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Abstract. Complex real time systems like large system on chips need to be 
verified to assure quality and save time. Today verification activities are re-
stricted to the register transfer level or one design step above. A complete flow 
from early specifications down to physical implementation is still not available. 
An improved system level design cycle is required to overcome this limitation. 
In this paper we propose an extended methodology of the system level design 
cycle to support early validation and formal verification of temporal properties 
in system specifications. 

1. Introduction 

Today automatic formal verification is restricted to formal property and requirement 
descriptions. It is difficult to apply automatic verification methods to more abstract 
descriptions like system level specifications. We recommend using at least semifor-
mal specifications (UML) for early specification phases, while executable architecture 
and performance models should be used at the next stage. Here executable models al-
low validation and a more exact specification on component requirements.  
In [1] it was shown, that mission and system level design techniques permit to model 
and simulate complex systems at performance level and speed up the design process. 
Design sizing errors and errors stemming from couplings between subsystems were 
significantly reduced. It was shown that many design decisions can be carried out at 
this level of abstraction that previously had been carried out at the functional level. 
The question is can formal verification techniques from functional level design also 
be applied at system level design. 
 Abstract specifications are by nature semiformal. Parts of them, e.g. an UML 
model structure, can be automatically formally interpreted [2], while others, e.g. 
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vague function descriptions “encode” cannot. Exact functional descriptions are not 
needed, but specifications on performance and time properties. As shown in [3], be-
havioral models with added time properties can be checked against structural and 
temporal properties by using existing verification tools.  
 In this paper we extend this approach. First we describe a class of models where 
our approach is usable. Second we depict a verification flow and show the need for a 
performance constraint language. Third we analyze requirements for the performance 
constraint language. At last we introduce a simple constraint language and demon-
strate the verification methodology for an example. 

2. Model classes for verification 

For early system models only semiformal model descriptions can be used. They must 
be able to express the main temporal behavior, while details of some components 
cannot be described exactly, since for these components no internal behavior is 
known or defined. Thus, to analyze the entire model, estimates, e.g., specifications of 
standards, have to be used. Incomplete descriptions lead to models which cannot be 
analyzed [3]. As shown in [2] and [3] interval based time notations are suitable for 
such early descriptions. UML does not support time annotations. A special constraint 
language has to be used. Models can be hierarchical and have to handle discrete 
events only, in order to formalize them by a transformation into a formal analyzable 
transition system, like real time automata or interval Petri nets [6]. 

2.1 UML 

Known classes of such models are behavioral descriptions of the UML, like activity 
diagrams, state charts and sequence diagrams. However, there is a problem with UML 
descriptions regarding executable models. While simple models are easy to handle 
and to understand, for complex systems there exist no rules how to arrange different 
diagram types into an entire model. In connection with the UML model driven archi-
tecture (MDA) and model driven design (MDD) other reasons can be identified: 

• Incomplete models: The models are incomplete in some way or important be-
havioral parts are still missing. Maybe only interesting behavior has been mod-
eled very detailed, while the glue between these parts (often architectural infor-
mation) is absent. 

• Inadequate model view: Often UML is used to generate the implementation or 
an implementation stub directly. Then the needs for a simulation environment 
may be ignored and the model isn’t executable. 

• Lack on simulation support: Some additional model elements are needed for 
simulation [4]. These parts are often called instrumentation and just needed for a 
correct model interpretation. Such parts are depending on the simulation envi-
ronment and thus they are not directly part of the UML. 

The UML MDA methodology will only be widely used, when the effort to produce 
models gives a real benefit, like early system simulation.  



2.2. MLDesigner 

For our investigation the tool MLDesigner was used. MLDesigner has extended mod-
eling and simulation capabilities of Ptolemy [5] to generate executable models to test 
architecture, function and performance of systems of different models of execution. 
Different models of execution models are connected semantically into one model. 
MDA and MDD approaches are used from specification development to implementa-
tion, e.g. UML activity diagrams are replaced by executable mission level models [6]. 
 For this investigation, MLDesigner event based models (the main domains state 
chart, discrete event, synchronous data flow) and hierarchical model structures are be-
ing used. In these areas, MLDesigner models and UML models support similar con-
cepts. Different is however the MLDesigner built in simulation concept. Primitive 
Model elements are designed for reuse and consist of an interface based abstract de-
scription and an implementation for simulative execution. Complex model elements 
describe only the structural connection of other (simple or complex) model elements. 
To analyze MLDesigner models formally, they have to be transformed according to 
their domain semantics [7] in to formal transition systems. Furthermore temporal tim-
ing notations need to be added.  

