

Ecore for
MDE4CPP

Tutorial

For Windows

Tutorial MDE4CPP

 1. Introduction - 1 -

Table of contents

1. Introduction .. 2

1.1. Content .. 2

1.2. Reference Model ... 3

2. Tutorial: Creating an Ecore Model using Code 4

2.1. Creating the project ... 4

2.2. Creating Ecore-Elements using the Factory 6

2.3. Creating Ecore-Elements using Metaclass Names 8

2.4. Creating Ecore-Elements using Classifier IDs 10

2.5. An Output-Method for the model 12

2.6. Compiling the project ... 13

3. Tutorial: Creating an Ecore Model using EMF 15

3.1 Creating the project .. 15

3.2 Creating our Ecore-Model in EMF .. 17

3.3 Writing a main.cpp for the project .. 21

3.4 Generating and compiling the model code 23

4. Tutorial: Ecore Model Behavior 26

4.1 Adding custom methods to the model 26

4.2 Including libraries for custom methods 28

4.3 Testing the final model ... 30

5. Tutorial: MDE4CPP Plugin Framework for Ecore . 32

5.1 Creating the project .. 32

5.2 Including and using the model plugin 34

5.3 Compiling the project .. 38

MDE4CPP Tutorial

- 2 - 1. Introduction

1. Introduction
The objective of the MDE4CPP project is to exploit the chances and opportunities of
Model Driven Engineering (MDE) for the development of software using the
programming language C++.

The idea behind MDE is to close the gap between the model level and the source code
level of software development by using domain specific models for automated generation
of source code during the whole development process. By that, increasingly extensive
software systems which implement more and more complex issues can be abstracted
and become more understandable and tangible for software developers. As a result, the
amount of sources of errors during the development process should be reduced.
Moreover, software could be created much faster, cheaper, more efficient and of higher
quality.

1.1. Content
At the moment there are mostly Java based tools available for model driven software
development. The MDE4CPP framework provides a set of tools which (in combination
with the Eclipse Modelling Framework by the Eclipse Foundation) enables a model
driven development process with C++.

Currently, the following (meta) models are available:

- ecore (metamodel by the Eclipse Foundation)
- UML (unified modelling language by the OMG)
- fUML (foundational UML, standardized executable UML by the OMG)

This document is an introduction to working and developing ecore models with the
MDE4CPP framework. It provides a reference model (see section 1.2) which will be the
basis for the step-by-step instructions on the functioning and workflow of the MDE4CPP
framework (starting with creating a project through creating models, all the way to source
code generation and compilation).

Important Notes:

1. In order to be able to follow this tutorial, a fully functioning installation of
MDE4CPP is required. For a detailed setup and installation guide for MDE4CPP
as well as all required software components, please see the setup and installation
guide.

2. It is highly recommended to abide by the naming conventions (parameters,
names, file/directory/project names, etc.) used in this document. Especially some
identifiers that are relevant for code generation and/or compilation must have
certain names.

3. Complete versions of all tutorial projects (tested and working) can be found in the
directory tutorialProjects.

Tutorial MDE4CPP

 1. Introduction - 3 -

1.2. Reference Model
The following figure shows the reference model for the ecore tutorials in this document
in the form of a class diagram.

Fig. 1: Reference model "University Model"

It shows a typical university scenario. The model elements are:

- classes like “University”, “Student”, “Faculty”, etc.
- class attributes like the name of a lecture or the matriculation number of a student
- user defined class operations
- relationships like generalization and associations with different multiplicities

MDE4CPP Tutorial

- 4 - 2. Tutorial: Creating an Ecore Model using Code

2. Tutorial: Creating an Ecore Model using Code

In this tutorial we will create ecore model elements (classes, attributes, references, etc.)
via C++-Code. In MDE4CPP there are three different possibilities to create instances of
ecore model elements: using the EcoreFactory, using the metaclass name or using the
classifier ID.

The ecore metamodel contains elements like EPackage, EFactory, EClass, EAttribute,
EAnnotation, EReference, EDataType, and many more. For further information on model
elements and their relations, see the ecore documentation.

Because creating an ecore model only using code will result in lots of code, we will just
create a small part of the reference model in this tutorial.

Hint: For help, find the complete and finished project here.

2.1. Creating the project
Step 1:

First we need to create the project. We will use an Eclipse IDE for developing C/C++-
Applications, which you can download here. Extract the directory and start Eclipse.
Choose %MDE4CPP_HOME%\userProjects as workspace directory, where
%MDE4CPP_HOME% is the directory you installed MDE4CPP to. Click Launch.

Step 2:

From the menu bar choose File New C/C++-Project. Choose the C++
Managed Build template and click Next. Name the project “UniExample_ecore”,
choose “Empty Project” as project type and “MinGW GCC” as compiling toolchain.
Click Finish.

https://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/package-summary.html
https://www.eclipse.org/downloads/packages/

Tutorial MDE4CPP

 2. Tutorial: Creating an Ecore Model using Code - 5 -

Step 3:

Inside the project explorer right-click UniExample_ecore, then choose
New Folder and create a folder called “src” inside your project. After creating the
folder, right-click it and choose New Source File and create the file “main.cpp”
inside the source folder. The project-tree inside the project explorer should look like
this:

Hint: After creating the project using Eclipse you can also edit the file
“UniExample_ecore\src\main.cpp” using any other text editor, source code editor, etc.
(e.g. Notepad++) from now on, if you wish.

MDE4CPP Tutorial

- 6 - 2. Tutorial: Creating an Ecore Model using Code

2.2. Creating Ecore-Elements using the Factory
The EcoreFactory class provides operations to instantiate elements of the ecore
metamodel (e.g. EcoreFactory->createEClass() returns an instance of
std::shared_ptr<ecore::EClass>). You can find the full implementation of the
EcoreFactory class in the file

%MDE4CPP_HOME%\src\ecore\ecore\src_gen\ecore\impl\EcoreFactoryImpl.cpp
where %MDE4CPP_HOME% is the directory you installed MDE4CPP to.

Step 1:

First we need the code ‘frame’ (required ecore libraries includes, namespace
declarations, main() function). Copy the following code to the (empty) main.cpp file
of the UniExample_ecore project:

// Include standard libraries
#include <iostream>

// Include header files for ecore
#include "ecore/EcoreFactory.hpp"
#include "ecore/EcorePackage.hpp"

using namespace ecore;
using namespace types;

int main()
{

 return 0;
}

Step 2:

Before we can create any model elements, we need instances of EcorePackage and
EcoreFactory (Package and Factory for the ecore metamodel). Add the following first
instantiations to your main() function:

// Create an instance of an ecore package and an ecore factory
// (both are needed to create an ecore model)
std::shared_ptr<EcorePackage> ecorePackage = EcorePackage::eInstance();
std::shared_ptr<EcoreFactory> ecoreFactory = EcoreFactory::eInstance();

Step 3:

Now we can use the ecoreFactory object to create instances of ecore model
elements. First we need a root/main package that will later contain our model classes.
We will name it “UniExample_ecore”.

