

UML4CPP

Tutorial

For Windows

0 Table of Contents

2

Table of Contents

1 Introduction .. 3

 Motivation and Aim .. 3

 Entry point of this Guide .. 3

 Important Notes ... 3

2 Creating an UML Diagram and deriving Code using MDE4CPP 4

 Starting eclipse via Command Line ... 4

 Creating a new Project .. 5

 Initializing an UML diagram ... 10

 Creating a basic class diagram using UMLDesigner 12

2.4.1 Creating a class and adding attributes ... 12

2.4.2 Adding generalizations and associations .. 17

2.4.3 Adding functions .. 21

2.4.4 Implementing function behavior ... 25

2.4.5 Creating a main function ... 32

 Generating and compiling the model .. 41

3 Running the application ... 42

4 Outlook and in-depth literature .. 44

 Activity diagrams .. 44

 fUML .. 44

 PSCS .. 44

 OCL .. 44

1 Introduction

3

1 Introduction
These instructions are intended to give an insight into the use of MDE4CPP (Model

Driven Engineering for C++) and to show the possibilities it offers when generating

code. The following examples are created and tested only on a Windows system.

MDE4CPP does support both Windows and Unix systems, but the examples may only

work on Unix systems if small changes are made. It is also useful, but not necessary,

to have some knowledge of C++. This document follows a reference model, shown in

Figure 1.

 Motivation and Aim

MDE4CPP is a useful tool that makes the step from model to source code much easier

by deriving code from given UML diagrams, which saves a lot of time and effort.

Another advantage is that the automatic code generation means that fewer errors

flow into the software during development, so that the code quality is better. The aim

is for the user to be able to independently generate code from UML diagrams using

MDE4CPP after processing these examples.

 Entry point of this Guide

A basic requirement is that MDE4CPP has been successfully installed and is fully

functional. This means, you should have a working eclipse installation (containing

the UML-Designer), a working compiler (MinGW), CMake and of course MDE4CPP. If

this is not the case, a comprehensive guide can be found here. It is also very helpful

to have already worked through the “Ecore for MDE4CPP Tutorial”, which can be

found here: Ecore for MDE4CPP Tutorial. This document leads the user through the

whole process of creating a UML diagram and deriving code via MDE4CPP, while

explaining and recreating the reference model shown in Figure 1.

 Important Notes

For the given examples, it is highly recommended to use the same names for

parameters and files as well as the same directory paths shown in this document. On

the one hand, this should prevent some common mistakes like using own parameter

names and mixing them with the ones from the examples. On the other hand, some

paths and identifiers must have certain names, because they are relevant for the code

generator and the compiler.

If some steps are incomprehensible or do not work for any reason, the complete

and functioning example can be found at the official MDE4CPP website.

Figure 1: Reference model

https://www.tu-ilmenau.de/fileadmin/Bereiche/IA/sse/Software/MDE4CPP/Tutorials/MDE4CPP_Setup_Installation_Guide.pdf
https://www.tu-ilmenau.de/universitaet/fakultaeten/fakultaet-informatik-und-automatisierung/profil/institute-und-fachgebiete/institut-fuer-technische-informatik-und-ingenieurinformatik/sse/software/beispiele-und-tutorials
https://www.tu-ilmenau.de/sse/software/beispiele-und-tutorials

2 Creating an UML Diagram and deriving Code using MDE4CPP

4

2 Creating an UML Diagram and deriving Code using

MDE4CPP

 Starting eclipse via Command Line

At first, it is necessary to open the Command Line Window and navigate to the

MDE4CPP installation folder. This can be achieved by pressing the Windows key and

the R key at the same time (then the Run window opens), entering “cmd”, then

clicking “OK” and entering “cd <path-to-MDE4CPP>”, where <path-to-MDE4CPP> is

the path to the installation directory. This sets the workspace of the command line to

the MDE4CPP home directory. Another way is to open Windows Explorer, navigating

to the MDE4CPP installation directory, clicking on the directory path (marked in

Figure 2), and typing “cmd”, then pressing Enter. This will also open the Command

Line Window in the installation directory.

Figure 2: MDE4CPP installation directory

At first, it is necessary to set all required environment variables by typing “setenv.bat”

into the Command Line Window and pressing Enter. This file should already have

been configured during the installation of MDE4CPP. The next step is to navigate the

Command Line to the eclipse installation directory. The easiest way is to type “cd

%MDE4CPP_ECLIPSE_HOME%”. Alternatively, the path of the eclipse installation

directory can also be copied and pasted manually. After that, typing “eclipse.exe” (as

shown in Figure 3) and pressing Enter will start eclipse with all mandatory

environment variables already set.

2 Creating an UML Diagram and deriving Code using MDE4CPP

5

Figure 3: Command line after navigating to the eclipse directory and typing “eclipse.exe”

After that, a window will pop up asking for the workspace path. It is strongly

recommended to choose a location outside of the MDE4CPP directory for the

workspace. An example is shown in Figure 4. In addition, a checkmark can be set by

clicking “Use this as the default and do not ask again” so that the window will not

open again the next time eclipse is started. Clicking “Launch” will open eclipse.

Figure 4: eclipse launcher with workspace settings

 Creating a new Project

When eclipse has opened, the first step to create an UML project using MDE4CPP is

to import MDE4CPP into the eclipse workspace. Right-click in the Model Explorer to

the left and click “Import…” in the new menu, as shown in Figure 5. Select “Existing

Projects into Workspace” in the “General” section as can be seen in Figure 6, then

click next. Click “Select root directory” and type in the path to the location of your

MDE4CPP installation or click “Browse…” and select the root directory of your

MDE4CPP installation. After that, the window should look like Figure 7, then click

“Finish” to import MDE4CPP.

2 Creating an UML Diagram and deriving Code using MDE4CPP

6

Figure 5: Importing MDE4CPP into the eclipse workspace (1)

Figure 6: Importing MDE4CPP into the eclipse workspace (2)

2 Creating an UML Diagram and deriving Code using MDE4CPP

7

Figure 7: Importing MDE4CPP into the eclipse workspace (3)

A new project can be created by right clicking the “userProjects” folder in the model

explorer as shown in Figure 8. At “New”, clicking the option “Others…” will open a

new window displaying all available wizards. Search for a project template called

“UML Project” within the category “UML Designer” by typing “UML Project” into the

search bar (as shown in Figure 9), click on it and click “Next”.