2.3. Common Model  

Both model classes support the main concepts of hierarchical modeling and event 
based behavior description. Also both model classes don’t adequately support tempo-
ral timing annotations. Differences exists in the exact semantically description of 
MLDesigner models and the connection of different model types (domains) as well as 
the implicit simulation support. UML models are more abstract by the cost of exact 
execution and connection semantics. However, when UML MDD / MDA will work in 
a kind of (early) model simulation, these points will be resolved [6]. Hence, our ex-
plorations will be based on common concepts of hierarchy and event based modeling. 

3. Verification  

As mentioned above, semiformal models have formal and informal parts. For tempo-
ral verification formal temporal models are needed. Hence a language describing 
temporal properties shall be used. To generate the formal temporal model we recom-
mend the use transformation rules. 
 Verification works as follows. Mainly there are two different types of verification, 
equivalence checking and property checking. Equivalence checker prove on equiva-
lence between implementation (IMP) and specification (SPEC), whereas property 
checker prove whether the implementation implies the specified properties [8]. 

• Equivalence: IMP  SPEC ↔
• Implication: IMP →  SPEC 

Since early specifications are incomplete by nature, property specification (implica-
tion) is a suitable mechanism for our needs. An addition to implementation, which in 



our case is the model description, a property specification is needed. Here other mod-
els or also the temporal description Language can be used. Because our original mod-
els don’t support constructs that differ between implementation and specification, the 
temporal description language shall manage this. For a hierarchical model structure, 
upper level models specify properties, which have to be realized by the more detailed 
lower level implementation. This is known as Hierarchical verification and ensures 
consistency in a model.  

  Using the words specification and implementation, while talking about early mod-
els and early specification in connection with simulation and modeling, has limita-
tions, particularly if specification and/or implementations are incomplete. Perform-
ance values/specifications have to include their levels of trust, in order that the 
designer can determine, by which probability the property will be fulfilled. For de-
signs that adhere to a standard, this level of confidence may be very high for other de-
signs much lower. 

3.1. Verification Flow  

The verification flow, depicted in Figure 1, starts with a semiformal description com-
pleted with temporal annotations. This description is divided into specification (prop-
erties) and implementation parts (system model) and then transformed into formal 
models. After generating formal temporal models for the implementation and specifi-
cation parts, a conventional model checker can be used to prove the implied relation 
between them. It can be decided, whether a specified property holds and under which 
assumptions. Otherwise, dependent on the used verification tool and the retransforma-
tion mechanism, a counter example can be generated.  

spec property .inState(Working) in [0ms, 
50ms] leadsto .inState(Waiting);

spec property (Application.In1 AND 
Application.In2) in [140ms,155ms] 
leadsto application.Out3; 
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Figure 1: Verification flow for semiformal models.  



While the verification task (dashed arrows) is well understood and available in verifi-
cation tools [11], formalizing a semiformal model as well as model transformation is 
difficult [12]. Figure 2 depicts the relations between the verification task and a con-
straint language used to formalize models. 

4. Requirements for a performance constraint language 

The general approach is similar to the SymC approach, presented in [9], however our 
intent is not to create new verification tools but to make them available to other (semi-
formal) models. Some questions concerning the temporal property language are open 
so far: 

• Expressiveness: Temporal logics and properties have different expressivenesses. 
Mainly three classes are considered: CTL, LTL and CTL*.1 

• Connection to the semiformal model. The semiformal models have different 
semantic and syntactic constructs. How to use one Language for several differ-
ent models? 

• Which language: Can a known property language be used, or has a new lan-
guage to be defined? 

Concerning the last question, for semiformal models no well defined temporal speci-
fication language exists. The OCL, connected to UML models can describe some 
properties. Some temporal extensions to the OCL have been defined, but they didn’t 
become a standard. For formal models, particularly for hardware verification, several 
languages have been defined. The most suitable temporal specification language is the 
property specification language (PSL). [10] This Language can express CTL and LTL 
constraints and properties and is able to handle normal, composed as well as series 
expressions, and sequences of events. The PSL is an assertion based Language and 
exist in several dialects for VHDL, Verilog etc. so it is universally usable in the RTL 
description level. Additionally the PSL has directives that tell a verification tool how 
to handle a particular PSL expression.  
 PSL is very near to a language fulfilling our requirements. However, PSL is made 
for an environment, where a global clock exists. That is different in our abstract de-
scriptions, where times have to be expressed like a physical description (with number 
and time unit), and, if modeled by a clock, events would occur in long clock dis-
tances. Furthermore the semantic difference between cycle-based (PSL) and event-
based (Our descriptions) may cause problems [11]. Additionally there is the need to 
describe assumed temporal properties about system parts. This is different to the as-
sumed mechanism of PSL, where only environmental properties, e.g. input behavior, 
are restricted as part of the verification task instead of integrating them to the system 
model. So we prefer to define our own performance description language, where we 
keep the language structure, especially the four layers, boolean layer, temporal layer, 
modeling layer and verification layer, and use as much of the directives of PSL as 
possible. Why it is necessary to define several layers? Generally a property can be 