// Create an instance of EPackage (using the ecore factory)
std::shared_ptr<EPackage> rootPackage = ecoreFactory->createEPackage();
rootPackage->setName("UniExample_ecore");

https://www.tu-ilmenau.de/sse/forschung/projekte/mde4cpp/beispiele/

Tutorial MDE4CPP

 2. Tutorial: Creating an Ecore Model using Code - 7 -

As an example, let’s create an EClass object that will represent the Student class
(see section 1.2). First include the required header in your main.cpp file.

#include "ecore/EClass.hpp"

By calling the createEClass_in_EPackage() function, the EClass instance is
automatically added to the root package.

// Create an instance of EClass (which will become our UniModel classes)
// in root package that we just created (using ecore factory)
std::shared_ptr<EClass> eClass_student =
ecoreFactory->createEClass_in_EPackage(rootPackage);

Further we create an instance of EAttribute (e.g. matriculation number of a student)
and assign an Integer data type to it. First include the required headers in your
main.cpp file.

#include "ecore/EAttribute.hpp"
#include "ecore/EDataType.hpp"
#include "types/TypesPackage.hpp"

By calling the createEAttribute_in_EContainingClass() function, the EAttribute
instance is automatically added to our student EClass object.

// Create an instance of EAttribute for the EClass that we just created
// (using the ecore factory)
std::shared_ptr<EAttribute> eAttribute_student_matNum =
ecoreFactory->createEAttribute_in_EContainingClass(eClass_student);

Before we can assign a data type, we need to create an instance of TypesPackage.
We use the TypesPackage object to get an EDataType object representing an
Integer type.

std::shared_ptr<TypesPackage> typesPackage = TypesPackage::eInstance();
 //Assign data type "Integer" to the matriculation number EAttribute
 eAttribute_student_matNum->

setEType(typesPackage->getInteger_Class());

Step 4:

Finally, let’s set some properties for our model elements. For example we could set
names regarding the reference model.

// Set properties of our ecore model elements
eClass_student->setName("Student");
eAttribute_student_matNum->setName("matNum");

Hint: There are many more properties that can be manipulated (depending on the
type of model element). For more information, see the ecore documentation and
select a page about a specific model element.

You can find the implementation files of the model elements (some Setter functions
may be found in super classes of model elements) in directory

%MDE4CPP_HOME%\src\ecore\ecore\src_gen\ecore\impl
where %MDE4CPP_HOME% is the directory you installed MDE4CPP to.

https://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/package-summary.html

MDE4CPP Tutorial

- 8 - 2. Tutorial: Creating an Ecore Model using Code

2.3. Creating Ecore-Elements using Metaclass Names
We will continue to create our university model by creating instances of model
elements using the name of their metaclasses. The EcoreFactory class provides an
implementation of its create() method, which we pass a parameter of type String.
Respectively the name of a metaclass (e.g. “EClass”, “EAttribute”, … as Strings).

The basic idea is to instantiate an instance of EObject1 using the name of a
metaclass, then casting the EObject to an instance of the actual subclass (model
element) that we wanted to create.

Step 1:

First include the required header in your main.cpp file.
#include "ecore/EStringToStringMapEntry.hpp"

Create an instance of EObject with metaclass name “EClass” and declare the actual
EClass object (let’s create the Faculty class) that will be instantiated later.

std::shared_ptr<EObject> eObject_1 = ecoreFactory->create("EClass");

 //Forward declaration
 std::shared_ptr<EClass> eClass_faculty;

Step 2:

We need to check if our EObject instance was created successfully. If the create()
function is passed an unknown metaclass name, then the eObject_1 object will be
NULLPTR. E.g. ecoreFactory->create(“someUnknownMetaClass”) will return
nullptr.

If eObject_1 was instantiated successfully, we can use it to instantiate the
eClass_faculty object. We perform the same null pointer check on our EClass
instance.

if (eObject_1 != nullptr) {

 // Cast eObject_1 to an EClass object
 eClass_faculty = std::dynamic_pointer_cast<EClass>(eObject_1);
 if (eClass_faculty != nullptr) {

 eClass_faculty->setName("Faculty");

// !!Code for Steps 3 and 4!!

 }
 }

1 EObject is (similar to the Object class in Java) the root super class of all ecore model elements

Tutorial MDE4CPP

 2. Tutorial: Creating an Ecore Model using Code - 9 -

Step 3:

Because we have two different classes in our model now, we can create a reference
between students and lectures. First include the required header in your main.cpp
file.

#include "ecore/EReference.hpp"
#include "abstractDataTypes/SubsetUnion.hpp"

In this case we will create a “hasStudents”-like reference in our newly created
eClass_faculty object using EReference’s metaclass name.

//Creating an EReference via EObject using metaclass name
std::shared_ptr<EObject> eObject_2 = ecoreFactory->create("EReference");

//Forward declaration

 std::shared_ptr<EReference> eReference_faculty_student;

 if(eObject_2 != nullptr){
 // Cast eObject_2 to a new EReference instance

eReference_faculty_student =
std::dynamic_pointer_cast<EReference>(eObject_2);

 if(eReference_faculty_student != nullptr){

 eReference_faculty_student->setName("students");

 //Reference will be of type "Student"
 eReference_faculty_student->setEType(eClass_student);

 //-1 is used to set a [0..*] multiplicity
 eReference_faculty_student->setUpperBound(-1);

 //Add our new reference to our lecture class
 //In MDE4CPP Bag<> is used as container class

 std::shared_ptr<Bag<ecore::EReference> > references =
 eClass_faculty->getEReferences();

 references->add(eReference_faculty_student);
 }
 }

Step 4:

Finally, we add the Faculty class to our root package. First include the required
header in your main.cpp file.

#include "ecore/EClassifier.hpp"

The following code adds the eClass_faculty object to our model’s root package.
// Add our new class to our package
//In MDE4CPP Bag<> is used as container class

 std::shared_ptr<Bag<ecore::EClassifier> > classifiers =
rootPackage->getEClassifiers();

classifiers->add(eClass_faculty);

MDE4CPP Tutorial

- 10 - 2. Tutorial: Creating an Ecore Model using Code

2.4. Creating Ecore-Elements using Classifier IDs
The third possibility to create an ecore model element is using its metaclass’s ID. The
basic idea is to retrieve the element’s metaclass information and creating an instance
of it by the metaclass ID (integer value).

