Overcoming the Gap between Design at Electronic System Level (ESL) and
Implementation for Networked Electronics

Tommy Baumann, Maik Hauguth, Horst Salzwedel
Technical University of Ilmenau, Dept. of Computer Science and Automation
D-98693 Ilmenau, Germany
Tommy.Baumann, Maik.Hauguth, Horst.Salzwedel @ TU-Ilmenau.de

Keywords: Electronic System Level (ESL), Architecture
Model, Performance Analysis, Synthesis

Abstract

Transition to model based design of systems at electronic sys-
tem level (ESL) has greatly reduced the complexity by raising
the level of abstraction. It resulted in improvements in qual-
ity of design, reduction of development time, and reduction
of number of iterations in design. A new emerging problem
is the widening of the gap between design at ESL and imple-
mentation. In this paper a method is presented to overcome
this gap. For the design of a inexpensive high precision po-
sitioning system based on GPS, additional sensors, and dif-
ferential signals, functional requirements are mapped into a
MLDesigner ' model containing functional model, environ-
mental model, and use cases. Annotations on the model are
automatically translated in an architectural model with chan-
nels, resources, events, and memory from a developed stan-
dardized library. After design iterations on architecture from
a selected sub-model, an implementation framework for hard-
ware and software code is generated and I/O specific param-
eters are added. The code can be used on FPGAs and embed-
ded processors.

INTRODUCTION

Rapid advancements in microelectronics enables embed-
ded systems to execute complex algorithms at speeds of super
computers.

Electronic systems in aircraft, automobiles, home entertain-
ment systems, mobile telephones, GPS/Galileo navigation
systems, multi-functional systems such as Quint Network
Technology (QNT) or Systems On Chip (SoC) are today net-
worked embedded systems that exhibit complexities that can
no longer be developed at reasonable cost and acceptable
technical risk at implementation level or functional level. In-
tegrated hierarchical model based design methodologies and
tools have to be used to integrate the design flow from con-
cept to implementation. Moving model based design method-
ologies to electronic system level (ESL) has permitted rapid
development of verified executable specifications [9], model
systems at system level [10], fast optimization of networked

'MLDesigner is a trademark of MLDesign Technologies

architectures at performance level [4] or size resources in
complex reconfigurable electronics [2]. The move towards
higher abstraction has made it possible to cope with the in-
creased complexities. However, it has widened the gap be-
tween design and implementation. In this paper a method is
presented that overcomes the gap between abstract system
models for design and the realization in hard and software at
RTL level. An integrated design methodology and extensions
for the tool MLDesigner [5] are presented that makes design
decision on function, performance, and architecture at ESL
and translates this design automatically to VHDL. Figure 1

Mission Level (Environment,
(1) Create Behavioural Use Cases, Test Cases)

Model

System Design
(2) Create/Generate Derivation
Architectural Model

Validation

Electronic System Level

(3) Performance
analysis by
simulation

Function =\ Performance
Analysis of
Performance/Architecture {4 Communication

Performance 1|
Analysis of
Execution “-p

(4) Transform model
into executable
code

Verification &
Synthesis Implementation
Details

(5) Test and validate

prototype Implementation Level (C, VHDL)

Figure 1. Mission level system design flow

shows in overview the proposed design flow from mission
level with informal descriptions of the systems tasks, use- and
testcases and its environment to implementation in hard- and
software. The link between mission level and implementa-
tion is the electronic system level. Function and architecture
is designed and validated at that level. The left side of Figure
1 shows neccessary steps for a systems design and their con-
nection to the particular abstraction levels.

The new design methodology is demonstrated for the de-
sign of a Cheap High Precision Positioning (Chippo) system.
Figure 2 shows the functional characteristics of the Chippo
system. The position measurements of a GPS receiver are en-
hanced by measurements of accelerations and angular rates
of an inertial measurement system on a chip and integrated
by a Kalman navigation filter. The accuracy of the GPS re-
ceiver is enhanced by differential GPS corrections received

inertial
Sensors
INS Data
. | RF RD Interr.| System GPS
FM Radi S {nterr} 5 .
Decoder Controller| Receiver
| | IT1 RS-488 |
internal System Bus 12C (D)GPS Data Link
UsB
Controller|

¢

Figure 2. Concept of the GPS based positioning system
Chippo

from RASANT 2. The interface to external systems is real-
ized by USB. For the development of this system some of the
hardware components are available off the shelf, others have
to be developed and integrated into the overall positioning
system. We now describe the different steps of the developed
design methodology.