                                                 
1 A very good introduction can be found in [7]. 



seen as a composition of the three layers, which makes it easier to compose and ana-
lyze them systematically [11]: 

• The Boolean layer describes Boolean expressions (model specific events) and 
their simple compositions.  

• The temporal layer describes the relationships between Boolean expressions 
over time. 

• The verification layer describes how to use a property during verification. 
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Figure 2: Constraint language in a verification flow. 

As depicted in Figure 2, an additional modeling layer is required. It is responsible for 
connecting several different models and description techniques, without affecting 
other language layers. 

5. A simple constraint language definition 

First we will give an introduction into the theoretical background [7] of event based 
specification. Then we outline restrictions of this approach and possible solutions.  
 In event based systems, every event is connected to a point in time. Because one 
event can occur infinitely often, only the last event (with its occurrence time) is 
known, when an expression is evaluated. An event is called to be true at its last occur-
rence.  
 To build combinatorial assertions we define some rules, whereas x  is an event, 
X  is the set of events and )(Xα  is an assertion over the set of events: 

• ( )XxXx α∈⇒∈ : When x  is an event, an assertion of x  exists. 

• ( )XxXx αα ∈⇒∈ )()( : Every composed assertion can be treated like an 
elemental assertion. 



• ( )XyxXyx αα ∈∧⇒∈ )(, : An assertion can be a conjunction of other 
assertions. 

• ( )XyxXyx αα ∈∨⇒∈ )(, : An assertion can be a disjunction of other 
assertions. 

Because every assertion is connected to a point in time, rules exist to connect a com-
bined assertion to time: 

•  is the occurrence time of the event )(xtXx ⇒∈ x . The assertion x  is true 
at time when the event x  occurred. 

• )()( ϕαϕ tX ⇒∈  is the time when formula ϕ  became true the first time. 
• )()(, ψϕαψϕ ∧⇒∈ tX  is the time, when both, ϕ  and ψ , became true 

the first time. 
• )()(, ψϕαψϕ ∨⇒∈ tX  is the time, when at least, ϕ  or ψ , became true 

the first time. 
Using the negation is not allowed, because an exact semantic can’t be given.2 How-
ever, to negate a property, the temporal expression could be negated.  
 A primitive temporal specification, using the temporal operators  (always), []  
(all paths) and  (some paths), can be written as follows: 

A
<>

• )],[[]( 21 ψϕ ttAA <>⇒ , 
in which the sets of events used in ϕ  and ψ  have to be disjunct. This means, ϕ  al-
ways causes ψ  inside the given time interval. Then, because of  

•  )()()()()( 221221112121 ψϕψϕψϕψϕψψϕϕ ⇒∧⇒∧⇒∧⇒≡∧⇒∨
Complex specifications can be split and thus simplified to 

• , )],[[]( 21 yttAxA ∨∧ <>⇒
whereas x  and  are primitive events.  y

5.1 Concrete syntax 

For a demonstration we allow only simple implications and rate constraints over suc-
cessive events of one type. We add the keywords “imp” and “spec” to differ between 
implementation assumptions and specified properties. Additional elements concerning 
the verification and temporal layer are omitted in the easy EBNF syntax as follows: 

 

CL_Specification ::=  

  CL_Issue “property” [CL_Identifier “:=”] CL_Property “;” 

CL_Issue ::= 

  “imp” | “spec” 

                                                 
2 !x becomes infinitely often true until x is becomes true. Because an event x can occur more 

then once, wouldn’t !x have to be true before the last occurrence of x? 