Figure 8: Creating a project inside the userProjects directory

2 Creating an UML Diagram and deriving Code using MDE4CPP

8

Figure 9: Selecting a project wizard

After pressing next, type in a project name. In this example, the project will be named

“UML_Example” as it can be seen in Figure 10. Create a folder inside the userProjects

folder, name it “UML_Example” and choose the new folder as project location. Then

click “Next” and on the next page, select “Model” as Model Object (see Figure 11) and

click Finish. It might take some seconds until the project is fully prepared. The project

then should be shown in the Model Explorer on the left inside the “userProjects”

directory consisting of two items (model.uml and representations.aird) as shown in

Figure 12.

Figure 10: choosing project name

2 Creating an UML Diagram and deriving Code using MDE4CPP

9

Figure 11: Choosing the model object

Figure 12: Initial project structure

The “model.uml” has to be in a directory called “model”. This is required by the

MDE4CPP generator. Right-click on “UML_Example”, click on “New” and select

“Folder”. Name the folder “model” and click “Finish”. Then right-click on “model.uml”

and click on “Move…”. Select the “model” folder and click “OK”. Then change the

name of the “model.uml” by right-clicking on “model.uml” in the model explorer,

clicking “Rename” and entering “CityModel.uml” as the name for the example model.

The result can be seen in Figure 13. Notice that the “CityModel.uml” file is indented

more than “representations.aird”, which shows that the UML file is in fact inside the

model folder. Also, delete the “representations.aird” file. A new representation file will

be created in chapter Initializing an UML diagram. The deletion is important since

multiple existing representation files might cause errors.

2 Creating an UML Diagram and deriving Code using MDE4CPP

10

Figure 13: Model Explorer with modified name and project structure

 Initializing an UML diagram

When eclipse has set everything, right-click on the file “CityModel.uml” in the Model

Explorer to the left. Click on “Initialize UML diagram …” in the new menu as shown

in Figure 14. A new window will open asking for the name of the new representation

file, as can be seen in Figure 15. Type in “CityModel.aird” if it is not already selected.

Also, make sure the model folder is selected. Then click Finish.

Figure 14: CityModel.uml menu

2 Creating an UML Diagram and deriving Code using MDE4CPP

11

Figure 15: Creating a new representation file inside the model folder

Again, a new window will open asking for a representation type. Choose “Class

Diagram” from the “Design” section, click “Next” and then “Finish” (see Figure 16).

Figure 16: Creating new representation

After that, choose a name for the class diagram. Here it is “CityModel Class Diagram”

as shown in Figure 17. Then press OK and wait until the UMLDesigner has opened.

2 Creating an UML Diagram and deriving Code using MDE4CPP

12

Figure 17: Entering diagram name

 Creating a basic class diagram using UMLDesigner

2.4.1 Creating a class and adding attributes
When creating class diagrams, it is important to understand the basics of the Palette

of the UMLDesigner. The Palette, highlighted in the workspace that is shown in Figure

18, is structured in the four categories “Existing Elements”, “Types”, “Features” and

“Relationships”. Only some of the basic functions are explained here, where most of

them are needed to create the example model:

• By clicking “Add” in the category “Existing Elements” and clicking somewhere

in the class diagram, you can import existing class diagrams.

• Clicking “Class” in the category “Types” and clicking somewhere in the class

diagram, a new window opens, where you can type the name of the new class

and set the visibility. By clicking OK, the new class is created at the location,

where you first clicked.

• Clicking “Property” in the category “Features” and clicking on an existing class

in the diagram opens a new window, where you can set the name of the new

attribute as well as visibility, type and more. Clicking OK will close the window

and create a new attribute in the selected class.

• Clicking “Operation” in the category “Features” and clicking on an existing

class in the diagram also opens a new window, where you can set the name of

the new method, visibility and more. Clicking OK will close the window and

create a new method in the selected class.

• Clicking “Association” in the category “Relationships” and clicking on two

existing classes in the diagram creates a connection between these classes.

This will be further explained later. Clicking on the small arrow to the left of

the word “Association” in the category “Relationships” shows a new menu with

similar options like Composition and Aggregation, which will also be further

explained when using it in the example model.

• Clicking “Generalization” in the category “Relationships” and clicking on two

existing classes in the diagram creates a generalization between these classes,

where the first-clicked class is the more specific class, and the second-clicked

class is the general class.

Most placed objects in the UMLDesigner workspace like classes and associations can

be moved via drag and drop to provide a better overview.

2 Creating an UML Diagram and deriving Code using MDE4CPP

13

Figure 18: UMLDesigner workspace, Palette on the right is highlighted

The first step to recreate the example model is to add basic classes to the model. Add

four classes with the names “City”, “Person”, PublicBuilding” and

“ResidentialBuilding” as described above. Add a fifth class named “Building” and

activate the field “Abstract” by ticking the box to the left. The class diagram should

then look like the one shown in Figure 19. Notice that the name of the “Building”

class is italicized indicating that it in fact is abstract.

2 Creating an UML Diagram and deriving Code using MDE4CPP

14

Figure 19: class diagram after creating the five basic classes

The next step is to add some basic attributes. Continue with adding a public attribute

“name” to the class Person. The multiplicity of a name is 1 because for the sake of

simplicity, it is assumed that every person has exactly one name. For that, 1 must be

entered for the upper and lower limit. Since human names consist of letters and not

numbers or other symbols, the attribute type must be a String. If the Type-field is

empty (i.e., the entry is “<no value>”), you can change the type of the attribute to

“<<EDataType>> <Primitive Type> String” by clicking on the button with the three

dots as shown in Figure 20. In the new window expand “<<EPackage, ModelLibrary>>

<Model> UML Primitive Types” and select “<<EDataType>> <Primitive Type> String”.

2 Creating an UML Diagram and deriving Code using MDE4CPP

15

Figure 20: Creating a property

2 Creating an UML Diagram and deriving Code using MDE4CPP

16

Figure 21: selecting the type of the new attribute

In case the “pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml”-section is

missing, click Cancel and click OK in the “Create Property”-window. This creates an

attribute without type, as seen in the left image in Figure 22. Click on the attribute

to activate the text editing mode. Write “String” as seen in the right image and press

enter. When noticing multiple “+” in front of the attribute name, simply remove them.

After this, the pathmaps should be updated and be shown the next time you add an

attribute.