FUNCTIONAL SPECIFICATION

An embedded system that controls processes or that pro-
cesses analog and digital signals is often characterized by a
considerable algebraic complexity. A mathematical model of
its functions is essential for a successful design. Usually core
functions of embedded systems can be described by algebraic
or differential equations. However, continous processes must
be discretized for an implementation in digital systems. The
validated mathematical model is the basis for the system de-
sign.

The mathematical model of the sensor fusion system within
Chippo is a discrete Kalman navigation filter [6]. This model
was developed and validated with GNU Octave [3]. Charac-
teristic trajectories for the missions of the system, use cases,
are used for the validation.

To permit a unified integrated design, the mathematical model
was described by a hierarchical block diagram of the model-
ing tool MLDesigner. MLDesigner models and simulations
can be defined by a graphical model editor and are stored in
XML, permitting standardized methods for transformations
and translations of the models. Multiple execution domains
permit to model functional behavior, the environment and the
architecture in their respective native forms. The execution
domains include discrete events (DE), synchronous and dy-
namic data flow, extended finite state machines (FSM) and
continuous and analog domains.

A hierarchical functional model of the system and the envi-
ronment was developed and validated by simulation against

2RASANT is a service provided by the German ARD radio stations,
which broadcasts RDS GPS corrections via its FM stations

the Octave model for the use cases defined. Implementable
algorithms are used for all mathematical descriptions. First
all non-algebraic functional characteristics are defined. These
include processes for control and data handling. Doing this in
the appropriate form already for the abstract model assures
that the model can later be implemented.

Critical for later integration of the system are the correct
interfaces between components and to the environmental
model. Inputs from the environmental models are typically
events that cause state transitions in the model. In our design
methodology these inputs are modeled as port objects. Port
objects react to events and trigger execution of functions of
the model. Another method to receive information from the
environment is by sensors, which are polled for physical and
logical values at defined times. The outputs of the environ-
mental model are modeled as memory objects that represent
the state of the environmental model at all times. The environ-
mental model updates these memories and the sensor model
of the system reads the values from these memories. Port as
well as memory objects may use complex data structures for
describing the status of a system. To describe a priori known
implementation details like range of values, a defined struc-
tured annotation is used. These define specific characteristics
for each model element. Constraints from iterations in the de-
sign process may be defined here for the abstract model.

For the Chippo project, validated functional behavior was de-
fined by hierarchical MLDesigner modules. Figure 3 shows
the top-level hierarchy of the functional and environmental
model. The states of the environmental model, e.g., the num-
ber of available radio stations or kinematic states are realized
by memories. The characteristics of the environmental model
can be changed by parameters. Additional elements for re-
ception and decoding of differential GPS data are added. The

FRadioStations F_ecef
@ W ecef W _hody

A_ecef A _hody

Station Table

(Enviranment)
INS Sensors
Traiectory
Frequency RDS
(1]) (i (Environment)
SignalLevel
@ SearchStopLevel
Search Direction RDSMsy

FM Fadio Receiver L £+ RDS Decoder

§corvos §—f e

Figure 3. Top level structure of the Chippo functional model

functional model of the Chippo system therefore includes the
validated functional model as well as the event based pro-
cesses for operation of the system. The system is validated

by simulation against the mathematical model of the system.
Figure 4 compares the accuracy of the differential GPS and
sensor enhanced Chippo functional model and the pure GPS
position estimation.