Step 1:

First we will create an EClass object using the eObject_1 object from section 2.1.3.
Using the EObject->eClass() method, we can retrieve the metaclass information of
an EObject instance (remember that eObject_1 was instantiated using the metaclass
name of EClass).

// Since eObject_1 was instantiated by metaclass name "EClass"
// this will return metaclass information for EClass

 std::shared_ptr<EClass> eClass_metaclass = eObject_1->eClass();

Step 2:

We can create a new EObject instance by retrieving the ClassifierID parameter of
our new eClass_metaclass object. Then we will cast the new EObject instance to a
new EClass instance that we actually want to create.

// Create a new instance of EObject using the classifier ID of
// metaclass EClass

 std::shared_ptr<EObject> eObject_3 =
ecoreFactory->create(eClass_metaclass->getClassifierID());

 //Forward declaration
 std::shared_ptr<EClass> eClass_exam;

Because the classifier ID could be invalid (which would result in a null pointer object),
we have to do the same check like in section 2.1.3 before casting our instances and
creating a new EClass object.

if (eObject_3 != nullptr) {
 // Cast eObject_3 to a new EClass instance
 eClass_exam = std::dynamic_pointer_cast<EClass>(eObject_3);

 if (eClass_exam != nullptr) {
 eClass_exam->setName("Exam");

 // !!Code for Steps 3 and 4
 }
 }

Tutorial MDE4CPP

 2. Tutorial: Creating an Ecore Model using Code - 11 -

Step 3 (optional):

We will add some attributes and references (to output them later) to our model using
the EcoreFactory (see section 2.1.2). This step is not necessary for further steps.

// Create an additional attribute in our new class
 std::shared_ptr<EAttribute> eAttribute_exam_score =

ecoreFactory->createEAttribute_in_EContainingClass(eClass_exam);

eAttribute_exam_score->setName("score");
//Assign data type "Real"(=Float) to the exam score EAttribute

 eAttribute_exam_score->setEType(typesPackage->getReal_Class());

 //Add an additional EClass
 std::shared_ptr<EClass> eClass_lecture =

ecoreFactory->createEClass_in_EPackage(rootPackage);
 eClass_lecture->setName("Lecture");

 // Add an additional reference between Exam class and Lecture class
 std::shared_ptr<EReference> eReference_exam_lecture =

ecoreFactory->createEReference_in_EContainingClass(eClass_exam);
 eReference_exam_lecture->setName("lecture");
 // Reference will be of type "Lecture"
 if(eClass_lecture != nullptr){

eReference_exam_lecture->setEType(eClass_lecture);}

 //Add another reference between "Faculty"-class and "Lecture"-class
 std::shared_ptr<EReference> eReference_faculty_lecture =

ecoreFactory->createEReference_in_EContainingClass(eClass_faculty);
 eReference_faculty_lecture->setName("lectures");
 eReference_faculty_lecture->setUpperBound(-1);
 // Reference will be of type "Lecture"
 if(eClass_student != nullptr){

eReference_faculty_lecture->setEType(eClass_lecture);}

Step 4:

Finally, we add the Exam class to our root package.
// Add our new class to our package
//In MDE4CPP Bag<> is used as container class

 std::shared_ptr<Bag<ecore::EClassifier> > classifiers =
rootPackage->getEClassifiers();

 classifiers->add(eClass_exam);

MDE4CPP Tutorial

- 12 - 2. Tutorial: Creating an Ecore Model using Code

2.5. An Output-Method for the model
The following code will print a sample output for the created model. You can either
use the sample code or create your own output method.

Hint: In MDE4CPP Bag<> is used as container class.
 //Output contents of our model package
 std::cout<<std::endl<<"-" << rootPackage->getName()

<< " package content-"<<std::endl<<"************"<<std::endl;
 //Create container of all classifiers of our package
 std::shared_ptr<Bag<ecore::EClassifier> > classifiers =

rootPackage->getEClassifiers();

 Bag<ecore::EClassifier>::const_iterator endIt = classifiers->end();
 //Loop over all classifiers of the package
 for (Bag<ecore::EClassifier>::const_iterator it = classifiers->begin();

it != endIt; ++it) {
 std::cout << "class name: " << (*it)->getName() << std::endl;

 //Cast iterator to EClass

std::shared_ptr<EClass> currentClassifier =
std::dynamic_pointer_cast<EClass>(*it);

 std::cout << " Features:"<< std::endl;

//Create container of all features (attributes, references, ...) of the
//current classifier
std::shared_ptr<Bag<ecore::EStructuralFeature> > structuralFeatures =
currentClassifier->getEAllStructuralFeatures();

Bag<ecore::EStructuralFeature>::const_iterator endItFeature =
structuralFeatures->end();

 //Loop over all features of the current classifier

for (Bag<ecore::EStructuralFeature>::const_iterator itFeature =
structuralFeatures->begin(); itFeature != endItFeature;
++itFeature) {

 std::string featName = (*itFeature)->getName();

// eClass() returns the metaclass information of eClass_student,
// eClass()->getName() returns the name of the metaclass

 std::string metaClassName = (*itFeature)->eClass()->getName();
 // in case the current feature does not have a type
 std::string typeName = "unknown";

 int upperBound = (*itFeature)->getUpperBound();
 int lowerBound = (*itFeature)->getLowerBound();

std::shared_ptr<ecore::EClassifier> featClassifier =
(*itFeature)->getEType();

if(featClassifier != nullptr) {typeName =
featClassifier->getName();}

std::cout << " - '"<< featName << "': " << typeName << "["
<< lowerBound << ".." << upperBound <<"]\t\tof metaclass " <<
metaClassName << std::endl;

 }
 std::cout << "____________" << std::endl;
 }

 std::cout << "Finished..." << std::endl;

Tutorial MDE4CPP

 2. Tutorial: Creating an Ecore Model using Code - 13 -

2.6. Compiling the project
To be able to compile the project that you created in this tutorial, two more files need
to be added to your project:

- a CMakeLists-File (required for CMake)
- a GRADLE-File (required for Gradle)

For this tutorial you can use prepared files and copy them to your project. Important
parameters inside these files are described with comments in case you want to reuse
and adapt them for your own projects.

