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Abstract
Complex technical and organizational systems are 
designed by groups of people departments and/or 
companies. Because of product uncertainties during 
development, each of the individual engineers make 
individual assumptions in their employed design 
methodologies. Because of the complexity of the 
system they do not understand the impact of their 
decisions on the overall systems. Since current 
design approaches do not consider the impact of 
this uncertainty on the integrated system, the design 
specifications are error prone and not validated[1]. 
The likelihood that a system design does not have 
critical errors is less than 4%[2].

In this paper design methodologies of individual 
engineers are modeled and connected by a design 
process graph to make them executable. Bounded 
and statistical uncertainties of early design stages 
are included  and bounds on integrated designs 
based on uncertainties at different design stages are 
determined using MLDesigner 3.0 [9] Simulation 
Set capabilities. The new design methodology 
permits treating uncertainties in early design stages, 
validate design specifications, and optimize the 
design flow for different criteria, like quality in 
design and design cost and verify systems in the 
presence of this uncertainty.

Introduction
Complex systems like networked systems in 

vehicles (aircraft, spacecraft, automobiles, ships, 
trains, autonomous systems), between vehicles, IT 
systems, communication or organizational systems 
can only be developed by groups of people, 
departments and/or companies. To meet time to 
market requirements, the system design is 
partitioned into subsystems and subsystem design is 
distributed to specialist teams before uncertainties 
about individual subsystems and interactions 
between subsystems has been resolved. The 
individual  engineers make assumptions, many 
based on experience with less complex systems. It 
is not possible for these engineers to understand the 
impact of their decisions on these systems. Since 

the models passed on for system integration do not 
include the model uncertainties, the uncertainty of 
the integrated system is not determined. The 
integrated system model or design specification is 
therefore not validated. The likelihood that this 
design approach will work without critical problems 
is less than 4% [2]. Very time consuming and 
expensive  integration processes try to resolve 
conflicts and critical performance issues. 

        Figure 1 [3] depicts the probability of critical 
problems as a function of phases of the design 
process. The probability of critical problems is very 
high in early design stages and is low in late design 
stages. These failure rates often result in huge cost 
overruns for correcting mistakes in complex 
systems design. Several billion $/€ projects were 
terminated due to these failures.

Figure 1: Critical problems in design of 
complex systems [3]

        The analysis of designs shows that most causes 
for critical design flaws come from poor design 
specifications. The main reason is that most 
specifications are on paper only and therefore 
cannot be validated. The introduction of executable 
specifications [4] has improved the quality of 
specifications and significantly reduced the number 
of design iterations and the cost of design of 
electronics, software and organizational systems 
[5]. However, for complex systems, like large IT 
systems, complex systems design flows and 
aerospace systems the likelihood that the first 
design will be right is very low. In addition, in 
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silicon systems, cost for organizational processes 
for design and development is increasing 
exponentially and is already more than 30% for 
complex chip designs [6].

Development of executable development and 
organizational process models can catch critical 
problems in development processes [7] or result in 
significant improvements and cost savings in 
organizational processes [8]. However, in most 
projects these available technologies are not yet 
employed.

Even so uncertainty plays a major role in early 
design stages, it is only treated at a subcomponent 
level and not at the system level. The reason is that 
as the number of designers/design teams increases, 
the number of design alternatives increases. For 
example, 2 different design points of each designer 
in a 10-person design team, where each team 
member generates two alternatives, results in 210
different designs. Current manual integration 
methods cannot cope with this size of design space 
exploration and verification.

In this paper a system design methodology is 
developed based on executable design flows. 
Bounded and statistical uncertainties of early design 
stages are included  and bounds on integrated 
designs based on uncertainties at different design 
stages are determined. Examples will demonstrate 
the new design methodology.

      The new design methodology not only permits 
to treat uncertainties in early design stages, but 
permit optimizing the design, as well as the design 
flow for different criteria like quality in design and 
design cost.  Design changes can easily be 
implemented and design tracking automated.

Product Uncertainty
Information, knowledge and uncertainty about 

a product changes significantly during product life 
time. This knowledge about the product includes 
knowledge about the product itself, knowledge 
about the intended use, and knowledge about the 
environment in which the product is to be used. 
This uncertainty is bounded and may sometimes be 
described by bounded parameter sets, bounded 
statistical distributions, and/or bounded functional 
behavior described by e.g. H∞ norms for 
continuous systems.

        Figure 2 shows a typical behavior of the mean 
of a  product uncertainty. At the start of a 
development project the product uncertainty, 
U 0 , is a function on whether the development 

team has developed similar type of products before. 
During the development phase the knowledge about 
the product increases with the learning rate, l , 
reducing product uncertainty. This learning curve 
can be described by an exponential function,

U D t  = {U 0 e
−l t ∀ ttD

U 0 e
−i t D ∀ t≥tD},

where

l = {l P for 0≤ttP on paper
lM for tP≤ttM model based}

for initial slow development on paper and rapid 
development with executable models, respectively.