Figure 22: attribute without and with type

Three more attributes are required: A String "address" for the class "Building", a

String “purpose” for the class “PublicBuilding” and a String “cityName” for the class

“City”. Remember to set upper and lower bounds to 1, when creating the attributes.

Your model should then look like the one shown in Figure 23.

2 Creating an UML Diagram and deriving Code using MDE4CPP

17

Figure 23: Model with basic attributes only

2.4.2 Adding generalizations and associations

After that, you should add generalization and association relationships, by selecting

“Generalization” or “Association” in the bottom area of the Palette window. Then click

on the two classes that you want to create a generalization or association between.

In this example model, you must create five associations between “City” and “Person”,

“City” and “PublicBuilding”, “City” and “ResidentialBuilding”, “Person” and

“PublicBuilding”, and “Person” and “ResidentialBuilding”. These associations will be

edited in detail later. Then, select “Generalization” and connect “PublicBuilding” and

“Building” as well as “ResidentialBuilding” and “Building”. This changes “Building”

to be a superclass of both “PublicBuilding” and “ResidentialBuilding”, meaning they

both have the attribute “address”. Hence it is important to first click on the

“PublicBuilding” class and then on “Building”, because else “Building” would be the

subclass of “PublicBuilding”. Depending on how you have arranged your classes, your

model may look somewhat like the one shown in Figure 24.

Figure 24: Model with generalizations and associations

2 Creating an UML Diagram and deriving Code using MDE4CPP

18

The multiplicity of the associations must be adjusted because up to now, for example,

every building can appear in several cities and every person lives in many different

buildings, indicated by the small asterisk in brackets. To change the multiplicity,

simply click on a connection. The "Properties" window, that can be found in the lower

part of the screen, will then change its description to “<Association> …” followed by

the name of the association. Click on "General" on the left and under "Ends" the

upper and lower limit of the multiplicity can be set. This is shown in Figure 25.

Figure 25: Changing the multiplicity

By clicking on the name of one of the ends in the “Properties”-window, a new window

opens, where you can change the name of the end, as shown in Figure 26.

2 Creating an UML Diagram and deriving Code using MDE4CPP

19

Figure 26: Changing the name of the ends of the associations

In this way change the multiplicity of the connections of the class City at the ends

with the name "citys". Since every building is in exactly one city and every person

lives in exactly one city, the lower and upper limit must be 1. After changing the

upper and lower limit, the [*] after the end names should disappear in the diagram.

Also, in the connection of Person and PublicBuilding, change the name "persons" to

"employees" and the name "publicBuildings" to "worksAt" in the way described above,

as well as in the connection of Person and ResidentialBuilding, change the name

“persons” to “inhabitants” and “residentialBuildings” to “livesIn”. Then set the lower

bounds of the multiplicity of “worksAt” and “livesIn” to 0 and the upper bounds to 1

since every person can be employed in at most one public building and can live in at

most one residential building. The multiplicity of “employees” and “inhabitants” can

be left as it is because every public building can hold 0 to many employees and every

residential building can have 0 to many inhabitants. Your model then should look

like the one shown in Figure 27.

2 Creating an UML Diagram and deriving Code using MDE4CPP

20

Figure 27: Adjusting the connections

You can also change the plain associations into compositions or aggregations. For

that, click in the “Properties”-window in the “Ends”-section on “none” and change it

either to “composite” or “shared”. In this example model, change the connections

going into the class City to a composition by changing the opposing end into

“composite”, as shown in Figure 28. A small black rhombus (or blue, if the connection

is selected) will then appear at the end going into “City”.

Figure 28: Changing associations into compositions

2 Creating an UML Diagram and deriving Code using MDE4CPP

21

Another useful feature is the deactivation of the "Owned" fields for connections which

can be done in the properties window left to the “none”/”composite”/”shared”

options. This will add an attribute with the name of the end in the adjacent class. At

the same time, the arrows at the opposite ends can be deactivated by unchecking

"Navigable" to create a unidirectional association. In this example this is done for all

associations and compositions. Remove the arrows at the connections going into

“City” by deselecting the “Navigable” option for “citys” in the three compositions as

shown in Figure 29 as well as deselecting the “Owned” option for the opposing end.

This adds the three attributes "residentialBuildings", "publicBuildings" and "persons"

to “City”. Repeat for the connections between “PublicBuilding” and “Person” as well

as “ResidentialBuilding” and “Person” so that the attribute "employees" is added to

"PublicBuilding", and the attribute "inhabitants" is added to "ResidentialBuilding"

and the arrows at the opposing ends are removed. The result is shown in Figure 29.

Figure 29: Changing the "Navigable" and "Owned" options

2.4.3 Adding functions
The classes and their attributes are connected to each other by the associations, but

so far (apart from the getter and setter methods) there is no use for them. Hence,

some methods should be added in the next step. To do this, click on "Operation" in

the palette on the right and then on a class. A new window opens, where you can set

the name of the operation and make the method static or abstract as well as creating

a query method (see Figure 30). Then click OK to add the method to the chosen class.

2 Creating an UML Diagram and deriving Code using MDE4CPP

22

Figure 30: Creating an operation

In this way add three methods named "printCityContents", "changeResidence" and

"changeWorkplace" to the class City. Continue by adding two methods “addResident”

and “removeResident” to “ResidentialBuilding” as well as two methods “addEmployee”

and “removeEmployee” to “PublicBuilding”. You can add parameters to the created

methods by clicking on the green plus symbol to the right of the “Parameters” section

in the “General” tab in the “Properties” window when a method is selected. A new

window will open asking for the type of the new object. Select “<Parameter>” (if it is

not already selected) and click “Finish” as shown in Figure 31. This will create an

unnamed parameter without a type.

2 Creating an UML Diagram and deriving Code using MDE4CPP

23

Figure 31: Adding parameters to the newly created methods

2 Creating an UML Diagram and deriving Code using MDE4CPP

24

Figure 32: Customizing a parameter

To change the name and type of a selected parameter, simply double-click on the

parameter in the “General” tab in the “Properties” window. A new window will open,

where you can change the name in the top box and the type by clicking on the three

dots to the right of the “Type”-field, as shown in Figure 32. When clicking on the dots,

a new window will open, where you can select a type. In this example model, only

classes of the model and UML primitive types are used. These can be selected, when

expanding “<Model> NewModel” or “<<EPackage, ModelLibrary>> <Model> UML

Primitive Types” and clicking on the corresponding names, as shown in Figure 32.