 Step 1:

 Copy the prepared CMakeLists.txt file for this project to

%MDE4CPP_HOME%\userProjects\UniExample_ecore\src
where %MDE4CPP_HOME% is the directory you installed MDE4CPP to.

 Step 2:

 Copy the prepared build.gradle file for this project to

%MDE4CPP_HOME%\userProjects\UniExample_ecore
where %MDE4CPP_HOME% is the directory you installed MDE4CPP to.

 After step 1 and step 2, your project folder should now look like this:

Step 3:

Navigate to your %MDE4CPP_HOME% directory and open up a command prompt.
Type in the following commands:

setenv.bat

gradlew tasks

Under task group UniExample_ecore tasks you should find a task called
compileUniExample_ecore.

MDE4CPP Tutorial

- 14 - 2. Tutorial: Creating an Ecore Model using Code

Step 4:

Execute the task by typing in the following command:

gradlew compileUniExample_ecore

Your project will be compiled. When the compilation process has finished, navigate
to the directory:

%MDE4CPP_HOME%\application\bin

Where %MDE4CPP_HOME% is the directory you installed MDE4CPP to. You
should find the files “App_uniExample_ecore.exe” (compiled with release options) and
“App_uniExample_ecored.exe” (compiled with debug options). You might also find just
one of those files depending on how you configured the debug/release options in the
file“%MDE4CPP_HOME%\setenv.bat”.

Tutorial MDE4CPP

 3. Tutorial: Creating an Ecore Model using EMF - 15 -

3. Tutorial: Creating an Ecore Model using EMF

In this tutorial we will create an ecore model of our reference model (see section 1.2)
using the Eclipse Modeling Framework (EMF). Then we will generate and compile
the model code of the created ecore model using MDE4CPP.

Hint: For help, find the complete and finished project here.

3.1 Creating the project
Step 1:

First we need to create the project. Open the Eclipse Modeling Tools and set the
workspace directory. Choose %MDE4CPP_HOME%\userProjects as workspace
directory, where %MDE4CPP_HOME% is the directory you installed MDE4CPP to.
Then click Launch.

Step 2:

From the menu bar choose File New Other General Project Next.
Name the project “UniModelExample_ecore” and click Finish.

Right-click on the newly created project and choose New Folder. Name the new
folder “model” and click Finish.

Right-click the model folder and choose New Other Eclipse Modeling
Framework Ecore Model and click Next. Name the new ecore model
“UniModelExample_ecore.ecore” and click Finish.

MDE4CPP Tutorial

- 16 - 3. Tutorial: Creating an Ecore Model using EMF

Step 3:

Now we will set the properties for our EPackage. Double click on the newly created
ecore model to open it in the editor. Unfold the model and select the (nameless)
EPackage. In the Properties View, set:

- “uniModelExample_ecore” as Name
- “uniModelExample_ecore” as Ns Prefix
- “http://www.example.org/uniModelExample_ecore” as Ns URI

If you cannot see the Properties View: From the menu bar choose Window Show
View Properties.

Step 4:

We will now add a class diagram of our ecore model to the project. Right-click on the
ecore model and choose Initialize Ecore Diagram …, name the new representation
file “UniModelExample_ecore.aird”. Click Next, choose Entities in a Class Diagram
and click Next. Name the representation “UniModelExample_ecore_ClassDiagram” and
click Finish.

The project-tree inside the project explorer should look like this:

Tutorial MDE4CPP

 3. Tutorial: Creating an Ecore Model using EMF - 17 -

3.2 Creating our Ecore-Model in EMF
 Step 1:

Double click the model class diagram to open it in the editor. From the Palette select
and drag a new Class into the editor to create a new model class in your ecore model.
To change properties of a model class you can either use the properties view or open
a new properties dialog by double clicking it.

Name your new class “University”. Continue to create more model classes and name
them “Faculty”, “Student”, “Lecture” and “Exam”.

 Step 2:

In modelling we can use a generalization relationship to generalize common
properties of multiple subtypes in a single super type. As the classes Faculty,
Student and Lecture will have a common attribute (their names), we will introduce
a super type called NamedClass. First create the new class.

Now we can introduce the generalization relationships between the super type and
the sub types. In the Palette under Relation SuperType you can find the
generalization relationship. Select it and connect the sub type and super type (for
example, draw a connection between the Student class and the NamedClass super
type).

 Continue with the generalizations of the Faculty and Lecture classes.

MDE4CPP Tutorial

- 18 - 3. Tutorial: Creating an Ecore Model using EMF

 Step 3:

The super type does not have any attribute so far. In the Palette under Feature
Attribute you can find the attribute model element. Select it and drag it onto the
NamedClass class. Name the new attribute “name”.

We must now assign an EType (data type) to our attribute. Select the attribute, find
the EType property in the Properties View Ecore EType and click the “…”-
Button to add a data type. Choose EString as the data type.

 Continue to add the following attributes to the model:

− matNum of type EInt to class Student
− score of type EFloat to class Exam

Tutorial MDE4CPP

 3. Tutorial: Creating an Ecore Model using EMF - 19 -

 Step 4:

To model relationships between our model classes, we will add references to the
model. First we will add simple references. For example, a faculty has multiple
students. In the Palette under Relation Reference, find the reference model
element. Select it and draw a reference between the Faculty class and the Student
class. Name the reference “students” and set its Upper Bound property to “*” in the
Properties View Ecore.

 Continue to add the following references:

− lectures[0..*] reference between the classes Student and Lecture
− lecture[0..1] reference between the classes Exam and Lecture

We will now introduce Compositions to our model. For example, an exam that is not
taken by any student doesn’t make sense. You can find the composition model
element in the Palette under Relation Composition. Add the following
compositions to the model:

− exams[0..*] between the classes Student and Exam
− lectures[0..*] between the classes Faculty and Lecture

MDE4CPP Tutorial

- 20 - 3. Tutorial: Creating an Ecore Model using EMF

In our reference model (see section 1.2) a university has multiple faculties but a
faculty also has at most one university. To model this relationship, we will add a
bidirectional reference to our model. In the Palette, find the model element under
Relation Bi-directional Reference.

Our bidirectional reference has two endpoints. Open the Properties View Ecore.
Change to following properties for the Faculty endpoint: name the endpoint
“faculties”, set its Upper Bound property to “*” and check the Containment check-box
(which makes the reference a composition for this endpoint).

Tutorial MDE4CPP

 3. Tutorial: Creating an Ecore Model using EMF - 21 -

3.3 Writing a main.cpp for the project
Before generating and compiling our model code, we will add a simple main.cpp
(where we use our model) to the project.

 Step 1:

Open the UniModelExample_ecore.ecore model by double-clicking it. Right-click
the uniModelExample_ecore package and choose New Child EAnnotation
EAnnotation. In the Properties View choose the Source property and type in
“prepareApplication”.

Right-click the newly created EAnnotation and choose New Child Details Entry.
In the Properties View choose the Key property and type in “sourceCodeMain”.

 Your model should now look like this:

 Step 2:

We will now add the source code to our main()-function. We only have to add the
function body. All other code (required includes, function declaration, instantiation of
model package and factory objects) will automatically be added during code
generation.

In the Properties View of the sourceCodeMain details entry choose the Value
property. You can copy the following sample code, extend it and/or write your own
main()-function.

MDE4CPP Tutorial

- 22 - 3. Tutorial: Creating an Ecore Model using EMF

//Creating a new instance of University via model factory
 std::shared_ptr<University> university =
 factory->createUniversity();

//Creating a new instance of Student via model factory
 std::shared_ptr<Student> student_1 = factory->createStudent();

//Creating a new instance of Faculty via model factory
 std::shared_ptr<Faculty> faculty_1 =
 factory->createFaculty_in_University(university);

//Creating two Lecture instances in Faculty 1 via model factory
 std::shared_ptr<Lecture> lecture_1 = factory->createLecture();
 std::shared_ptr<Lecture> lecture_2 = factory->createLecture();

//Setting parameters for Faculty 1
 faculty_1->setName("Computer Science");

//Setting parameters for Lectures 1 and 2
 lecture_1->setName("Software Design");
 lecture_2->setName("Model Driven Development");

//Setting parameters for Student 1
 student_1->setName("John Doe");
 student_1->setMatNum(12345);

//Output some data about our concrete university model
 std::cout<<"Student name, matr. num: "<<student_1->getName()
 <<", "<<student_1->getMatNum()<<std::endl;
 std::cout<<"Faculty name: "<<faculty_1->getName()<<std::endl;
 std::cout<<"Lecture names:\n\t"
 <<lecture_1->getName()<<"\n\t"<<lecture_2->getName()<<std::endl;

Tutorial MDE4CPP

 3. Tutorial: Creating an Ecore Model using EMF - 23 -

3.4 Generating and compiling the model code
 Now we are ready to generate and compile the model code for the project.

 Step 1:

Navigate to your %MDE4CPP_HOME% directory and open up a command prompt.
Type in the following commands:

setenv.bat

gradlew generateModel -PModel=”%PATH_TO_MODEL%”

Where %PATH_TO_MODEL% is the complete path to our
UniModelExample_ecore.ecore file. In our case this would be
“C:\src\MDE4CPP\userProjects\UniModelExample_ecore\model\UniModelExample_ecore.
ecore”.

The generateModel task is a generic Gradle task for when you want to generate
code from a model for the first time. It generates all “.hpp” and “.cpp” files and
moreover creates new model/project specific Gradle tasks.

After successful code generation of the project, you can find:

− Header files and implementation files for all model elements at
“…\UniModelExample_ecore\src_gen\uniModelExample_ecore”

− the main.cpp file (see section 2.2.3) at
“…\UniModelExample_ecore\application\src”

Step 2:

When the generateModel task has finished successfully, type in the following
command:

gradlew tasks

Under task group UniModelExample_ecore tasks you should find four new tasks.

MDE4CPP Tutorial

- 24 - 3. Tutorial: Creating an Ecore Model using EMF

− the generateUniModelExample_ecore task will regenerate the model code in
case the model was modified since the last code generation

− the compileUniModelExample_ecore task will create static libraries (.hpp files)
as well as dynamic libraries (.dll files) of your model elements

− the compileApplicationForUniModelExample_ecore task will compile an
application (.exe file) of your model

− the buildUniModelExample_ecore task will execute all of the three preceding
tasks one after another

 Step 3:

 To execute the buildUniModelExample_ecore task, type in the following command:

 gradlew buildUniModelExample_ecore

 When the compilation process has finished, you can find:

− static libraries for your model at
“%MDE4CPP_HOME%\application\include\uniModelExample_ecore”

− dynamic libraries uniModelExample_ecore.dll (compiles with release options)
and uniModelExample_ecored.dll (compiled with debug options) for your
models at “%MDE4CPP_HOME%\application\bin”

− applications App_uniModelExample_ecore.exe (compiled with release
options) and App_uniModelExample_ecored.exe (compiled with debug
options) for your model at “%MDE4CPP_HOME%\application\bin”

You might also find just one of those files each depending on how you configured the
debug/release options in the “%MDE4CPP_HOME%\setenv.bat” file.

Tutorial MDE4CPP

 3. Tutorial: Creating an Ecore Model using EMF - 25 -

Step 4:

Navigate to “%MDE4CPP_HOME%\application\bin“. When executing one of the
compiled application files, you should see the following output (that was implemented
in the main()-function of the model in section 2.2.3):

MDE4CPP Tutorial

- 26 - 4. Tutorial: Ecore Model Behavior

4. Tutorial: Ecore Model Behavior

In this tutorial we will extend the model that was created in section 2.2 and add
custom user-defined functions to the model classes, as well as learn how to include
project-specific and non-project-specific libraries.

4.1 Adding custom methods to the model
First we will add a simple function to the Student class of our model. The function will
calculate the average grade of a student and return the result as a float type.

Step 1:

Open the UniModelExample_ecore project in the Eclipse Modelling Framework and
open the UniModelExample_ecore.ecore model for editing. Right-click the Student
class and choose New Child EOperation.

In the Properties View set the Name property to “getAvgGrade”. Choose EFloat as
EType property (this is the function’s return type).

Right Click the newly created getAvgGrade() operation and choose New Child
EAnnotation EAnnotation. In the Properties View set the Source property to
“http://sse.tu-ilmenau.de/codegen”.

Right click the newly created EAnnotation instance and choose New Child Details
Entry. Set the Key property to “body”.

Your model should now look like this:

Tutorial MDE4CPP

 4. Tutorial: Ecore Model Behavior - 27 -

Step 2:

Now we have to insert the source code of our function body. Navigate to the Value
property of the body entry and copy the following function code:

float avgGrade = 0;

//In MDE4CPP Bag<> is used as container class
//Get container of all Exams of student
std::shared_ptr<Bag<uniModelExample_ecore::Exam>> exams =
this->getExams();

//If there are no Exams for this student, return 0
if(exams->size() == 0){return avgGrade;}

//Loop over all Exam objects
//As we don’t need to modify the container, we use const_iterator
for(
Bag<uniModelExample_ecore::Exam>::const_iterator it = exams->begin();
it!=exams->end();
it++)

 {
 avgGrade += (*it)->getScore();
 }

avgGrade /= getExams()->size();

return avgGrade;

MDE4CPP Tutorial

- 28 - 4. Tutorial: Ecore Model Behavior

4.2 Including libraries for custom methods
As an example, we will now implement the custom output function printUniversity()
in the University class of our model.

 Step 1:

Open the UniModelExample_ecore.ecore model for editing. Right-click the
University class and choose New Child EOperation.

In the Properties View set the Name property to “printUniversity”. Leave the EType
property as is, as the return type of this method will be Void.

Create an EAnnotation object and Details Entry for the printUniversity() function as
explained in section 2.3.1.

 Your model should now look like this:

Step 2:

Insert the following function body as explained in section 2.3.1.

//Get container of all faculties of university
std::shared_ptr<Bag<uniModelExample_ecore::Faculty>> faculties =
this->getFaculties();

//Loop over all faculties
for(Bag<uniModelExample_ecore::Faculty>::const_iterator it_fac =
faculties->begin();
it_fac != faculties->end();
it_fac++) {

 //Get container of all students in current faculty
std::shared_ptr<Bag<uniModelExample_ecore::Student>> students =
(*it_fac)->getStudents();

 //Loop over all students

 for(Bag<uniModelExample_ecore::Student>::const_iterator it_stud =
 students->begin();
 it_stud != students->end();
 it_stud++) {

 std::cout<<std::endl<<"Student " << (*it_stud)->getName()
<<" of faculty " <<(*it_fac)->getName()<<std::endl;

Tutorial MDE4CPP

 4. Tutorial: Ecore Model Behavior - 29 -

 std::cout<<"He/She took the following courses:"<<std::endl;

 //Get container of all lectures of current student

std::shared_ptr<Bag<uniModelExample_ecore::Lecture>> lectures =
(*it_stud)->getLectures();

 //Loop over all lectures

for(Bag<uniModelExample_ecore::Lecture>::const_iterator it_lec =
lectures->begin();
it_lec != lectures->end();
it_lec++) {

std::cout<<"\t- "<<(*it_lec)->getName()<<std::endl;

 }

 std::cout<<"His/Her average grade is: "<<std::setprecision(2)

<<(*it_stud)->getAvgGrade()<<std::endl;
 }

}

Step 3:

In our reference model (see section 1.2) there is neither a direct reference between
the University class and the Student class, nor the Lecture class. As we want to call
member functions of both Student and Lecture inside the printUniversity() function,
we have to include header files for both in the University class.

We are also using the std::setprecision() function which is implemented in the C++
standard header iomanip.

Right-click the University class of your model and create a new EAnnotation object
as explained before. Create a new Details Entry for the newly created EAnnotation
object and set its Key property to “includes”. Insert the following includes into the
Value property:

#include "uniModelExample_ecore/Student.hpp"
#include "uniModelExample_ecore/Lecture.hpp"
#include <iomanip>

Hint: In general, include directives for model class header files follow the pattern:
#include “PACKAGE_NAME/CLASS_NAME.hpp”

Your model should now look like this:

MDE4CPP Tutorial

- 30 - 4. Tutorial: Ecore Model Behavior

4.3 Testing the final model
To test the final model, this tutorial provides the following extended example source
code for the models main()-function. You can replace your model’s current main()-
function with the provided source code or implement your own source code for
testing.

// Creating a new instance of University via model factory
 std::shared_ptr<University> university = factory->createUniversity();

// Creating a new instance of Faculty via model factory
 std::shared_ptr<Faculty> faculty_1 =

factory->createFaculty_in_University(university);

// Creating a new instance of Student via model factory
 std::shared_ptr<Student> student_1 = factory->createStudent();

// Creating two Lecture instances in Faculty 1 via model factory
 std::shared_ptr<Lecture> lecture_1 = factory->createLecture();
 std::shared_ptr<Lecture> lecture_2 = factory->createLecture();

// Creating two Exam instances in Student 1
 std::shared_ptr<Exam> exam_1 = factory->createExam();
 std::shared_ptr<Exam> exam_2 = factory->createExam();

// Setting parameters for Faculty 1
 faculty_1->setName("Computer Science");
 faculty_1->getStudents()->add(student_1);

// Setting parameters for Student 1
 student_1->setName("John Doe");
 student_1->setMatNum(12345);
 student_1->getLectures()->add(lecture_1);
 student_1->getLectures()->add(lecture_2);
 student_1->getExams()->add(exam_1);
 student_1->getExams()->add(exam_2);

// Setting parameters for Lectures 1 and 2
 lecture_1->setName("Software Design");
 lecture_2->setName("Model Driven Development");

// Setting parameters for Exams 1 and 2
 exam_1->setLecture(lecture_1);
 exam_1->setScore((float)1.7);
 exam_2->setLecture(lecture_2);
 exam_2->setScore((float)1.0);

// Custom output function printUniversity()
 university->printUniversity();

Tutorial MDE4CPP

 4. Tutorial: Ecore Model Behavior - 31 -

After rebuilding the project (see section 2.2.4) and executing the compiled
application, you should get the following output:

The final ecore model should look like this:

MDE4CPP Tutorial

- 32 - 5. Tutorial: MDE4CPP Plugin Framework for Ecore

5. Tutorial: MDE4CPP Plugin Framework for Ecore

In sections 3 and 4 we learned how to create an ecore model, add behavior and custom
methods to the model, generate and compile model code, and obtaining a model
application as well as a static and dynamic library of our model.

But how can we use our model in an “external” program? MDE4CPPs Plugin Framework
serves this purpose. The “Plugin” of our model is nothing more than the previously
mentioned dynamic library (.dll-file) which we obtain after compiling a model. The
purpose of the Plugin Framework is not only to be able to comfortably include model
elements and methods in a “self-written” program, but also to use the model on the
metamodel-level. This is realized by reflection (the model has the ability to “know and
modify” its own structure and behavior).

The goal of this tutorial is to use the model plugin compiled in section 3.4 by including
the Plugin Framework in an external project, and give a basic insight on the possibilities
of the Plugin Framework.

Hint: For help, find the complete and finished project here.

5.1 Creating the project
 Step 1:

First we need to create the project. We will use an Eclipse IDE for developing C/C++-
Applications (for download link see section 2.1). Choose
%MDE4CPP_HOME%\userProjects as workspace directory, where
%MDE4CPP_HOME% is the directory you installed MDE4CPP to. Click Launch.

Step 2:

From the menu bar choose File New C/C++-Project. Choose the C++
Managed Build template and click Next. Name the project
“PluginFrameworkExample_ecore”, choose “Empty Project” as project type and
“MinGW GCC” as compiling toolchain. Click Finish.

Tutorial MDE4CPP

 5. Tutorial: MDE4CPP Plugin Framework for Ecore - 33 -

Step 3:

Inside the project explorer right-click PluginFrameworkExample_ecore, then
choose New Folder and create a folder called “src” inside your project. After
creating the folder, right-click it and choose New Source File and create the file
“main.cpp” inside the source folder. The project-tree inside the project explorer should
look like this:

Hint: After creating the project using Eclipse you can also edit the file
“PluginFrameworkExample_ecore\src\main.cpp” using any other text editor, source
code editor, etc. (e.g. Notepad++) from now on, if you wish.

MDE4CPP Tutorial

- 34 - 5. Tutorial: MDE4CPP Plugin Framework for Ecore

5.2 Including and using the model plugin
 Step 1:

First we need the code ‘frame’ (required libraries includes, main() function). Copy the
following code to the (empty) main.cpp file of the
PluginFrameworkExample_ecore project:

//Incude standard libraries
#include <iostream>

//Include header files for plugin framework
#include "pluginFramework/PluginFramework.hpp"

int main()
{

 return 0;
}

Step 2:

Before we can use our model, we have to initialize the Plugin Framework. First,
include the required header in your main.cpp file:

#include "pluginFramework/MDE4CPPPlugin.hpp"

By creating an instance of the PluginFramework class, the Plugin Framework will
search for all plugin files in the directory “%MDE4CPP_HOME%\application\bin“.

//Create an instance of the plugin framework
std::shared_ptr<PluginFramework> pluginFramework =
PluginFramework::eInstance();

We can now instantiate a MDE4CPPPlugin object by retrieving a plugin by its name
(in our case, the plugins name is uniModelExample_ecore our models name from
section 3). Afterwards, we will check if the object was created successfully.

//Search for our model plugin and create an MDE4CPPPlugin object for it
 std::shared_ptr<MDE4CPPPlugin> plugin =

pluginFramework->findPluginByName("uniModelExample_ecore");

 //Check for nullptr
 if (plugin){
 std::cout << "- MDE4CPPPlugin '" << plugin->eNAME() << "' found"

<< std::endl;

 // !! Further code of Step 2 !!

 }

MDE4CPPPlugin is just an interface to use for any possible plugin in MDE4CPP (e.g.
ecore or UML plugins). To be able to retrieve our models Package and Factory, we
need to cast it to an EcoreModelPlugin object. First, include the required headers in
your main.cpp file:

#include "pluginFramework/EcoreModelPlugin.hpp"

//Include header files for ecore
#include "ecore/EFactory.hpp"
#include "ecore/EPackage.hpp"

using namespace ecore;

Tutorial MDE4CPP

 5. Tutorial: MDE4CPP Plugin Framework for Ecore - 35 -

Now we can instantiate an EcoreModelPlugin object and get our models Package and
Factory.

//Cast MDE4CPPPlugin to EcoreModelPlugin
std::shared_ptr<EcoreModelPlugin> ecorePlugin =
std::dynamic_pointer_cast<EcoreModelPlugin>(plugin);

 //Check for nullptr
 if(ecorePlugin){
 std::cout<<"- EcoreModelPlugin created from MDE4CPPPlugin"

 <<std::endl<<std::endl;

 //Get the models package
 std::shared_ptr<EPackage> uniModelPackage =

ecorePlugin->getEPackage();

 //Get the models factory
 std::shared_ptr<EFactory> uniModelFactory =

ecorePlugin->getEFactory();

 // !! Code for Steps 3-6 !!
 }

Step 3:

To create model elements, we can use the ecorePlugins create()-Method which
returns an instance of shared_ptr<EObject>. This way we will not have to include any
of our model specific libraries in our project. We only have to include some ecore
header files to be able to call methods of metamodel elements.

#include "ecore/EObject.hpp"

Now we can create instances of our model classes (e.g. University and Faculty
objects) by their class names.

//Create University and Faculty objects
 std::shared_ptr<EObject> uniObj = ecorePlugin->create("University");
 std::shared_ptr<EObject> facObj = ecorePlugin->create("Faculty");

 Step 4:

We will now set some of our model class instances properties. As we handle these
instance on the metamodel-level (remember, we instantiated them as type EObject),
we cannot simply call the member functions of our model classes. For example, the
model class Faculty does have a setName()-method, whereas EObject does not.

We will use EObjects eSet()-method which we pass the EStructuralFeature for which
we want so set a value, as well as the value itself. As the metamodel-level does not
know anything about concrete data types, the value parameter is passed as the Any
type defined in MDE4CPP. For further information on the implementation of Any, see
the file:

%MDE4CPP_HOME%\src\common\abstractDataTypes\src\abstractDataTypes\Any.hpp

MDE4CPP Tutorial

- 36 - 5. Tutorial: MDE4CPP Plugin Framework for Ecore

Now, let’s set the name attribute of the facObj object. First include the required
header in your main.cpp file.

#include "ecore/EClass.hpp"

We will call EObjects eClass()-method to get the metamodel information of facObj
as EClass. Then we can call the getEStructuralFeature()-method of EClass to get an
EStructuralFeature object by its name. The eAny()-method returns an Any type object
that contains our value.

//Set EAttribute for multiplicity [0..1]
 std::string facName = "Computer Science";
 //Use eSet to set the value for attribute "name" of faculty

facObj->eSet(facObj->eClass()->getEStructuralFeature("name"),
eAny(facName));

To set a reference between our Faculty object and our University object (respectively,
the university parameter of facObj), we can do the exact same thing. The uniObj
instance that we want so pass has to be encapsulated in an Any object like before.

//Set EReference for multiplicity [0..1]
facObj->eSet(facObj->eClass()->getEStructuralFeature("university"),
eAny(uniObj));

 Step 5:

Let’s add the Faculty object to the faculties container of the University object. In other
words, we want to manipulate a reference (member attribute) with multiplicity [0..*].
For that, we have to retrieve the faculties container. First include the required header:

#include "abstractDataTypes/SubsetUnion.hpp"

To get the faculties container we will use the eGet()-method of EObject which we
pass the EStructuralFeature that we are interested in (like in step 4). eGet() returns
an Any object as well. Because of that, we have to retrieve the content of the returned
Any object before we can use it. As we are working only with EObject instances, we
use Anys get()-method to cast and return its content as Bag<EObject>.

//Set EReference for multiplicity [0..*]
 //Use eGet to create container of all faculties of our university
 Any anyAllFaculties =

uniObj->eGet(uniObj->eClass()->getEStructuralFeature("faculties"));

 //Casting the "Any" type to container of EObjects
std::shared_ptr<Bag<EObject> > allFaculties =
anyAllFaculties->get<std::shared_ptr<Bag<EObject> > >();

We can now add facObj and use eSet() to pass back the new container allFaculties
to the uniObj object.

allFaculties->add(facObj);
 //Set new container for universitys "faculties"

//(value passed as an "Any" type)
uniObj->eSet(uniObj->eClass()->getEStructuralFeature("faculties"),
eAny(allFaculties));

Tutorial MDE4CPP

 5. Tutorial: MDE4CPP Plugin Framework for Ecore - 37 -

Create a new EObject instance of a student and set some of its attributed and
references just like in steps 3-5.

std::shared_ptr<EObject> studObj = ecorePlugin->create("Student");
 //Set students name attribute
 std::string studName = "John Doe";

studObj->eSet(studObj->eClass()->getEStructuralFeature("name"),
eAny(studName));

 //Set students matriculation number attribute
 int studMatNum = 98765;

studObj->eSet(studObj->eClass()->getEStructuralFeature("matNum"),
eAny(studMatNum));

 //Add the student to all students of our faculty

//Get container of all students as “Any” type and cast it
 Any anyAllStudents =

facObj->eGet(facObj->eClass()->getEStructuralFeature("students"));
 std::shared_ptr<Bag<EObject> > allStudents =

anyAllStudents->get<std::shared_ptr<Bag<EObject> > >();
//Add the student to container and pass it back using eSet()

 allStudents->add(studObj);
facObj->eSet(facObj->eClass()->getEStructuralFeature("students"),
eAny(allStudents));

 Step 6:

Finally we want to test the program. Use the eGet()-method to retrieve the attributes
that were set during the previous steps. The following code implements an output
functionality that will print out the contents of the concrete university model that we
created in this tutorial.

//Get all faculties of our model
 anyAllFaculties =

uniObj->eGet(uniObj->eClass()->getEStructuralFeature("faculties"));
 allFaculties = anyAllFaculties->get<std::shared_ptr<Bag<EObject> > >();
 std::cout<<"Your University:" <<std::endl<<std::endl;

 //Loop over all faculties
 for(Bag<EObject>::const_iterator facIt = allFaculties->begin();

 facIt != allFaculties->end(); facIt++){
 //Use eGet to get attribute "name" of the current faculty
 Any anyFacultyName =

(*facIt)->eGet((*facIt)->eClass()->getEStructuralFeature("name"));
 //Casting the "Any" type to std::string
 std::cout <<"Faculty "<<anyFacultyName->get<std::string>()<<std::endl;

 //Get all students of the current faculty
 anyAllStudents =

(*facIt)->eGet((*facIt)->eClass()->getEStructuralFeature("students"));
 allStudents = anyAllStudents->get<std::shared_ptr<Bag<EObject> > >();

 //Loop over all students

 for(Bag<EObject>::const_iterator studIt = allStudents->begin();
 studIt != allStudents->end(); studIt++){

 Any anyStudentName =
 (*studIt)->eGet((*studIt)->eClass()->getEStructuralFeature("name"));

 Any anyStudentMatNum =
 (*studIt)->eGet((*studIt)->eClass()->getEStructuralFeature("matNum"));

 //Casting the "Any" types to std::string and int
 std::cout<<"\t-Student "<<anyStudentName->get<std::string>()

 <<", "<<anyStudentMatNum->get<int>()<<std::endl;
 }
 }

MDE4CPP Tutorial

- 38 - 5. Tutorial: MDE4CPP Plugin Framework for Ecore

5.3 Compiling the project
To be able to compile the project that you created in this tutorial, two more files need
to be added to your project:

- a CMakeLists-File (required for CMake)
- a GRADLE-File (required for Gradle)

For this tutorial you can use prepared files and copy them to your project. Important
parameters inside these files are described with comments in case you want to reuse
and adapt them for your own projects.

 Step 1:

 Copy the prepared CMakeLists.txt file for this project to

%MDE4CPP_HOME%\userProjects\PluginFrameworkExample_ecore\src
where %MDE4CPP_HOME% is the directory you installed MDE4CPP to.

 Step 2:

 Copy the prepared build.gradle file for this project to

%MDE4CPP_HOME%\userProjects\PluginFrameworkExample_ecore
where %MDE4CPP_HOME% is the directory you installed MDE4CPP to.

 After step 1 and step 2, your project folder should now look like this:

Step 3:

Navigate to your %MDE4CPP_HOME% directory and open up a command prompt.
Type in the following commands:

setenv.bat

gradlew tasks

Under task group PluginFrameworkExample_ecore tasks you should find a task
called compilePluginFrameworkExample_ecore.

Tutorial MDE4CPP

 5. Tutorial: MDE4CPP Plugin Framework for Ecore - 39 -

Step 4:

Execute the task by typing in the following command:

gradlew compilePluginFrameworkExample_ecore

When the compilation process has finished, navigate to the directory:

%MDE4CPP_HOME%\application\bin

You should find the files “App_pluginFrameworkExample_ecore.exe” (compiled with
release options) and “App_pluginFrameworkExample_ecored.exe” (compiled with
debug options). You might also find just one of those files depending on how you
configured the debug/release options in the file“%MDE4CPP_HOME%\setenv.bat”.

	1. Introduction
	1.1. Content
	1.2. Reference Model

	2. Tutorial: Creating an Ecore Model using Code
	2.1. Creating the project
	2.2. Creating Ecore-Elements using the Factory
	2.3. Creating Ecore-Elements using Metaclass Names
	2.4. Creating Ecore-Elements using Classifier IDs
	2.5. An Output-Method for the model
	2.6. Compiling the project

	3. Tutorial: Creating an Ecore Model using EMF
	3.1 Creating the project
	3.2 Creating our Ecore-Model in EMF
	3.3 Writing a main.cpp for the project
	3.4 Generating and compiling the model code

	4. Tutorial: Ecore Model Behavior
	4.1 Adding custom methods to the model
	4.2 Including libraries for custom methods
	4.3 Testing the final model

	5. Tutorial: MDE4CPP Plugin Framework for Ecore
	5.1 Creating the project
	5.2 Including and using the model plugin
	5.3 Compiling the project