Absolute position error

—— CHIPPO Position Error

GPS Position Error

—o-==m
o
T

EII 'IIEI Z‘EI S‘EI 4‘El 5‘El E‘El ?‘El E‘EI
Timeins
Figure 4. Comparison of the differential GPS and sensor en-
hanced Chippo functional model and pure GPS

ARCHITECTURAL SPECIFICATION

After system behavior is specified, accompanying
execution- and communication structure must be pinpointed
in the form of an architecure model. Executable compo-
nents (partitions) are operating resources of their assigned
functions of the functional model. Data transfer between
partitions is modeled by communication components (chan-
nels). Communication structure arises from the partitions,
because interacting functions within the functional model
are mapped on channels within the architectural model.
The architectural model permits performance analysis of
execution and communication components by simulation
on ESL level. Specific properties of partitions and channels
are abstracted by parameterized resources. Utilization of
resources is expressed in terms of quantities and queuing of
events. Resources restrict the choice of assignable functions
to partitions and throughput of channels. For example,
quantity resources can model memory or CPU utilization of
partitions and queue resources can control access of channels
within the model. The architectural model is also the basis
for the following synthesis.

Figure 5 shows how functions (F) are mapped on partitions
(P) to create an architectural model automatically. XSLT
3 scripts have been developed that map architectural into
functional and inverse functional into architectural models.
Only certain parts of the behavioral model are assigned
to real partitions. Parts belonging to the environmental
model are assigned to a virtual partition (Env). Of course
the architectural model can also be modeled directly. The
lower part of Figure 5 shows the several elements of the
architectural model. They are defined in a common library,

3XSLT Extensible stylesheet language for transformation

Figure 5. Generation of architectural model from behavioral
model

the Network Block Set. It contains partition patterns (P), a
generic interface (I), channels (C), and different resources
(R). Each channel can be understood as a one to one connec-
tion between exactly two partitions, chanalizing the whole
communication between them. Data transfer is accomplished
on the abstract level with help of data structures protocol
packet and data packet. Protocol packets are timeless and
control interface handshake sequences. Data packets transfer
data and adresses information. They are transfered com-
pletely and delayed based on channel performance. Channel
resources model channel usage rate and define network
topology by their linkage. This allows to connect several
one to one channels to a network. Furthermore the resource
link concept is a fast and easy possibility to iterate through
different network topologies. The connection of partitions
and channels is realized by means of generic, channel and
partition independent, interfaces. Interfaces manage data that
are sent to queues. They have an active or passive request
behavior regarding channels. Examples of active channels
are USB 2.0, FlexRay, and Wishbone* shared bus, and for

4The WISHBONE System-on-Chip (SoC) Interconnect Architecture for
Portable IP Cores is a portable interface for use with semiconductor IP cores.

passive serial interface EIA232 and Wishbone dedicated
bus. The generic interfaces allow to exchance such channels
without the need of interface adaption. As mentioned above
channels are abstracted from existing bus protocols. It is up
to the engineer on which abstraction level they are designed
and which attributes are relevant for performance analysis.
For example a USB 2.0 channel can neglect electrical and
mechanical aspects of the bus. Furthermore USB hubs can
be omitted with the restriction that all devices are directly
connected to the USB host controller. Distances between
hubs are neglected. Relevant attributes are transfer speed,
transfer mode packet size (maximum payload size per
transaction) and poll interval (bus access period).

Simulation of the architectural model allows analysis of
performance parameters (e.g. timing) of execution and
communication structure. Iterated variations on architectural
model lead to an optimized design. For simulation a discrete
event (DE) based execution model is used. This permits the
delay of the data flow within partitions and on connection
channels. For analysis the usage rate of resources is observed.
If a modeled architecture variant is not realizable, an error
message is displayed.

Figure 6 shows the architectural model of the Chippo sys-

D L pINS g 4 Y LR cove
D Goneric B0 Generic 1. ‘:. —1
L system

&

5 Resource!
s &

b

1. b £ DGPS Radio
n-.
CrlH

3 4 Cortrallzr
b GPS r
b o I D o D pgass O
Envionment B 10 Generie B U B Rsaes

E Fesource?

Figure 6. Chippo architectural model

tem. It consists of partitions System Controller, INS Sensors,
GPS Receiver, USB Controller and DGPS Radio Receiver,
furthermore, it contains the special partition Environment
for the environmental model. Every partition has exactly
one interface with one input and one output port for every
connected channel. Thru these ports data are chanalized. To
explain the principle of chanalisation Figure 7 shows the
internal structure of partition System Controller. There are
four interfaces connected with different functions, whereby
each interface externaly communicates with one in another
partition.