At the end of the development phase, the 
product is delivered to customers, who will find 
additional insufficiencies that are reported to 
support and corrected by the development team. 
The learning effect due to customer testing and 
support can be described by,

LS t  = { 0 ∀ t≤t D
LS01−e

−l  t−t D ∀ tt D}

Figure 2: Product uncertainty

However information about a product is also 
lost during lifetime of a product. The reasons are 
that people leave development teams, are 
reassigned, or just not remembering all the 
decisions which went into the design of a product. 
Additionally, as time progresses, products are often 
used for applications that were not considered 



during the development phase. These effects 
impose additional uncertainty on the product, which 
can be approximated by,

          U L = U L0e
Lt 2

As development of products with long life times 
like the Space  Shuttle showed, people even have to 
be called back from retirement in order to overcome 
this loss of product information.

      The uncertainty about a product can  then be 
expressed by,

     U P t  = U Dt   U L t  − LS t 

      Comparing Figure 1 with Figure 2, we observe 
that observed occurrence of critical design errors 
and product uncertainty are highly correlated. We 
may conclude that critical design errors are 
primarily due to information uncertainty about a 
product and design processes that do not consider 
this uncertainty in the right way and do not validate 
and verify the system considering this uncertainty.

      In the following sections it is shown how 
uncertainty in use cases, environment and design 
may be used to determine the system uncertainty. 
Making the design process itself executable enables 
its validation, harmonization, and may result in 
significant savings in development time and risk.

Complex System Design
Complex systems are always designed and 

developed by groups of people, departments and/or 
companies. The system is partitioned into 
subsystems and subsystems are assigned to 
different groups. Each group typically has unique 
knowledge in a particular field and will use their 
own methodology, models and software for the 
design of their assigned component. Some will use 
different software systems.

For design, validation and verification design 
groups will consider a range of possible parameters 
and use approximate models for analysis. Different 
designers/developers will exchange information 
about their components to other designers according 
to design or process graphs, Figure 3. The 
exchanged information typically will not include all 
assumptions and ranges of  uncertainty considered 
in the design of components. The reason is that 
some of the uncertainties are very specific to the 

field of knowledge used for a component and other 
designers will not understand this information nor 
will they be able to properly evaluate potential 
interactions between components in different 
subsystems. Other reasons include that the 
variability of a design may be too large to be 
considered for manual system integration. 

Figure 3: Design process graph

Ten designers doing a conceptual design and 
each is passing on a minimum and a maximum of 
one component specific parameter to the integration 
team, the integration team would require to 
integrate 210 different  system designs for 
analysis and verification. This would be too time 
consuming when done manually. It is therefore not 
done. For system integration, each team will pass 
on their “best” design to the integration team.

The integrated system is therefore not verified 
for variability due to uncertainties in subsystems 
and interactions between components located in 
different subsystems. As a result, the probability 
that this coupling is causing critical errors in the 
design is very high. Testing (expensive and time 
consuming) should eliminate most critical errors, 
but customers increasingly find unresolved critical 
errors after delivery of products. Additionally, 
different designs based on the same platform design 
will exhibit very different probability of failures.

Design Automation
To integrate, validate, and verify different 

designs (e.g. 210 ), and find the “best” solution 
between them is an impossible task if done 
manually. The design must be automated, in order 
to overcome this problem. 210 iterations of a 
simulation are not very unusual, dependent on the 
complexity of the simulation. With distributed 
simulations and multi core processors even complex 
simulations can be run for, e.g., ≥210 iterations.

For an automated design, a simulation must be 
developed that meets the following requirement,



1) modules, that are complete 
independent simulations of design 
methodologies

2) the simulations may be executed by 
the same or different simulation tools

3) a design process graph connects the 
design methodologies

4) Monte Carlo simulation capabilities, in 
order to be able to analyse sets or ranges of 
parameters

5) simulation model generation, in order 
to iterate over different architectures

6) optimization methodologies that can 
optimize a design with respect to system 
level objectives

7) distributed simulation to overcome 
potentially large processing requirements

8) the simulation  must be connected to a 
data base, in  order to keep track of the 
large volume of information

9) models and data must be stored in a 
standardized way, in order to ease 
comparison and analysis

Figure 4 depicts such an automated  design 
process simulation. Each designer has to develop an 
executable model of her/his design methodology. 
Process engineers design the process design graph 
that connect the executable design methodologies.

The simulation generates a set of feasible 
designs and maps component uncertainties into 
system uncertainties of coupled designs and can 
determine which designs meet system requirements 
for all uncertainties in parameters, architecture, 
missions/use cases, and environment. If the system 
performance falls within the permissible 
performances of the design specifications, the 
design is verified.

The system uncertainty determined by the 
range of design variations also depicts the level of 
uncertainty at a given stage of development. As the 
different members of the design team get up the 
learning curve, Figure 2, this uncertainty is going to 
decrease. Unacceptable levels of system uncertainty 
can be analyzed, causes determined and eliminated.

The automated design process can be 
connected to a data base and automatically track 
design changes and their impact on overall system 
design criteria, including performance, cost, quality 
of design.

