
COMPLEX SYSTEMS DESIGN AUTOMATION IN THE PRESENCE OF
BOUNDED AND STATISTICAL UNCERTAINTIES

Horst Salzwedel, TU Ilmenau

Abstract
Complex technical and organizational systems are
designed by groups of people departments and/or
companies. Because of product uncertainties during
development, each of the individual engineers make
individual assumptions in their employed design
methodologies. Because of the complexity of the
system they do not understand the impact of their
decisions on the overall systems. Since current
design approaches do not consider the impact of
this uncertainty on the integrated system, the design
specifications are error prone and not validated[1].
The likelihood that a system design does not have
critical errors is less than 4%[2].

In this paper design methodologies of individual
engineers are modeled and connected by a design
process graph to make them executable. Bounded
and statistical uncertainties of early design stages
are included and bounds on integrated designs
based on uncertainties at different design stages are
determined using MLDesigner 3.0 [9] Simulation
Set capabilities. The new design methodology
permits treating uncertainties in early design stages,
validate design specifications, and optimize the
design flow for different criteria, like quality in
design and design cost and verify systems in the
presence of this uncertainty.

Introduction
Complex systems like networked systems in

vehicles (aircraft, spacecraft, automobiles, ships,
trains, autonomous systems), between vehicles, IT
systems, communication or organizational systems
can only be developed by groups of people,
departments and/or companies. To meet time to
market requirements, the system design is
partitioned into subsystems and subsystem design is
distributed to specialist teams before uncertainties
about individual subsystems and interactions
between subsystems has been resolved. The
individual engineers make assumptions, many
based on experience with less complex systems. It
is not possible for these engineers to understand the
impact of their decisions on these systems. Since

the models passed on for system integration do not
include the model uncertainties, the uncertainty of
the integrated system is not determined. The
integrated system model or design specification is
therefore not validated. The likelihood that this
design approach will work without critical problems
is less than 4% [2]. Very time consuming and
expensive integration processes try to resolve
conflicts and critical performance issues.

 Figure 1 [3] depicts the probability of critical
problems as a function of phases of the design
process. The probability of critical problems is very
high in early design stages and is low in late design
stages. These failure rates often result in huge cost
overruns for correcting mistakes in complex
systems design. Several billion $/€ projects were
terminated due to these failures.

Figure 1: Critical problems in design of
complex systems [3]

 The analysis of designs shows that most causes
for critical design flaws come from poor design
specifications. The main reason is that most
specifications are on paper only and therefore
cannot be validated. The introduction of executable
specifications [4] has improved the quality of
specifications and significantly reduced the number
of design iterations and the cost of design of
electronics, software and organizational systems
[5]. However, for complex systems, like large IT
systems, complex systems design flows and
aerospace systems the likelihood that the first
design will be right is very low. In addition, in

V-Model ESPITI-STUDY

0 %

Spec/
Arch. Dev.

Modeling

Implementation

60 %20 % 40 %

Critical problem

silicon systems, cost for organizational processes
for design and development is increasing
exponentially and is already more than 30% for
complex chip designs [6].

Development of executable development and
organizational process models can catch critical
problems in development processes [7] or result in
significant improvements and cost savings in
organizational processes [8]. However, in most
projects these available technologies are not yet
employed.

Even so uncertainty plays a major role in early
design stages, it is only treated at a subcomponent
level and not at the system level. The reason is that
as the number of designers/design teams increases,
the number of design alternatives increases. For
example, 2 different design points of each designer
in a 10-person design team, where each team
member generates two alternatives, results in 210
different designs. Current manual integration
methods cannot cope with this size of design space
exploration and verification.

In this paper a system design methodology is
developed based on executable design flows.
Bounded and statistical uncertainties of early design
stages are included and bounds on integrated
designs based on uncertainties at different design
stages are determined. Examples will demonstrate
the new design methodology.

 The new design methodology not only permits
to treat uncertainties in early design stages, but
permit optimizing the design, as well as the design
flow for different criteria like quality in design and
design cost. Design changes can easily be
implemented and design tracking automated.

Product Uncertainty
Information, knowledge and uncertainty about

a product changes significantly during product life
time. This knowledge about the product includes
knowledge about the product itself, knowledge
about the intended use, and knowledge about the
environment in which the product is to be used.
This uncertainty is bounded and may sometimes be
described by bounded parameter sets, bounded
statistical distributions, and/or bounded functional
behavior described by e.g. H∞ norms for
continuous systems.