Continue by adding a parameter “person” with the type “Person” as described to the

methods “addEmployee”, “removeEmployee”, “addResident”, “removeResident”,

“changeResidence” and “changeWorkplace”, as well as two String parameters

“residentialBuildingAddress” to “changeResidence” and “publicBuildingAddress” to

“changeWorkplace”. The result can be seen in Figure 33. As you can see, the

parameters in brackets have the specified name and type.

2 Creating an UML Diagram and deriving Code using MDE4CPP

25

Figure 33: Methods with customized parameters

2.4.4 Implementing function behavior

The created methods now have a name and parameters, but nothing happens if they

are called, because no function behavior is specified yet. For that, go to the

“Advanced” tab in the “Properties” window and again, click on the green plus symbol

on the right of the “Method” section. A new window will open asking for a container

to create a new behavior. Expand the “<Model> NewModel” section and click on the

class where you want to add the function behavior. Also, change the Type at the

bottom from “<Activity>” to “<Function Behavior>”. Repeat this step for each of the

seven created methods of the example model. The container class for the function

behavior is the function’s class, like it is shown in Figure 34. Do not forget to change

the Type to “<Function Behavior”. Then click finish. The function behavior can then

be seen in the “Method” section of the “Advanced” tab in the “Properties” window.

Double-clicking on it opens a new window, where you can give an appropriate name.

Save the model afterwards.

2 Creating an UML Diagram and deriving Code using MDE4CPP

26

Figure 34: Adding function behavior

After this step, expand “UML_Example” in the menu in the Model Explorer on the left.

Double-clicking on CityModel.uml opens the UML file containing all classes,

attributes, functions, and associations. Expand the first line, which should look like

“platform:/resource/MDE4CPP/userProjects/UML_Example/CityModel.uml” and

expand the class containing the function behavior. In the example model, the class

City holds the function behavior “changeWorkplace”, “changeResidence” and

“printCityContents”. Selecting a function behavior displays some options in the

“Properties” window. The two important lines are “Body” and “Language” as shown in

Figure 35 below.

2 Creating an UML Diagram and deriving Code using MDE4CPP

27

Figure 35: Setting function body and language

The next step is to fill the “Body” and “Language” lines. “Body” should contain the

method implementation and the needed header files, while “Language” is used to

specify which parts of “Body” contain the method implementation and which parts

describe the header files. To add something to these lines, click on the three dots on

the right of the “Body” line, then a new window opens, where you can enter the

function code or the language value. In this example, select “changeWorkplace” in

the class City. Start with the “Body” line and copy the code displayed in Code part 1

in the “Value” field:

2 Creating an UML Diagram and deriving Code using MDE4CPP

28

Code part 1: function implementation for changeWorkplace

Click on the “Add” button in the middle to store the copied code in the body and click

OK. The provided code iterates through all existing public buildings of the city

iterating through the list of employees of every public building to check whether the

provided person is employed anywhere. If the current public building has the same

address as the input address string, the person is added to the list of employees.

Next, add the needed header files. Open the body window again by clicking on the

three dots and write in the “Value” field:

#include "CityModel\PublicBuilding.hpp"
#include "CityModel\Person.hpp"

This will include two generated header files into the “City” class, because they are

needed for the function. Click on “Add” again. The “#include … “-lines should then

be added to the “Feature” field, but below the code inserted before. Change that by

clicking on the “Up” button in the middle. The “#include … “-part should then be

moved up one line, while the previously inserted code is moved down one line, like it

is shown in Figure 36. Click on OK and save the changes.

//this method changes the workplace of a person

//get all public buildings and persons of the city

std::shared_ptr<Bag<PublicBuilding>> pBuildings = this -> getPublicBuildings();

std::shared_ptr<Bag<Person>> persons = this -> getPersons();

//first, we need to find the correct public building for the given address

//therefore, we iterate through all public buildings of the city

for(Bag<PublicBuilding>::const_iterator it=pBuildings->begin();it!=pBuildings->end();it++)

{

 //removing a person from a public building (his previous workplace)

 //check whether there is an employee with the same name as the input

 //(by iterating through all employees and comparing their names)

 std::shared_ptr<Bag<Person>> employees = (*it) -> getEmployees();

 for(Bag<Person>::const_iterator pers_it=employees -> begin();

 pers_it!=employees -> end(); pers_it++)

 {

 //if there is a person with the same name, he is removed from the public building

 //(his previous workplace)

 if ((*pers_it) -> getName() == person -> getName()) {

 //removing the person from the list of employees of the building

 (*it) -> removeEmployee(person);

 std::cout << "Removed employee " << person -> getName() << " from " << (*it) ->

 getAddress() << std::endl;

 break;

 }

 }

 //adding a person as employee to a building (his new workplace)

 //only if a public building with the same address as the given address exists

 if ((*it) -> getAddress() == publicBuildingAddress) {

 //adds the person to the list of employees of the building

 (*it) -> addEmployee(person);

 std::cout << "Added employee " << person -> getName() << " to " << (*it) ->

 getAddress() << std::endl;

 }

 }

2 Creating an UML Diagram and deriving Code using MDE4CPP

29

Figure 36: Adding includes and body to a function behavior

So far nothing would happen because the generator cannot do anything with the code

and the includes, because the language is not specified. Go to the “Language” line in

the “Properties” window and click on the three dots on the right so that the

“Language” window opens. The first part of the “Body” section is formed by the

includes, so you must enter “INCLUDE” (in capital letters) into the “Value” field and

click on “Add”. The second part of the “Body” section contains the function code being

written in C++, so you must enter “CPP” (again in capital letters) and click on “Add”.

The result should look somewhat like Figure 37. Click on “OK” and save the changes.

This step can be done for all created function behaviors because all functions will

need includes and will have a C++ function body, irrespective of the actual content.

Figure 37: Setting the language

In the way described above add the following header files as includes and the code

snippet shown in Code part 2 to the body of the “changeResidence” function behavior:

#include "CityModel\ResidentialBuilding.hpp"
#include "CityModel\Person.hpp"

2 Creating an UML Diagram and deriving Code using MDE4CPP

30

Code part 2: function implementation for changeResidence

The provided code iterates through all existing residential buildings of the city

iterating through the list of inhabitants of every residential building to check whether

the provided person is residing anywhere. If the current residential building has the

same address as the input address string, the person is added to the list of

inhabitants of this residential building.