The design process itself can be modeled and 
optimized. In [7] the development process for a 
railway switching system was modeled in 
MLDesigner and optimized for team selection, team 
load. Critical components of the development 
process were identified and eliminated that would 
have doubled the development time. In [10] the 
design and development process for automotive 
electronic control units was optimized using genetic 
algorithms for finding the optimal combination of 
design methodologies (team selection), 
performance (timing, BER, cost and quality. Areas 
for significant improvements were identified.

Figure 4: Executable design methodologies, 
connected by a design process graph

Implementation of Design Automation
The proposed design automation technology is 

being implemented and analyzed in the multi 
domain simulator MLDesigner [9], which already 
includes multiple execution domains, reducing the 
need of interfaces to other tools. When necessary, 
MLDesigner provides hooks that make it easy to 
interface to tools with similar execution domains. 
The Monte Carlo simulation capabilities of 
MLDesigner automatically distribute simulations to 
other computers that are registered to MLDesigner. 
MLDesigner 2.7 includes an SQL library for easy 
data base access. 

All MLDesigner models are stored in XML, 
supporting mapping though XSLT scripts. 
Baumann [11] is developing network building 
blocks and XSLT based mapping functions to 
automatically map functional level models into 
architecture and combined architectural and 
functional models into implementations. Fischer 



[12] is developing system level architecture 
optimization technology which generates the 
information about the optimal architecture, that can 
then be read by the mapping functions of Baumann. 
Riehmer [13] is developing a standardized XML 
based data format for MLDesigner and Octave that 
is compatible with the Open Office Document 
Standard and can be read and generated by 
spreadsheets from Open Office and Microsoft 
Office. Genetic algorithm optimization methods 
have been developed to optimize MLDesigner 
models of design processes for performance and 
quality. These algorithms will be extended for 
optimization in automated design processes.

The next version of MLDesigner (3.0) will 
provide new simulation set capabilities which have 
been developed to make it possible to connect 
independent simulations, using UML activity 
diagram syntax that describes control flow, design 
flow, work flow and/or analysis flow connecting the 
elements of the simulation set. Parallel and 
sequential execution will support automated 
distributed simulation of independent simulations. 
The design process graph can be defined by the 
standard graphical model editor of MLDesigner, 
Figure 5.

Figure 5: Sequential executions with termination 
conditions (a,b) and parallel executions (c) of 
MLDesigner simulation sets

Examples
This sections show two very simple examples 

using the simulation set capabilities of MLDesigner 
3.0 and using two external tools --- SatLab and 
Octave --- for analysis. These low complexity 
examples  can be verified directly in MLDesigner 
or by SatLab and Octave.

Example 1: The accuracy of a least squares 
signal processing algorithm is analyzed for the 
example of fitting a fourth order  polynomial

 yi= p1 p2 xip3 xi
2 p4 xi

3i , =N 0,R

through a data set with normally distributed 
measurement errors. 30 different data sets are 
generated by MLDesigner and 30 to 1400 
measurements are taken of these data for parameter 
estimation. The parameter estimation is performed 
by SatLab. Figure 6 shows how the parameter 
estimation error change as a function of number of 
measurements taken.

Figure 6: Analysis results for accuracy of least 
squares parameter estimation algorithms

Example 2: Chapter 10.3 of Reference 14 
shows a design methodology for a design 
specification of a longitudinal controller for an 
aircraft (Boeing 747). Variations in  loading and 
fuel consumption will affect aircraft dynamics 
parameters and flight behavior. These parameters 
changes are bounded by minimum and maximum 
weight and the permissible minimum and maximum 
center of mass location for the aircraft. Using 
maximum and minimum values instead of nominal 
values for seven longitudinal aircraft dynamics 
parameters, results in 27=128 different dynamic 
models of the aircraft pitch behavior. Figure 7 
shows minimum, mean and maximum behavior of 
an altitude change of the aircraft are affected by 
40% changes in pitch parameters 
Xu , Xw , Zu ,Zw ,Mu ,Mw ,andMq . The 

results show that the chosen closed loop 
eigenvalues for the autopilot design is very robust 



against parameter changes and passengers will 
hardly notice the changes in behavior.

Figure 7: Aircraft altitude hold autopilot 
response verification for bounded aircraft parameter 
changes of ±40 %

Conclusions
        Uncertainty of information in design of 
complex systems is the primary reason for critical 
problems and expensive corrective actions. A 
design automation methodology based on coupled 
models of design methodologies of participating 
design groups and developers is proposed that 
overcomes this critical design problem and enables 
large design space exploration and verification of 
uncertain systems. The developed methodology 
permits verification of system level functional and 
performance behavior in the presence of system 
uncertainty. Digital as well as analog systems may 
be verified by this methodology. A methodology for 
implementing this methodology by the simulation 
set capabilities of the development tool 
MLDesigner is shown. Two simple examples show 
how statistical and bounded system uncertainties 
may be mapped into bounded system behavior by 
automating design and analysis using an executable 
design flow.
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