 Figure 2 shows a typical behavior of the mean
of a product uncertainty. At the start of a
development project the product uncertainty,
U 0 , is a function on whether the development

team has developed similar type of products before.
During the development phase the knowledge about
the product increases with the learning rate, l ,
reducing product uncertainty. This learning curve
can be described by an exponential function,

U D t  = {U 0 e
−l t ∀ ttD

U 0 e
−i t D ∀ t≥tD},

where

l = {l P for 0≤ttP on paper
lM for tP≤ttM model based}

for initial slow development on paper and rapid
development with executable models, respectively.

At the end of the development phase, the
product is delivered to customers, who will find
additional insufficiencies that are reported to
support and corrected by the development team.
The learning effect due to customer testing and
support can be described by,

LS t  = { 0 ∀ t≤t D
LS01−e

−l  t−t D ∀ tt D}

Figure 2: Product uncertainty

However information about a product is also
lost during lifetime of a product. The reasons are
that people leave development teams, are
reassigned, or just not remembering all the
decisions which went into the design of a product.
Additionally, as time progresses, products are often
used for applications that were not considered

during the development phase. These effects
impose additional uncertainty on the product, which
can be approximated by,

 U L = U L0e
Lt 2

As development of products with long life times
like the Space Shuttle showed, people even have to
be called back from retirement in order to overcome
this loss of product information.

 The uncertainty about a product can then be
expressed by,

 U P t  = U Dt   U L t  − LS t 

 Comparing Figure 1 with Figure 2, we observe
that observed occurrence of critical design errors
and product uncertainty are highly correlated. We
may conclude that critical design errors are
primarily due to information uncertainty about a
product and design processes that do not consider
this uncertainty in the right way and do not validate
and verify the system considering this uncertainty.

 In the following sections it is shown how
uncertainty in use cases, environment and design
may be used to determine the system uncertainty.
Making the design process itself executable enables
its validation, harmonization, and may result in
significant savings in development time and risk.

Complex System Design
Complex systems are always designed and

developed by groups of people, departments and/or
companies. The system is partitioned into
subsystems and subsystems are assigned to
different groups. Each group typically has unique
knowledge in a particular field and will use their
own methodology, models and software for the
design of their assigned component. Some will use
different software systems.

For design, validation and verification design
groups will consider a range of possible parameters
and use approximate models for analysis. Different
designers/developers will exchange information
about their components to other designers according
to design or process graphs, Figure 3. The
exchanged information typically will not include all
assumptions and ranges of uncertainty considered
in the design of components. The reason is that
some of the uncertainties are very specific to the

field of knowledge used for a component and other
designers will not understand this information nor
will they be able to properly evaluate potential
interactions between components in different
subsystems. Other reasons include that the
variability of a design may be too large to be
considered for manual system integration.

Figure 3: Design process graph

Ten designers doing a conceptual design and
each is passing on a minimum and a maximum of
one component specific parameter to the integration
team, the integration team would require to
integrate 210 different system designs for
analysis and verification. This would be too time
consuming when done manually. It is therefore not
done. For system integration, each team will pass
on their “best” design to the integration team.

The integrated system is therefore not verified
for variability due to uncertainties in subsystems
and interactions between components located in
different subsystems. As a result, the probability
that this coupling is causing critical errors in the
design is very high. Testing (expensive and time
consuming) should eliminate most critical errors,
but customers increasingly find unresolved critical
errors after delivery of products. Additionally,
different designs based on the same platform design
will exhibit very different probability of failures.

Design Automation
To integrate, validate, and verify different

designs (e.g. 210), and find the “best” solution
between them is an impossible task if done
manually. The design must be automated, in order
to overcome this problem. 210 iterations of a
simulation are not very unusual, dependent on the
complexity of the simulation. With distributed
simulations and multi core processors even complex
simulations can be run for, e.g., ≥210 iterations.

For an automated design, a simulation must be
developed that meets the following requirement,

1) modules, that are complete
independent simulations of design
methodologies

2) the simulations may be executed by
the same or different simulation tools

3) a design process graph connects the
design methodologies

4) Monte Carlo simulation capabilities, in
order to be able to analyse sets or ranges of
parameters

5) simulation model generation, in order
to iterate over different architectures

6) optimization methodologies that can
optimize a design with respect to system
level objectives

7) distributed simulation to overcome
potentially large processing requirements

8) the simulation must be connected to a
data base, in order to keep track of the
large volume of information

9) models and data must be stored in a
standardized way, in order to ease
comparison and analysis

Figure 4 depicts such an automated design
process simulation. Each designer has to develop an
executable model of her/his design methodology.
Process engineers design the process design graph
that connect the executable design methodologies.

