include
for example terrain models, embedded system design and
hardware/software partitioning. You can construct a
system model through the graphical editor by using the
Tcl/Tk command language.

(Embedded System
model)

(Environment model)

Fig. 5 System model in MLDesigner

You may specify the functionality of your modules by
hierarchical block diagrams and principally by embedded
C/C++ primitives. Multi-domain simulation modules can
be combined and simulated together. Discrete event, finite
state machines, continuous time/discrete event, dynamic
data flow and high order function domains are supported.
Fig. 5 shows the top level model of a multi domain virtual
prototype embedded in an underwater environment
Without a virtual prototype, design teams must accept
significant risk in the development process. Proper
verification requires modeling of the operational, or
mission environment. Simply put, the mission
environment ensures that the design is validated in the
context of operational conditions.

B. Verification languages
Among standalone verification languages three most

prominent are OpenVera, the e language and PSL [6].
They provide constrained random test case generation,
designer-inserted assertions and automated functional
coverage checking to quantitatively estimate how much of
a design has been tested. Assertions are statements that
describe designer intent. They can express complex
temporal properties of the design under test which can be
checked in simulations or in formal verification.
Functional coverage checking is based on monitoring
values of variables and state transitions. Each of these
values are placed in “bins” and in the end the simulator
reports which bins were empty indicating what behavior
has yet to be exercised.

OpenVera is a concurrent, object-oriented language de-
veloped for writing testbenches to enable efficient verifi-
cation of complex hardware designs [7]. It provides const-
ructs for generating constrained random values to be ap-
plied to the hardware design under test. Also, it contains
constructs for monitoring what values particular variables
take on during the simulation that enables to estimate how
much of a design’s behavior has been checked in simu-
lation. In addition, there is the ability to specify temporal
assertions which enable to check whether certain system’s
behaviors ever appear during the simulation.
SystemVerilog 3.1a incorporated much of these
OpenVera’s verification capabilities.

The e language is an object-oriented verification lan-
guage that provides similar constructs like OpenVera for
constrained random values generation, checking functio-
nal coverage and specification and checking of assertions
[6].

The Property Specification Language, PSL [6], has nar-
rower focus than OpenVera and e, since it is intended just
to specify temporal properties (assertions), but it provides
more formal semantics. PSL provides four levels of as-
sertion constructs. The lowest, Boolean level enables to
specify Boolean expressions on signals in the design under
test. The second is temporal layer that allows a designer to
specify properties that hold across multiple clock cycles.
For example, always !(a & b) states that the signals a
and b will never be true simultaneously in any clock cycle,
while always (a -> next[2] b) means that b must be
true two cycles after each cycle in which a is true. The
third, verification level is related to a binding between
assertions defined with expressions from the Boolean and
temporal layer and modules in the design under test. The
fourth, modeling layer enables to include Verilog,
SystemVerilog or VHDL code inline in a PSL description
and provide additional details about the design under test.

Some features of PSL for specifying assertions are
incorporated into SystemVerilog 3.1a.

C. SystemVerilog
SystemVerilog is a set of extensions to the IEEE 1364-

2001 Verilog [8]. These extensions provide features for
system level modeling along with verification capabilities.
The combination of Verilog HDL and such extensions

make SystemVerilog to be Hardware Description and
Verification Language (HDVL).

It incorporated some of the features already found in
VHDL-AMS, such as strong type system, time units, enu-
merated types, record types (structs), multidimensional
arrays, separate entity and architecture, iterated and condi-
tional instantiations and configurations [8].

There are also features that have been requested by
VHDL engineers that are readily available in Sys-
temVerilog. ‘ifdef conditional compilation enables selec-
tion between different design implementations and test-
bench options. The fork-join statement allows for the
spawning of multiple processes and optionally waiting for
all the processes to complete before continuing execution
of other processes and code. Multiple concatenation and
replication enables replication of the contents of a bit or
range of multiple bits. SystemVerilog also provides an ob-
ject-oriented programming model. It supports virtual
methods and classes, single inheritance, data and method
overloading, static data members and constructors.

Additional SystemVerilog features not found in VHDL
include logic-specific processes, implicit port connections,
unions and interfaces. Logic-specific processes extend
Verilog’s always blocks for modeling combinational,
latched or clocked processes.

Another important feature of SystemVerilog is the
Direct Programming Interface (DPI). It allows designers
to easily call C/C++ functions from within SystemVerilog
and vice versa. It also gives an opportunity to enable using
SystemC codes together with SystemVerilog.

SystemVerilog also includes many verification features
found in OpenVera, e and PSL languages. Specifically, it
contains constrained random values generation and func-
tional coverage checking taken from OpenVera and
temporal assertions coming from PSL.

An example of SystemVerilog assertions is shown in
Fig. 6 [6]. It describes a temporal property stating that ack
signal must rise between one and two cycles after each
time req is true. The property samples req and ack signals
at clock rising edge. After that it is necessary to create a
checker to assert that this property holds.

property req_ack;
 @(posedge clk)
 req ##[1:2] $rose(ack);
endproperty
as_req_ack: assert property(req_ack);

Fig. 6 SystemVerilog assertions

IV. HDL’S PERFORMANCE EVALUATION
Table 1 shows a feature-by-feature comparison of

different HDLs. Column HVL relates to hardware
verification languages OpenVera, e and PSL. It presents
capabilities of all analyzed languages and can be used to
evaluate language’s performances in various application
areas.

Since modern, mixed-signal SoC designs include
different electrical and nonelectrical components, as well
as embedded software, models written in VHDL-AMS
could become too low-level and the appropriate simulators

too slow for validating a complete system.
TABLE 1: LANGUAGE FEATURES COMPARISON

Langu-
age

/Feature

VHDL-
AMS Java SystemC HVL AleC++

System
Veri-
log

Analog
&
Mixed-
Signal

+ +

System
design + + + +

Software + + + +
Time and
hardware
construct

+ + + + +

Object
oriented + + + + +

Verifi-
cation Partial + +

RTL
modeling + + +

Software + + + Partial

VHDL-AMS is not appropriate for specifying software
and components at higher levels of abstraction. In
addition, it is not suitable to directly specify partial
differential and algebraic equations necessary for
modeling micro-electro-mechanical and
microelectrofluidic systems. Because of component-level-
oriented modeling features it can not be used to describe
system-level behavior, as well.

SystemC fills a gap between traditional HDLs and
software programming languages. It provides some advan-
tages over general-purpose programming languages, such
as C++ and Java. Such software programming languages
are based on sequential programming and therefore they
are not suited for the modeling of concurrent processes.
Also, system and hardware components require a
specification of delays, clocks and time that are not pre-
sent in C++ and Java. Signals and ports used for commu-
nication in hardware models are different from constructs
used in software programming. Data types existing in C++
and Java are not suitable for describing hardware
implementation. SystemC provides the flexibility of ope-
rating with a general-purpose programming language
together with data types and constructs necessary for hard-
ware modeling. It can be used for architectural tradeoffs
and early application software verification enabling much
higher simulation speeds than possible with signal-
oriented languages like VHDL-AMS or SystemVerilog.
However, just as VHDL-AMS is not an optimal language
for system-level modeling and high performance system
prototypes, SystemC is not the right language for hard-
ware description at gate level. Moreover, SystemC does
not support modeling and simulation of continuous-time,
mixed-signal and multidiscipline systems. There is cur-
rently an ongoing effort to enhance SystemC with appro-
priate constructs for analog and mixed-signal modeling
similar to that found in VHDL-AMS [9]. Also, synthesis
of SystemC designs is much restricted in terms of lan-
guage coverage and vendor support and the language does
not have support for verification.

AleC++ inherited object-orientation from C++. Since

modeling is an object-oriented problem by its nature this is
a very useful feature. VHDL-AMS does not support ob-
ject-orientation in its formal definition, although there are
some attempts to implement it. Being a superset of C++,
AleC++ is suitable for description of software modules as
well. It enables full-chip mixed-signal simulation at dif-
ferent levels of abstraction together with embedded soft-
ware modules. Many of the features it provided at the time
of the development now are included in standard design
languages.

Standalone verification languages will probably
disappear and their features will become parts of modern
HDLs, like SystemVerilog.

SystemVerilog provides hardware designers with the
ability to use Verilog to describe concise, synthesizable
RTL. It also provides creation of efficient testbenches and
assertions for simulation-based and formal property verifi-
cation. With no third-party languages needed for verifi-
cation, the simulators that support SystemVerilog should
be faster than current approaches. Although it has system-
level modeling capabilities similar to SystemC, it is consi-
dered that SystemC is more focused on systems and soft-
ware and that the two languages are complementary. Sys-
temVerilog supports modeling of only discrete systems
and continuous and mixed-signal systems can not be
described.

V. CONCLUSION
Successful mixed-signal integrated circuits and SoC

design and implementation depends on the ability to
combine the strengths of today’s HDLs and HVLs in
developing a complex design. Designers should be aware
of presented new aspects in HDL’s evaluation process
while choosing the proper language for the design task at
hand.

REFERENCES
[1] IEEE Standard Definition of Analog and Mixed Signal Extensions

to VHDL, IEEE Standard 1076.1-1999, 1999.
[2] R. Helaihel, K. Olukotun, “Java as a Specification Language for

Hardware-Software Systems,” in Proc. of the 1997 IEEE/ACM
International Conference on Comupter-Aided Design, Sun Jose,
1997, pp. 690-697.

[3] Draft Standard SystemC Language Reference Manual, Open
SystemC Initiative, 2005.

[4] V. Litovski, D. Maksimović, and Ž. Mrčarica, “Mixed-Signal
Modeling with AleC++: Specific Features of the HDL,” Simulation
Practice and Theory 8, pp. 433-449, 2001.

[5] V. Zerbe, “Mission Level Design of Complex Autonomous
Systems”, in Proc. of XLVII ETRAN Conference, Herceg Novi
(Montenegro), 2003, pp. 55-59.

[6] S. A. Edwards, “Design and Verification Languages,” Department
of Computer Science Columbia University, New York, NY, Tech.
Rep. CUCS-046-04, Nov. 2004.

[7] OpenVera Language Reference Manual: Testbench, v1.4.2,
Synopsys, 2005.

[8] SystemVerilog 3.1a Language Reference Manual, Accellera’s
Extensions to Verilog, Accellera, 2004.

[9] H. Al-Junaid, and T. Kazmierski, “An Extension to SystemC to
Allow Modelling of Analogue and Mixed Signal Systems at
Different Abstraction Levels”, in Proc. of SoC Design, Test and
Technology Seminar, United Kingdom, 2004. Available:
http://eprints.ecs.soton.ac.uk/9944

EUROCON 2005 Serbia & Montenegro, Belgrade, November 22-24, 2005