After mapping functions of the Chippo project to architec-
tural partitions, functions that are neccessary for operation
and interaction of their partitions were modeled. In partic-
ular, application specific communication protocols between
partitions were modeled by FSMs. The extended model
was validated by comparison with results of the functional
and mathematical models. Measurements of architectural
model performance values (like data rate and volume) lead

to predictions of required communication and execution
capabilities.

-\NSRate
ECEFeBady# 3]
Estimator#! [y 3 b
&

Packet Dut
Facketini

? InterfaceAtad :—
e 2

3 InterfaceAnas :—
2

PacketDut 5 Sartss setne
Packetinf 3 nterfaceatiel b Clock#2
2

Figure 7. System Controller partition of Chippo architec-
tural model

IMPLEMENTATION

The development of a working prototype at the implemen-
tation level requires transformation of the abstract models of
function and architecture into hardware and software com-
ponents. It is desirable that as little as possible has to be
tuned by hand. The main task in translating the ESL func-
tional/architectural model into a prototype is the translation of
the algorithms into hard- and software languages (IP Cores)
and mapping of transactions between architectural compo-
nents into implementation specific communication structures.
The architectural model, as we described it in the previous
section, permits to generate a message passing communica-
tion system, which can be used for hardware and software.
Mapping of transactions into message passing communica-
tion models is controlled by modeled elements of the archi-
tectural model and annotations. The advantage of this method
is its easy realization into languages like VHDL that do not
explicitly support this construct.

The ESL functional/architectural model includes all informa-
tion about communication system and distribution of func-
tional and architectural components. Components of the ar-
chitectural model become IP cores or independent SW pro-
cesses of the implemented prototype. Transformation of mod-
els is carried out independently for each partition. Each par-
tition is transformed by an XSLT transformation into imple-
mentable functional code plus interfaces. Modifications of the
XSLT scripts permit to generate code for different descrip-
tion languages or intermediate descriptions. To perform this
translation, XSLT transformations have been developed that
translate annotated XML descriptions of the model into im-
plementable code. XSLT transformations for translations into
VHDL code have been developed that permit implementa-
tion of partitions in FPGAs and ASICs. Dependent on the
structure of the communication system and the architectural
components, corresponding interfaces and architectural com-

ponents have to be generated. There are a variety of standards
that define communication between architectural components
at board level, e.g., VME, PCI, as well as on ICs, e.g., Wish-
bone.

Table 1 depicts developed XSLT transformations into VHDL
code and documentation at ESL and implementation level.
Dependent on structure and interfaces of architectural com-
ponents synchronous or Wishbone interfaces can be gener-
ated.

The transformations also generate the documentation auto-
matically. However, it must be noted that initially not all
implementation details become known for a complete im-
plementation. As more details of the implementation are
known, they can be added to the annotation of the ESL func-
tional/architectural model, permitting more detailed perfor-
mance analysis and more detailed generation of the inter-
face. Figure 8 depicts the flow for iterative transformations
for transforming an ESL model into code for implementation
of hardware and software. A method has been developed to
integrate newly generated code with already implemented de-
tails. It is based on the DIFF utility. Added implementation
details during an iteration will not be overridden for a new
code generation.

The ability to translate functional components into HW and
SW languages depends on how the modules are being de-
scribed. Only carefully coded standardized libraries at ESL
level can be translated into implementable code that ap-
proaches hand coding. Different methods and tools for code
generation are available. Descriptions like functional speci-
fications by hierarchical FSM permit an automatic transla-
tion into efficient and high quality code. The generation of
ANSI C and VHDL code from hierarchical FSMs was solved
in references [1] [8]. It was shown that realization and im-
plementation of the communication interface plays a pivotal
role for integration into an implementation. Maintaining the
hierarchical structure of ESL functional/architectural models
permits the simplification of the code generation by following
the hierarchy step by step.