The simulation generates a set of feasible
designs and maps component uncertainties into
system uncertainties of coupled designs and can
determine which designs meet system requirements
for all uncertainties in parameters, architecture,
missions/use cases, and environment. If the system
performance falls within the permissible
performances of the design specifications, the
design is verified.

The system uncertainty determined by the
range of design variations also depicts the level of
uncertainty at a given stage of development. As the
different members of the design team get up the
learning curve, Figure 2, this uncertainty is going to
decrease. Unacceptable levels of system uncertainty
can be analyzed, causes determined and eliminated.

The automated design process can be
connected to a data base and automatically track
design changes and their impact on overall system
design criteria, including performance, cost, quality
of design.

The design process itself can be modeled and
optimized. In [7] the development process for a
railway switching system was modeled in
MLDesigner and optimized for team selection, team
load. Critical components of the development
process were identified and eliminated that would
have doubled the development time. In [10] the
design and development process for automotive
electronic control units was optimized using genetic
algorithms for finding the optimal combination of
design methodologies (team selection),
performance (timing, BER, cost and quality. Areas
for significant improvements were identified.

Figure 4: Executable design methodologies,
connected by a design process graph

Implementation of Design Automation
The proposed design automation technology is

being implemented and analyzed in the multi
domain simulator MLDesigner [9], which already
includes multiple execution domains, reducing the
need of interfaces to other tools. When necessary,
MLDesigner provides hooks that make it easy to
interface to tools with similar execution domains.
The Monte Carlo simulation capabilities of
MLDesigner automatically distribute simulations to
other computers that are registered to MLDesigner.
MLDesigner 2.7 includes an SQL library for easy
data base access.

All MLDesigner models are stored in XML,
supporting mapping though XSLT scripts.
Baumann [11] is developing network building
blocks and XSLT based mapping functions to
automatically map functional level models into
architecture and combined architectural and
functional models into implementations. Fischer

[12] is developing system level architecture
optimization technology which generates the
information about the optimal architecture, that can
then be read by the mapping functions of Baumann.
Riehmer [13] is developing a standardized XML
based data format for MLDesigner and Octave that
is compatible with the Open Office Document
Standard and can be read and generated by
spreadsheets from Open Office and Microsoft
Office. Genetic algorithm optimization methods
have been developed to optimize MLDesigner
models of design processes for performance and
quality. These algorithms will be extended for
optimization in automated design processes.

The next version of MLDesigner (3.0) will
provide new simulation set capabilities which have
been developed to make it possible to connect
independent simulations, using UML activity
diagram syntax that describes control flow, design
flow, work flow and/or analysis flow connecting the
elements of the simulation set. Parallel and
sequential execution will support automated
distributed simulation of independent simulations.
The design process graph can be defined by the
standard graphical model editor of MLDesigner,
Figure 5.

Figure 5: Sequential executions with termination
conditions (a,b) and parallel executions (c) of
MLDesigner simulation sets

Examples
This sections show two very simple examples

using the simulation set capabilities of MLDesigner
3.0 and using two external tools --- SatLab and
Octave --- for analysis. These low complexity
examples can be verified directly in MLDesigner
or by SatLab and Octave.

Example 1: The accuracy of a least squares
signal processing algorithm is analyzed for the
example of fitting a fourth order polynomial

 yi= p1 p2 xip3 xi
2 p4 xi

3i , =N 0,R

through a data set with normally distributed
measurement errors. 30 different data sets are
generated by MLDesigner and 30 to 1400
measurements are taken of these data for parameter
estimation. The parameter estimation is performed
by SatLab. Figure 6 shows how the parameter
estimation error change as a function of number of
measurements taken.

Figure 6: Analysis results for accuracy of least
squares parameter estimation algorithms

Example 2: Chapter 10.3 of Reference 14
shows a design methodology for a design
specification of a longitudinal controller for an
aircraft (Boeing 747). Variations in loading and
fuel consumption will affect aircraft dynamics
parameters and flight behavior. These parameters
changes are bounded by minimum and maximum
weight and the permissible minimum and maximum
center of mass location for the aircraft. Using
maximum and minimum values instead of nominal
values for seven longitudinal aircraft dynamics
parameters, results in 27=128 different dynamic
models of the aircraft pitch behavior. Figure 7
shows minimum, mean and maximum behavior of
an altitude change of the aircraft are affected by
40% changes in pitch parameters
Xu , Xw , Zu ,Zw ,Mu ,Mw ,andMq . The

results show that the chosen closed loop
eigenvalues for the autopilot design is very robust

against parameter changes and passengers will
hardly notice the changes in behavior.