CL_Property ::= 

  “always” CL_ConjEvent “in” CL_TimeInt “leadsto” CL_DisjEvent | 

  “every” CL_TimeInt “occurs” CL_DisjEvent 

CL_DisjEvent::=  {CL_EVENT, “or”, 1} 

CL_TimeInt ::= “[“ CL_TimePoint “,” CL_TimePointInf “]” 

CL_ConjEvent ::= {CL_EVENT, “and”, 1} 

CL_TimePointInf ::= <numeric> | “inf” 

CL_TimePoint ::= <numeric> 

CL_Identifier ::= <identifier> 

CL_Event ::= <identifier> 

 

Events and identifiers are alphanumeric strings taken from the concrete constraint de-
scription. The property “every [t1, t2] occurs event” means, an event will occur every 
t1 to t2 time units, whereas in the case of a specification the first occurrence of the 
event is not included.  

5.2 Model Transformation  

For a given model structure we can use the constraint language to generate real time 
automata for the implementation (system model) and for the specification (require-
ments). With a short example we start with a MLDesigner model an transform it 
manually into a real time automata system using the UPPAAL tool. [13] 

 
Figure 3: Simple model with timing specifications 

imp property every [15,20] occurs Source.output1 ; 

imp property Processing.input1 in [12,14] leadsto Processing.output1; 

spec property fw_delay := Source.output1 in [10,14] leadsto 
Sink.input1 ; 

spec property sink_rc := every [13,23] occurs Processing.output1 ; 

In Figure 3 a simple abstract semiformal model is given. Additional constraints are 
used to describe the temporal behavior as well as two specification properties.  



  
Figure 4: Automaton for the source block property 

Source(urgent chan PortOut;const InitialDelay, MinTime, MaxTime) 

In Figure 4 you can see the automaton, which produces events on the output of Source 
in every MinTime to MaxTime time units.  

 
Figure 5: Automaton for the processing block 

Processing(urgent chan PortIn;urgent chan PortOut;const MinTime, MaxTime) 

  A[] ! Processing.ErrorState 

The automaton in Figure 5 realizes the specified implication property of the process-
ing block. It produces one output event in MinTime to MaxTime time units after an 
input event occurred. Because a single automat can only handle one event each cycle, 
an error state and a temporal condition (A[] ! Processing.ErrorState) had to be added.  



 
Figure 6: Automaton for fw_delay property 

  Fw_delay(urgent chan EV1, EV2;const t1,t2) 

  A[] ! Fw_delay.ErrorState 

To process the two specified properties of the system for each an additional automa-
ton was created. You can see them with their temporal property in Figure 6 and 
Figure 7. In UPPAAL the automata are connected trough their parameters during in-
stantiation according to the model structure in Figure 3. 

 
Figure 7: Automaton for the sink_rc property 

  Sink_rc(urgent chan EV1;const t1,t2) 

  A[] ! sink_rc.ErrorState 
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After generating the automata, a final life property (A[] ! deadlock) must be added, 
then the automata system can be checked using the verifier. In our case the all speci-
fied properties of the simple model could be verified. 

5.3 Limitations 

This example is simple, but it shows the general verification flow, described in chap-
ter 3. Although the presented constraint language doesn’t meet the requirements from 
chapter 4, some problems and limitations can be found, as well as additional proper-
ties, which are needed in an advanced constraint language: 

• Much more constructs are needed, e.g. to express branching or case decision be-
havior to events.  

• Counting events: Events must be countable to describe complex behaviors. 
• Causality limits expressiveness: To produce implementation behavior using 

automata only one event can be handled per property and time. Modeling ab-
stract pipelined processes isn’t possible so far, because consecutive event chains 
could overtake each other 

• Arranging conjunctive dependencies: When two or more events cause another 
event conjunctively either all combinations have to be caught or counting places 
have to be used. A problem here is then the semantic. What do to with addi-
tional events, eventually they are needed to enable an event next time? 

• A mechanism catching (time spaced) event chains similar to sugar regular ex-
pressions (SERE) in PSL has to be found. This is necessary to improve expres-
siveness and benefit by using such a constraint language. 

• For some modeling domains the event semantic has to be changed. There spe-
cial channels (which e.g. implement FIFOs) could be used to connect model 
elements according to the model structure. 

6. Conclusion and Future Work 

We outlined the need to verify system models early in the design, when models are 
abstract and incomplete. A methodology to formalize and verify such semiformal 
models by adding constraints was presented. Constraints are the heart of this method-
ology, so a well structured constraint language is needed. A language concept analo-
gous the concept of PSL was given. In chapter 5 we demonstrate the methodology for 
an example case. Some limitations and open question are shown.  
 In the future we are going to create an advanced language definition, which recog-
nizes the concept and other requirements developed before. Furthermore we will cre-
ate a framework or tool, which automates the verification task. The verification flow 
is made for static verification, but is also possible to perform dynamic verification by 
checking the specified properties during simulation or execution. 
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