SDIFF is Linux tool to compare the content of different files

Table 1. Developed XSLT transformations for hardware im-

plementations and documentation
Model Transformation Documentation

System Schematic Model documentation
Module Schematic Model documentation
Wishbone IP core Wishbone datasheet

VHDL component
FSM Wishbone IP core Model documentation
VHDL component Wishbone datasheet
Primitive Model documentation

XSLT
Transformation)

XSLT
Transformation|

Figure 8. Iterative transformations for the generation of
hardware and software code

For the Chippo example the architectural components have
been translated into Wishbone compatible VHDL IP cores.
The automatic generation of communication software pro-
cesses is intended. ESL virtual prototypes, described by
MLDesigner XML descriptions have been translated into
HW/SW code by XSLT transformations. Generation of im-
plementation details, integration and test are strongly depen-
dent on the realization of the used architectural components.
Manufacturer specific tools may be used here.

CONCLUSION

An integrated design method for overcoming the gap be-
tween design at ESL and implementation has been devel-
oped. The new design methodology was demonstrated for
the design of a high performance GPS based positioning sys-
tem with differential corrections and additional inertial mea-
surements. During the functional level design step, a naviga-
tion filter was designed to meet the functional requirements
of the system. In the next design step architectural elements
were automatically added to this model by XSLT transfor-
mations from annotations. Sizing information for the archi-
tectural components were determined by performance simu-
lation. In the third step the ESL model was translated by an
XSLT script into HW/SW code of a prototype:

e algorithms are translated into HW and SW languages (IP
Cores)

e channels and their interfaces are translated into interface
IP Cores

e resources of the ESL model determine the topology of
the implementation of the buses

e some of the interface IP Cores are already defined in e.g.
the Wishbone Specification [7]

Implementation details were added iteratively by updating
annotations on the ESL model.

ACKNOWLEDGEMENT

We thank MLDesign Technologies Inc. for the use of their
MLDesigner modeling and simulation tool without which this
work had not been possible.

REFERENCES

[1] Chris Lanfear; Matt Volckmann. 2005. Bridging The
Software Complexity Gap. Venture Development Corp.
Electronic Design Europe Digital Magazine.

[2] D. Bueno; C. Conger; A. Leko; I. Troxel; A. George.
2005. RapidlO-based Space System Architectures for
Synthetic Aperture Radar and Ground Moving Tar-
get Indicator. High-Performance Embedded Computing
(HPEC) Workshop, MIT Lab, Lexington, MA.

[3] Eaton, John W. 2004. GNU Octave Documentation. Uni-
versity of Wisconsin. http://www.octave.org.

[4] K.M. McNeir; M. Zens; H. Salzwedel. 2003. System-
Level Partitioning Using Mission-Level Design Tool for
Electronic Valve Application. SAE 2003 World Congress,
Detroit, Michigan.

[5] MLDesign Technologies Inc. 2006. MLDesigner Docu-
mentation. http://www.mldesigner.com.

[6] Qi, Honghui; Moore, John B. 2002. Direct Kalman fil-
tering approach for GPS/INS integration. IEEE Transac-
tions on Aerospace and Electronic Systems.

[7] Richard Herveille. 2002. WISHBONE System-on-Chip
(SoC) Interconnection Architecture for Portable IP
Cores. opencores.org.

[8] Rath, Holger; Salzwedel, Horst. 2004. ANSI C Code Gen-
eration for MLDesigner Finite State Machines. Shaker,
Aachen. 49. Internationales Wissenschaftliches Kollo-
quium IWK’2004.

[9] Rath Holger; Schorcht Gunar; Salzwedel Horst. 2006.
Validation of Executable Specification of Automotive
Power Management System by Simulation (in German).
Hanser automotive, Carl Hanser Verlag, Munich

[10] Schorcht, Gunar; Troxel, Ian; Farhangian, Keyvan;
Unger, Peter; Zinn, Daniel; Mick, Colin K.; George,
Alan; Salzwedel, Horst. 2003. System-level simulation
modeling with MLDesigner. Modeling, Analysis and

Simulation of Computer Telecommunications Systems
2003. MASCOTS 2003. 11th IEEE/ACM International
Symposium.