Figure 7: Aircraft altitude hold autopilot
response verification for bounded aircraft parameter
changes of ±40 %

Conclusions
 Uncertainty of information in design of
complex systems is the primary reason for critical
problems and expensive corrective actions. A
design automation methodology based on coupled
models of design methodologies of participating
design groups and developers is proposed that
overcomes this critical design problem and enables
large design space exploration and verification of
uncertain systems. The developed methodology
permits verification of system level functional and
performance behavior in the presence of system
uncertainty. Digital as well as analog systems may
be verified by this methodology. A methodology for
implementing this methodology by the simulation
set capabilities of the development tool
MLDesigner is shown. Two simple examples show
how statistical and bounded system uncertainties
may be mapped into bounded system behavior by
automating design and analysis using an executable
design flow.

REFERENCES
[1] John Hines, We Don't Do Design Correctly!, Keynote

speech at IEEE 9th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication
Systems, MASCOTS 2001, Cincinati, Ohio, Aug. 15-18, 2001.

[2] Bruno Schienmann, Kontinuierliches
Anforderungsmanagement, Addison-Wesley, 2002. – ISBN 3-
8273-17-87-8

[3] Horst Salzwedel, Mission Level Design of Avionics,
AIAA-IEEE DASC 04 - The 23rd Digital Avionics Systems
Conference 2004, Salt Lake City, Utah, USA, October 24-28,
2004.

[4] Holger Rath, Gunar Schorcht, Horst Salzwedel,
Simulationsumgebung für Bordnetze - Bordnetz-
Spezifikationen modellieren und validieren, Hanser
automotive, 5-6.2006, S. 34-38, Carl Hanser Verlag München,
ISSN 1860-5699.

[5] Horst Salzwedel, Frank Richter, Matthias Kühn.
Standardized Modeling and Simulation of Hospital Processes -
Optimization of Cancer Treatment Center, International
Conference on Health Sciences Simulation, HSS '07, San
Diego, California, January 14-18, 2007.

[6] Ralf Pferdmenges, Presentation on current challenges
in chip design, EDACentrum Workshop: System Planning,
Hannover, Germany, November 30, 2006.

[7] Manuela Tröbs, Analyse, Optimierung und
Simulation des Simis IS Entwicklungsprozesses, Thesis,
Siemens/Technical University Ilmenau, June 2006.

 [8] Matthias Kühn, Frank Richter, Horst Salzwedel,
Process simulation for significant efficiency gains in clinical
departments – a practical example of a cancer clinic, to be
presented at 52th International Scientific Colloquium, Ilmenau,
September 10-12, 2007.

 [9] MLDesigner® Manual v3.0,
http://www.mldesigner.com

[10] Tom Dengler, Host Salzwedel, Optimierung von
komplexen Enwicklungsprozessen mittels simulationsgestützter
Prozessanalyse, to be presented at 52th International Scientific
Colloquium, Ilmenau, September 10-12, 2007.

[11] Tommy Baumann, Horst Salzwedel, Mapping of
Electronic System Level (ESL) Models Into Implementation,
DATE'07, Acropolis, Nice, France, April 16-20, 2007.

[12] Nils Fischer, Design of a Plug-and-Play
Development Environment for Optimizing Avionics Systems
Architectures, Thesis, Airbus/Technical University Ilmenau,
July 2007.

[13] Stefan Riehmer, Standardizing Data Storage for
MLDesigner and Octave using the Open Office Document
Standard, Thesis, Technical University Ilmenau, August 2007.

[14] Gene Franklin, David Powell, Abbas Emami-Naeini,
Feedback Control of Dynamic Systems, Pearson Prentice Hall,
New Jersey 2006.

AUTHOR:
Horst Salzwedel, Technical University Ilmenau,

horst.salzwedel@tu-ilmenau.de

http://www.mldesigner.com/
http://www.mldesigner.com/
http://www.mldesigner.com/

	Abstract
	Introduction
	Product Uncertainty
	Complex System Design
	Design Automation
	Implementation of Design Automation
	Examples
	
	Conclusions
	AUTHOR:

