

1-4244-1468-7/07/$25.00 ©2007 IEEE 498

ML DESIGNER™ as Simulation Tool in Robotics
Mario Schulz1, Ivan Veličković2, Saša Anđelković2, Volker Zerbe1, Goran S. Đorđević2

Abstract –Robots are complex systems that require

multidisciplinary approach to development. Hence, both
research and production of a robotic system require a tool
that would provide means for coordination between teams
with different areas of expertise as well as the ability to
integrate, simulate and debug the system in a comprehensive
way. Also, with the growing popularity of service robotics,
research and modeling of human-machine interaction gains
the attention. From a simulation tool, it is expected to
support the means for describing this interaction. For that
purpose we are investigating the ML Designer™, not just as
a possible simulation tool, but also as a modeling and design
paradigm. For verification purposes we will compare it
against MATLAB Simulink™. A pneumatic system will be
modeled with both tools and a comparison will be
performed.

Keywords – Simulation, Robotics, Pneumatics, Control
systems.

I. INTRODUCTION

The design of a robot is highly complex task opening
several important research problems: mechanical design,
design and control of the actuation system, high level control
software design etc. All those problems are related to different
technical disciplines and are usually investigated by teams
with different areas of expertise. Although a common
approach to reduce the costs of a research lead to extensive
simulation and mathematical modeling of the investigated
problem, simulation of a system as a whole, in this
multidisciplinary case, imposes quite a challenge. Simulation
models are constructed in a manner that provides the best
insight into the behavior of interest. Therefore, for a system
composed of various components, different behaviors of
interest, or to say Quality of Service criteria, may be present.
To illustrate this statement, take a robot vacuum cleaner for an
example. Let it be a small robot with couple of electro-motors
for actuation, vacuum cleaner system, a rechargeable battery
power supply, and a microcomputer based control system. It is
supposed to detect human absence in the room and start
cleaning. When the cleaning is done or when the batteries are
nearly empty it should go back into its docking station for
recharging. For actuation system developers it is important
that their drive accurately follows the required position-

1Mario Schulz and Volker Zerbe are with TU Ilmenau, Computer
Science and Automation Faculty, System and Control Theory
Department, Ilmenau, Germany, Email: Volker.Zerbe@TU-
Ilmenau.De

2Ivan Velickovic, Sasa Andjelkovic and Goran Djordjevic are with
University of Nis, Faculty of Electronics engineering, Robotics Lab,
18000 Nis, Serbia. Email: gorandj@elfak.ni.ac.yu

velocity-acceleration profiles with acceptable power
consumption.Their simulation model would take into account
dynamical properties of the system and the feedback loop
parameters in order to determine time responses. Yet another
simulation may be performed by the developers of the driver
electronics that should provide an insight into the driver
electronic power consumption. On the other hand, high level
control system will take into account spatiotemporal
representation of the cleaning task in order to test various
cleaning algorithms. This model would probably take into
account the behavioral description of the actuation and sensor
system, but the power consumption behavior would probably
be left out. A question arises: how can we determine, from a
user point of view, that this robot would perform the cleaning
task in a satisfying way? User doesn’t care if the robot fails,
whether it appeared because of the bad algorithm or because it
ran out of power. For a user the system is a whole and it
should be designed, simulated and tested in that way. It is
important to notice that, theoretically, it is possible to produce
the model that would take into account complete description
of the system. Problem lies within the tools. For instance,
although it is possible to simulate a mechanical system within
the VHDL it is neither well supported nor recommendable.

Also, regardless of its complexity, design process for a
system starts with a use-case specification. Potential
misconceptions in this phase of the development may lead to
devastating results. Therefore a tool that can somehow test the
consistence of this early phase models of the system, but yet
to be scalable enough to accept later detail refinement can
significantly reduce costs. Baring this in mind the
MLDesigner™ is developed [1].

This document is organized as follows: In Section 2 a brief
introduction to MLDesigner™ as well as its modeling and
design paradigm are exposed. Section 3 describes the
pneumatic system we used to test MLDesigner™ simulation
capabilities and discuses the performance. The same
simulation is performed with MATLAB Simulink™ and the
comparison is given.

II. BRIEF INTRODUCTION TO ML DESIGNERTM

MLDesigner is a general purpose, Linux platform, tool for
simulation and visualization of complex heterogeneous sys-
tems. Its multi-domain simulator permits the seamless integra-
tion of the design flow from mission/operational level to
implementation handoff and test of complex designs. It pro-
vides means to facilitate and coordinate collaborative develop-
ment. MLDesigner can be used for design and analysis for a
broad range of applications, from complex systems like mo-
bile/ fixed communication networks, satellite communication
/navigation /observation systems, performance and architectu-
re tradeoff of electronic and mechanic systems, VLSI integra-

Authorized licensed use limited to: TU Ilmenau. Downloaded on July 7, 2009 at 03:26 from IEEE Xplore. Restrictions apply.

 499

ted circuits, and automotive navigation/communication sys-
tem design to simple logic design [2].

MLDesigner models are defined graphically as hierarchical
block diagrams. Blocks have defined inputs and outputs that
are connected via visible links or via shared memories.
Control and information is passed between blocks via data
structures known as particles (tokens). To increase execution
speed the bottom level blocks contain behavioral description
of primitives in form of compiled C++ code. Source code of
all primitives is provided for custom upgrade/modification
purposes. Higher-level blocks are structurally described by
means of interconnected bottom level blocks. There are more
then 1400 core library modules and more then 260 example
systems in MLDesigner. These library modules can easily be
used to create new modules or whole systems. A system
model can be constructed through the graphical editor or with
the PTcl command language. You may specify the
functionality of your modules by a hierarchical block diagram,
a finite state machine, a module defined in the C/C++ like PL
language, or by a PTcl module definition. Behavior of the
model as well as functionality and appearance of the
development environment can easily be extended by various
supported scripting languages.

 As can be seen from the Fig. 1 all supported tools,
interfaces and mechanisms are available trough a graphical
IDE environment [3]. It offers model editors which provide
means to edit, configure and mange graphical and scripted
models of a system, a model debugger, the library browser,
CVS version control interface and various visualization tools
to analyze simulation results and measure performance. The
simulation results may be viewed through an animation view
while the simulation is running and/or by the post-processing
graphical plots. From the perspective of portability it is
important to mention that conversion of MLDesigner models
to other formats as well as importing of models made by other
tools is well supported.

Fig. 1. MLDesigner software system

MLDesigner supports several different simulation domains.

It is up to a user to choose a domain that best suit his/hers
needs. Most important property of MLDesigner is that it

allows for Multidomain simulation modules to be combined
and simulated together. Following domains are available [1].
Discrete Event (DE) domain is based on event driven
approach and it is well suited for modeling of large complex
systems and for integrating and managing the execution of
design elements developed in other domains. Dynamic Data
Flow (DDF), Static Data Flow (SDF) and Boolean Data Flow
(BDF) are based on the dataflow model of computation. These
domains are intended for data processing applications.
Continuous Time/Discrete Event (CT/DE) domain, still in
experimental phase, allows simulation of the systems that can
be described with linear and nonlinear algebraic equations.
Based on Dormand-Prince variable step ODE solver, it is
good for simulation of mechanical and electrical systems. The
Finite State Machine (FSM) domain describes behavior in
terms of states, transitions between states, and actions that
affect or are affected by transitions. It can be used to define
communication protocols or to describe the behavior of
control units. Finally, the High-Order Function (HOF) domain
enables high order function style of coding by allowing
functions to be transferred to other functions as arguments.

Fig. 2. Mission level design flow. MLDesigner approach

MLDesigner™ modeling paradigm is based on mission

oriented approach to development (ML in the name stands for
Mission Level). Although MLDesigner supports bottom-up
design, it is intended for top-down iterative design process
(also known as a spiral design process) [1]. Therefore it
supports both behavioral and structural description of
subsystem models, allowing a user to choose the level of
detail that should be considered at the particular phase of the
design. On Fig. 2 the design flow proposed by MLDesigner is
depicted. Modeling of a system, regardless of its complexity,
starts with informal use-case and test-case specification. At
this phase the Behavioral Model of the system is composed.
The system is described through services that it provides to
the outside world. According to this specification, the
Architectural Model is constructed. Considering required

Authorized licensed use limited to: TU Ilmenau. Downloaded on July 7, 2009 at 03:26 from IEEE Xplore. Restrictions apply.

 500

services of the system, it is coarsely modeled as a collection
of interconnected blocks with established protocols of
data/resource flow. With each following phase this model can
be upgraded with technical and implementation details. At
each level of development test of consistency and plausibility,
as well as performance estimation could be performed. To
facilitate the final-implementation phase of the development
MLDesigner offers tools for conversion of the model into
appropriate implementation-ready formats.

III. SIMULATION IN ROBOTICS BY MLDESIGNERTM

For a modeling and simulation tool to be used throughout
the design of a robot system it is important that it provides the
means to describe effects relevant to various technical
disciplines involved in the design process. First, such tool
should be able to describe electromechanical processes related
to the robot mechanical structure, actuation and drives.
Coordinated motion of the robot joints is achieved by
sophisticated control algorithms that should, also, be
integrated into this description. So far, this description is
related to time domain. However, high level software, usually
implemented in the event-driven manner, is more related to
data domain. It deals with robot’s reaction to the environment
based in the current state, interpreted sensor data and some
built-in inference/decision mechanism. Yet another design
approach is applied to sensors. It involves implementation of
data processing and pattern recognition algorithms. To include
all effects related to robot system design the modeling tool
should be able use various design domains interchangeably.
As can be inferred from the previous chapter and judging by
numerous applications in communication and networking [1,
2, 5], MLDesigner™ should be able to successfully meet
these demands.

To verify this we have performed a comparison between
MLDesigner and MATLAB Simulink software packages. The
tests are performed only for continuous time domain which is
available in both tools. Knowing that this domain is still in the
experimental phase, the results of this test should give us the
good insight into applicability of this tool to simulation of
electromechanical systems. The Simulink is chosen because it
is commonly used for this type of simulations in various
technical disciplines.

The benchmark system is made of a pneumatic actuator,
pneumatic valves used, a source of clean compressed air, a set
of hoses used for air transport, and a set of sensors and specia-
lized hardware added to control desired behavior of the
system. Few parts of the system are shown in Fig. 3. The
piston of the cylinder pushes and pulls mass-spring payload.
The air pressure in the chambers of the cylinder is controlled
by a couple of PCM valves: one, designated as IN, controls
the air flow from a source of compressed air (not presented on
the figure), and the other, designated as EX, controls the air
exhaust by connecting the chamber to the atmosphere. Air
pressure in cylinder chambers is monitored via pressure
sensors attached to the cylinder ports, while the position of the
load is measured by an incremental encoder. Mathematical
modeling as well as parameter identification is performed as
described in [4]. Complexity and nonlinearity of the

pneumatic system was the primary motive for choosing it as a
benchmark case. Graphical representation of both models is
given on Fig 4.

Both tools were able to perform the simulation successfully.
There were differences related to both model construction and
model execution. First of all there was a difference in the
available support. MLDesigner was not supported with some
basic building blocks such as continuous derivative. However,
we were able to easily overcome this by model
reconfiguration. There was another method we could use: we
could make our own continuous derivative block either by
modifying and compiling some of the available C++ block
templates, or by scripting it in some of the available script
languages. Unlike Simulink which is mostly graphically
oriented, for MLDesigner model description and extension
through scripting appears more natural especially for members
of the GNU community. Although very flexible and scalable
the scripting approach posses a drawback – it may prolong the
simulation time.

Fig. 3. Benchmark pneumatic system

From the model execution perspective, there was one
notable difference. Unlike Simulink that is supplied with a
variety of fixed-step and variable step solvers, MLDesigner
comes with only Dormand-Prince variable step solver
(denoted in Simulink as ode45, currently default). This is not
a limiting factor because this algorithm is fast and stable,
except for debugging purposes. For example, within the early
phases of model construction we encountered some artifacts
in the model response which were difficult to physically
explain. We suspected that those artifacts were induced by the
solver as the numerical noise. The easiest way to check this
hypothesis would be to change the solver itself, because the
artifacts appeared to be immune to changing in solver time
parameters. As later appeared it was a construction flow rather
then a numerical noise.

There was also a notable difference in model execution
time. We are making this statement with reserve because the
testing conditions were not the same. The models were
executed on different machines with different operating
systems. Regardless, our subjective impression was that,
given the circumstances, MLDesigner model execution is
significantly slower. Evaluation of other resources required
for model execution was not performed.

Authorized licensed use limited to: TU Ilmenau. Downloaded on July 7, 2009 at 03:26 from IEEE Xplore. Restrictions apply.

 501

IV. CONCLUSION

According to results presented in this paper MLDesigner
shows good potential as a simulation tool in robotics. All
required resources are available and are easy to use. The tool
is well documented with many helpful examples and
experiences from experts from all around the world.

Our tests were oversimplified for a program like ML
DesignerTM. We neither tested its full potential of
multidomain simulation nor followed its Mission Level design
methodology. Our intent was to test it against a tool which
performances are well known. From our personal perspective,
it excided our expectations. Our further work will be focused
on integration of constructed model into a robot with 2DOF. It
is important to note that MLDesignerTM is not just a
simulation tool. It is a platform that supports and generalizes a
design method which is present and tested in software

industry for years. Finally, MLDesignerTM is a free tool for
education purposes which may make it more available to
students interested in this domain.

REFERENCES

[1] www.mldesigner.com
[2] Gunar Schorch, at. al., “System-Level Simulation Modeling with

MLDesigner™”, MASCOTS 2003.
[3] Horst Salzwedel, "Large scale networked system simulation

using MLDesigner", 6th Biennial Ptolemy Microconference,
Berkley 2005.

[4] I.Veličković, S.Anđelković, M.Rašić, G.Đorđević,
"Mathematical Model of a Pneumatic System. Simulation and
Experiments", ETRAN 2007

[5] T. Liebezeit, V.Zerbe, "Mission Level Design of Autonomous
Underwater Vehicle", ICAIS 2002

Authorized licensed use limited to: TU Ilmenau. Downloaded on July 7, 2009 at 03:26 from IEEE Xplore. Restrictions apply.