In the same way, add the following header files to the “printCityContents” function

behavior in the “City” class, as well as the code snipped shown in Code part 3:

#include "CityModel\Building.hpp"
#include "CityModel\Person.hpp"

The provided code in Code part 3 iterates through all public buildings, residential

buildings and persons existing in the city and prints their attributes to the console,

separated by dashed lines for better readability. Remember to add “INCLUDE” and

“CPP” to the “Language” section of the “Properties” window.

//this method changes the home of a person

//all residential buildings and persons of the city

std::shared_ptr<Bag<ResidentialBuilding>> rBuildings = this -> getResidentialBuildings();

std::shared_ptr<Bag<Person>> persons = this -> getPersons();

//first, we need to find the correct residential building for the given address

//therefore, we iterate through all residential buildings of the city

for(Bag<ResidentialBuilding>::const_iterator it=rBuildings -> begin();

 it!=rBuildings -> end(); it++)

{

 //removing a person from a residential building (his previous home)

 //check whether there is a resident with the same name as the input

 //(by iterating through all residents and comparing their names)

 std::shared_ptr< Bag < Person > > residents = (*it) -> getInhabitants();

 for(Bag<Person>::const_iterator pers_it=residents -> begin();

 pers_it!=residents -> end(); pers_it++)

 {

 //if there is a person with the same name, he is removed from the residential

 //building (his previous home)

 if ((*pers_it) -> getName() == person -> getName()) {

 //removing the person from the list of residents of the building

 (*it) -> removeResident(person);

 std::cout << "Removed resident " << person -> getName() << " from " <<

 (*it) -> getAddress() << std::endl;

 break;

 }

 }

 //adding a person as resident to a building (his new home)

 //only if a residential building with the same address as the given address exists

 if ((*it) -> getAddress() == residentialBuildingAddress) {

 //adds the person to the list of residents of the building

 (*it) -> addResident(person);

 std::cout << "Added resident " << person -> getName() << " to " <<

 (*it) -> getAddress() << std::endl;

 }

}

2 Creating an UML Diagram and deriving Code using MDE4CPP

31

Code part 3: function implementation for printCityContents

Expand the “PublicBuilding” class and click on the “addEmployee” function behavior.

Add the following line (that includes the header file ”Person.hpp” into the function) to

the “Body” section:

#include "CityModel/Person.hpp"

//every existing object of the city must be printed

//therefore, we need to collect all objects first

std::shared_ptr< Bag<PublicBuilding> > publicBuildings = this ->getPublicBuildings();

std::shared_ptr< Bag<ResidentialBuilding> > residentialBuildings = this ->

 getResidentialBuildings();

std::shared_ptr< Bag<Person> > persons = this -> getPersons();

std::cout << "==" << std::endl;

std::cout << "City " << this -> getCityName() << " contains: " << std::endl;

std::cout << "==" << std::endl;

std::cout << "Public Buildings:" << std::endl;

std::cout << "--" << std::endl;

//iterating through all public buildings, printing its address, purpose, and all employees

for(Bag<PublicBuilding>::const_iterator it=publicBuildings -> begin();

 it!=publicBuildings -> end(); it++)

{

 std::cout << "\tPublic Building with address \"" << (*it) -> getAddress() <<

 "\" and purpose \"" << (*it) -> getPurpose() << "\"" << std::endl;

 std::cout << "\t\tEmployees:" << std::endl;

 //list of employees in the current public building

 std::shared_ptr< Bag<Person> > persons = (*it) -> getEmployees();

 //iterating through the list of employees in the current public building

 //and printing their names

 for(Bag<Person>::const_iterator itPerson=persons -> begin();

 itPerson!=persons -> end(); itPerson++)

 {

 std::cout << "\t\t\tPerson " << (*itPerson) -> getName() << std::endl;

 }

}

std::cout << "Residential Buildings:" << std::endl;

std::cout << "--" << std::endl;

//iterating through all residential buildings, printing its address and all residents

for(Bag<ResidentialBuilding>::const_iterator it=residentialBuildings -> begin();

 it!=residentialBuildings -> end(); it++)

{

 std::cout << "\tResidential Building with address \"" << (*it) -> getAddress() <<

 "\"" << std::endl;

 std::cout << "\t\tResidents:" << std::endl;

 //list of residents in the current residential building

 std::shared_ptr< Bag<Person> > persons = (*it) -> getInhabitants();

 //iterating through the list of residents in the current residential building

 //and printing their names

 for(Bag<Person>::const_iterator itPerson=persons -> begin();

 itPerson!=persons -> end(); itPerson++)

 {

 std::cout << "\t\t\tPerson " << (*itPerson) -> getName() << std::endl;

 }

}

std::cout << "Persons in city:" << std::endl;

std::cout << "--" << std::endl;

//iterating through all persons of the city and printing their names

for(Bag<Person>::const_iterator it=persons -> begin(); it!=persons -> end(); it++)

{

 std::cout << "\tPerson with name: " << (*it) -> getName() << std::endl;

}

std::cout << "=="<< std::endl;

std::cout << "Printed everything from City " << this -> getCityName() << std::endl;

std::cout << "=="<< std::endl;

2 Creating an UML Diagram and deriving Code using MDE4CPP

32

This header file is needed for all the remaining function behaviors (addEmployee,

removeEmployee, addResident, removeResident), so you can just copy and paste it

into the four remaining function behavior’s bodies. After clicking on the “Add” button,

copy the code snippets shown below in Code part 4, Code part 5, Code part 6, and

Code part 7 to the corresponding function behaviors.

Code part 4: function implementation for addEmployee

Code part 5: function implementation for removeEmployee

Code part 6: function implementation for addResident

Code part 7: function implementation for removeResident

As shown in Figure 38 exemplary for the “addEmployee” function behavior, the

header files must be specified first and then the function body. Remember to add

"INCLUDE" and "CPP" to the "Language" field.

Figure 38: Function behavior body of addEmployee

2.4.5 Creating a main function

To finally execute the generated program, a main function is required. To achieve

this, stereotypes with keywords are used, which are explained below. The first step is

to import the UML4CPPProfile (that contains the stereotypes) into the CityModel.uml

file. For that, right-click in the UML file and select “Load Resource…” which should

be the third entry from the bottom in the menu. You could either click on “Browse

Workspace…” and select UML4CPPProfile.uml which can be found at the path shown

in Figure 39. You could also manually enter the path.

m_employees -> add(person);

m_employees -> erase(person);

m_inhabitants -> add(person);

m_inhabitants -> erase(person);

2 Creating an UML Diagram and deriving Code using MDE4CPP

33

Figure 39: Importing the UML4CPPProfile

If everything went well, another item appears near the bottom of the list of items with

a name similar to "platform:/resource/…/UML4CPPProfile.uml” in the UML file.

Expand it by clicking on the small arrow on the left. This will show a list of stereotypes

that can be applied to any UML model, as shown in Figure 40.

Figure 40: Stereotypes in UML4CPPProfile.uml

The required stereotype is the one named “MainBehavior”. When applied to a

function, it will be the main function of the generated program. The chosen behavior

will then be executed by the main function. Besides this there are 5 other stereotypes:

• DoNotGenerate can be used to indicate to the generator that this

element should not be generated.

• ExternalLibrary can be used to indicate that a package represents an

external library. This could be applicable for example, when an external

library should be used in the generated model code and is represented

by an interface model while modeling, for example to be able to use

external types.

• GetterName and SetterName can be used to define a special name for

the getter and setter method of a property.

• NonExecutable can be used to indicate that no execution class should

be generated for an element (e.g., no execution class for an opaque

behavior or operation). This will make the corresponding model element

non-executable for model execution.

2 Creating an UML Diagram and deriving Code using MDE4CPP

34

• Singleton can be used to indicate that a class should be generated as a

singleton.

• UML4CPPPackage can be used to specify additional information of a

Package to parameterize the code generation process through additional

properties:

o "eclipseURI : String": the URI for referencing the original model

file. Used for saving and loading persistent models during

runtime. Can be an Eclipse 'PATHMAP' or an absolute path.

o "ignoreNamespace : Boolean": indicates that the namespace of

the corresponding Package should be ignored during generation.

o "packageOnly : Boolean": indicates that only the model package

should be generated (excluding classes, enumerations etc.).

To add a stereotype to the model, you must apply the profile containing the stereotype

first. Hence, select the package (here it is “<Model> NewModel”), as highlighted in

Figure 41. In the menu bar on the top, click on “UML Editor”, then “Package” and

“(Re-)Apply Profile…”. Select “UML4CPPProfile – UML4CPPProfile.uml” as shown in

Figure 42, click “Apply” and click “OK”.

Figure 41: Applying a profile (1)

Figure 42: Applying a profile (2)

The next step is to create the function that should be marked as MainBehavior. In

the CityModel.uml, right-click on “<Model> NewModel”, select “New Child”, then

“Packaged Element” and select “Function Behavior”. This adds an empty “<Function

Behavior>” item to the model. In the “Properties” window, you can give an appropriate

2 Creating an UML Diagram and deriving Code using MDE4CPP

35

name. In the example model, the function behavior is named “mainProgram” as

shown in Figure 43. Then click on “UML Editor” in the menu bar on the top. This

time, select “Element” and “Apply Stereotype…” which opens a new window, as shown

in Figure 44. In the left window, which is called “Applicable Stereotypes”, all

stereotypes compatible with this element are listed. Select the stereotype(s) you want

to add to the selected element. To make the created function the main function, select

“UML4CPPProfile::MainBehavior – UML4CPPProfile.uml”, click “Apply” and then

“OK”. The line of the function behavior should now look like “<<MainBehavior>>

<FunctionBehavior> mainProgram”.

Figure 43: function behavior to be the main function

2 Creating an UML Diagram and deriving Code using MDE4CPP

36

Figure 44: Applying a stereotype

Next, define the used languages in the “Language” field, which is “INCLUDE” and

“CPP” as always. Then, add the needed header files to the “Body” section just like

before:

#include "CityModel/Building.hpp"
#include "CityModel/City.hpp"
#include "CityModel/Person.hpp"
#include "CityModel/PublicBuilding.hpp"
#include "CityModel/ResidentialBuilding.hpp"

The goal of the main program is to accept user input and process it. The result should

be for example, the creation of an object of type Person, PublicBuilding or

ResidentialBuilding in the City, as well as changing attributes or to print something

to the console, depending on the input. In the following, some code parts are shown

that should be added to the “Value” box of the “mainProgram” function behavior’s

body, starting with Code part 8. To recreate the example model, simply copy and

paste the parts seamlessly. For that, start with the creation of the city:

Code part 8: main program (1)

The first user input represents the city’s name. A "cityName" variable is required for

this, in which the user input is stored and then is set as name of the previously

created city. The code for this can be seen in Code part 9. Copy and paste this

segment right after the Code part 8.

Code part 9: main program (2)

The next step is the main program loop, in which a user input is accepted and

processed in each step until the user gives the stop command. All following code parts

must be placed inside this loop at the position of the dark green, bold comment

//Creating a new instance of City via model factory

std::shared_ptr<City> city =factory->createCity();

//Setting city name via console input

std::cout << "Enter a city name: ";

std::string cityName;

std::getline(std::cin, cityName);

city->setCityName(cityName);

2 Creating an UML Diagram and deriving Code using MDE4CPP

37

(preferably in the order given), as can be seen in Code part 10 below. If the user types

the stop command, the loop is exited, and the program terminates.

Code part 10: main program (3)

The first command to implement is a simple “help” command printing all available

commands to the console. Copy the code shown in Code part 11 into the loop at the

position marked in Code part 10.

Code part 11: main program (4)

The first "real" command is addPerson shown Code part 12, which creates a Person

object and saves it in the city. To do this, the user must enter "addPerson" and press

Enter. This adds a person to the city using a factory that is created when generating

the code via MDE4CPP (via the factory’s method createPerson_as_persons_in_City()).

In the next line, the user can then enter any character string that is assigned to the

person created as a name.

Code part 12: main program (5)

The next two commands add a PublicBuilding or a ResidentialBuilding to the city.

Therefore, the structures of Code part 13 and Code part 14 are very similar. The only

major difference is that a purpose must be specified when creating a PublicBuilding.

The rest works in the same way as addPerson: first the object is created as part of

//Every command that is entered is stored in the input_str

//Initially, the string is empty

std::string input_str ="";

//main loop of the program, can be exited by entering "stop"

while(true) {

 //after "Enter command: " is printed, one of the following commands can be entered

 std::cout << "Enter command: ";

 std::getline(std::cin, input_str);

 //ALL FOLLOWING CODE SHOULD BE PLACED IN HERE

}

std::cout << "Program ends..." << std::endl;

//when typing "help", every available command will be printed to the console

//along with a short description

if (input_str=="help") {

 std::cout << "addPerson\t\t adds a person to the city" << std::endl;

 std::cout << "addPublicBuilding\t creates a public building with an address and a purpose

in the city" << std::endl;

 std::cout << "addResidentialBuilding\t creates a residential building with an address in

the city" << std::endl;

 std::cout << "changeWorkplace\t\t changes the workplace of a person" << std::endl;

 std::cout << "changeResidence\t\t changes the place of residence of a person" <<

std::endl;

 std::cout << "print\t\t\t prints all existing objects" << std::endl;

 std::cout << "stop\t\t\t exits the program" << std::endl;

}

//when typing "addPerson" and pressing enter, you can add a person to the city

//For that, you also have to type a name in the next line

else if (input_str=="addPerson") {

 //Creating a person in city via model factory

 std::shared_ptr<Person> person1 = factory->createPerson_as_persons_in_City(city);

 std::cout << "Name of person: ";

 //Setting name of the newly created person

 std::string pName;

 std::getline(std::cin, pName);

 person1->setName(pName);

}

2 Creating an UML Diagram and deriving Code using MDE4CPP

38

the city, then the second input string is set as the address of the building. When a

PublicBuilding is created, a third input string is set as the purpose.

Code part 13: main program (6)

Code part 14: main program (7)

The next command “changeResidence” (shown in

Code part 15) is used to add an existing person as resident to a residential building

removing it from his former home. Accordingly, it takes the address of an existing

residential building as well as a person as input parameters.

//when typing "addPublicBuilding" and pressing enter, you can add a public building

//to the city

//For that, you have to type an address in the next line

//Also, you have to type a purpose in the next line (e.g. "Mall" or "Hospital")

else if (input_str=="addPublicBuilding") {

 //Creating a public building in city via model factory

 std::shared_ptr<PublicBuilding> pBuilding = factory ->

 createPublicBuilding_as_publicBuildings_in_City(city);

 std::cout << "Address of public building: ";

 //Setting address of the newly created public building

 std::string address;

 std::getline(std::cin, address);

 pBuilding->setAddress(address);

 std::cout << "Purpose of public building: ";

 //Setting purpose of the newly created public building

 std::string purpose;

 std::getline(std::cin, purpose);

 pBuilding->setPurpose(purpose);

}

//when typing "addResidentialBuilding" and pressing enter, you can add

//a residential building to the city

//For that, you have to type an address in the next line

else if (input_str=="addResidentialBuilding") {

 //Creating a residential building in city via model factory

 std::shared_ptr<ResidentialBuilding> rBuilding = factory ->

 createResidentialBuilding_as_residentialBuildings_in_City(city);

 std::cout << "Address of residential building: ";

 //Setting address of the newly created residential building

 std::string address;

 std::getline(std::cin, address);

 rBuilding->setAddress(address);

}

2 Creating an UML Diagram and deriving Code using MDE4CPP

39

Code part 15: main program (8)

Like the “changeResidence” command that, the next command “changeWorkplace”

shown in Code part 16 is used to add an existing person as employee to a public

building removing it from his former workplace. Accordingly, it takes the address of

an existing public building as well as a person as input parameters.

//when typing "changeResidence" and pressing enter, you can add a person as resident

//to a residential building (and removing him from the previous residential building)

//For that, you have to type the name of the person in question in the next line

//Also, you have to type an address of a residential building in the next line

else if (input_str=="changeResidence") {

 //First input: name of person

 std::cout << "Name of resident: ";

 std::string name;

 std::getline(std::cin, name);

 //"resident = nullptr": placeholder for the pointer of the (already created) person,

 //which is to find

 std::shared_ptr<Person> resident = nullptr;

 //Get all persons from city and search for person with the same name as the input string

 std::shared_ptr<Bag<Person>> persons = city->getPersons();

 for(Bag<Person>::const_iterator it=persons->begin();it!=persons->end();it++)

 {

 std::string itName = (*it)->getName();

 //check for every person if the name is equal to the input string

 //if true: nullptr is replaced with the pointer of the found person

 if (itName == name) {

 resident = (*it);

 }

 }

 //Second input: address of building, where the person will be added

 std::cout << "Address of residential building that will be the new residence: ";

 std::string address;

 std::getline(std::cin, address);

 //true if resident has been found in the list of persons of the city

 //if true, person is added to the list of residents of the building at the address

 //given in the second input

 //if false (i.e. no person with the given name exists), a short message is printed,

 //but nothing changes besides that

 if (resident != nullptr) {

 city->changeResidence(resident, address);

 } else {

 std::cout << "Person \"" << name << "\" not found. To assign a person as resident" <<

 "to a residential building, the person must have been created before!"<< std::endl;

 }

}

2 Creating an UML Diagram and deriving Code using MDE4CPP

40

Code part 16: main program (9)

The last two commands are “print” and “stop”. When “print” is called, all existing

objects in the city are printed to the console in a readable format. “stop” leaves the

main program loop and the program terminates. Also, if the input does not match

any of the possible commands, a short message is printed, indicating “help” as a

useful command. This can be seen in Code part 17, which is the last part of code for

the main program. Then click “Add” and “OK” in the “Body” window.

//when typing "changeWorkplace" and pressing enter, you can add a person as employee

//to a public building (and removing him from the previous public building)

//For that, you have to type the name of the person in question in the next line

//Also, you have to type an address of a public building in the next line

else if (input_str=="changeWorkplace") {

 //First input: name of person

 std::cout << "Name of employee: ";

 std::string name;

 std::getline(std::cin, name);

 //"employee = nullptr": placeholder for the pointer of the (already created) person,

 //which is to find

 std::shared_ptr<Person> employee =nullptr;

 //Get all persons from city and search for person with the same name as the input string

 std::shared_ptr<Bag<Person>> persons = city->getPersons();

 for(Bag<Person>::const_iterator it=persons->begin();it!=persons->end();it++)

 {

 std::string itName = (*it)->getName();

 //check for every person if the name is equal to the input string

 //if true: nullptr is replaced with the pointer of the found person

 if (itName == name) {

 employee = (*it);

 }

 }

 //Second input: address of building, where the person will be added

 std::cout << "Address of public building that will be the new workplace: ";

 std::string address;

 std::getline(std::cin, address);

 //true if employee has been found in the list of persons of the city

 //if true, person is added to the list of employees of the building at the address

 //given in the second input

 //if false (i.e. no person with the given name exists), a short message is printed,

 //but nothing changes besides that

 if (employee != nullptr) {

 city->changeWorkplace(employee, address);

 } else {

 std::cout << "Person \"" << name << "\" not found. To assign a person as employee to"<<

 "a public building, the person must have been created beforehand!" << std::endl;

 }

}

2 Creating an UML Diagram and deriving Code using MDE4CPP

41

Code part 17: main program (10)

 Generating and compiling the model

Before generating the model, make sure that the model’s name is the same as the

UML file’s name. Like it is shown in Figure 45, the file’s name is “CityModel.uml”

while the model’s name is “NewModel”, so they do not match. Change that by clicking

on “NewModel” and type “CityModel” as its new name. You could also choose every

other name, but the UML file’s name must match the model’s name. Remember to

save the changes afterwards.

Figure 45: UML file name and model name do not match

//when typing "print" and pressing enter, all existing objects will be printed

//for more information, read the comments at CityImpl::printCityContents()

else if (input_str=="print") {

 city->printCityContents();

}

//when typing "stop" and pressing enter, the program's main loop will be exited

//and the program terminates

else if (input_str=="stop") {

 break;

}

//when typing anything else, a short message appears, indicating help by typing "help"

else {

 std::cout << "Unknown command! Type \"help\" for a list of supported commands."<<

 std::endl;

}

3 Running the application

42

To generate the finished model, navigate to the root directory of your MDE4CPP

installation and open the window command line in this directory, as it was explained

in “2.1 Starting eclipse via Command Line” and shown in Figure 2. Type “setenv.bat”

and press Enter to temporarily set the environment variables. After that, type

gradlew generateModel -PModel=”%MDE4CPP_HOME%\userProjects\UML_Example\model\CityModel.uml” -PSO

Press Enter and wait until the task is finished. Then, you can check whether the

generation has worked by typing “gradlew tasks” end pressing Enter. After a couple

of seconds, all available tasks will be shown. If you have set the model’s name to

“CityModel”, scroll up until you see “CityModel tasks” (all tasks are sorted

alphabetically). There should be 3 or 4 tasks as shown in Figure 46, depending on

whether you added a main function via the MainBehavior stereotype.

Figure 46: gradle tasks for the model

The generated program can then be compiled via “gradlew compile<Name>”, where

<Name> is the model’s name starting with a capital letter. In the case of the example

model, you must enter “gradlew compileCityModel”. This may take a minute. If

everything is set up correctly, no errors should appear, and the task should end with

a green “BUILD SUCCESSFUL” message. If you make changes to the model later, you

can generate and compile the model in one step via “gradlew build<Name>”, where

<Name> again is the model’s name starting with a capital letter. In the case of the

example model, you must enter “gradlew buildCityModel”. If everything is set up

correctly, no errors should appear, and the task should end with a green “BUILD

SUCCESSFUL” message.

3 Running the application
To create a runnable application, the gradle task “compileApplicationForCityModel”

is needed. Start it by entering “gradlew compileApplicationForCityModel”. This may

take some seconds.

After the task is finished, you can start the generated application. Open a new

Command Line Window and navigate to the MDE4CPP installation folder. Just like

in “2.1 Starting eclipse via Command Line”, this can be achieved by pressing the

Windows key and the R key at the same time (then the Run window opens), entering

“cmd”, then clicking “OK” and entering “cd <path-to-MDE4CPP>”, where <path-to-

MDE4CPP> is the path to the installation directory. This sets the workspace of the

command line to the MDE4CPP home directory. Another way is to open Windows

Explorer, navigating to the MDE4CPP installation directory, clicking on the directory

path (marked in Figure 2), and typing “cmd”, then pressing Enter. This will also open

the Command Line Window in the installation directory. Navigate into the bin-

directory of the application folder by typing “cd application\bin” and pressing enter.

To start the application, simply type “App_CityModel.exe” and press enter.

3 Running the application

43

Figure 47: starting model application

After entering a city name and pressing Enter, you can type any command from the

list of implemented commands from Code part 11 to Code part 17. Figure 48 shows

a short example on how to use the commands. Start by typing “addPerson” and

pressing Enter. This will create an object of the type “Person” in the city. In the next

line (starting with “Name of person: “), you can enter the desired name. After pressing

Enter, the input string is set as the person’s name. Typing “addPublicBuilding” and

pressing Enter creates an object of type “PublicBuilding” as part of the city. In the

following lines you can come up with an address and a purpose for the building. To

assign the formerly created person to the building as employee, simply enter

“changeWorkplace”. In the next two lines type in the name of the person and the

address of the just created building. Afterwards, the command "print" can be used to

output all existing objects in the city to the console. As you can see in Figure 48,

there are one building with the address “Street1” and a person with the name

“Person1” in the city. You can end the program by typing “stop” and pressing Enter.

All available commands along with a short description can be viewed by typing “help”.

Figure 48: Example how to use the application

This concludes the introduction to creating UML class diagrams and deriving code

from them using MDE4CPP. With the tools explained in this document, simple to

advanced C++ programs can be created independently.

4 Outlook and in-depth literature

44

4 Outlook and in-depth literature
As mentioned at the beginning, the goal was to explain the creation of a UML class

diagram and the generation of the code from the class diagram. Complex issues (such

as behavior-based models) were avoided, and the model was kept as simple as

possible in order to convey the basics. Accordingly, work on these complex topics is

conceivable in the future. In addition, the MDE4CPP program is constantly being

further developed so that activity diagrams will also be supported in the future, which

also opens up new opportunities for deepening knowledge in this area.

 Activity diagrams

As part of the UML, activity diagrams are used to model both computational and

organizational workflows, as well as the data flows intersecting with the related

activities. Activity diagrams can also be created with eclipse by selecting “Activity

Diagram” instead of “Class Diagram” in chapter 2.3, but code cannot be generated

from them because that is not yet supported by the MDE4CPP generator. As already

mentioned, this is in progress and should be possible in the future.

 fUML

The fUML is a subset of the UML (including its typical structural modeling constructs

such as classes, associations, or data types) but it also adds the ability to model

behavior using UML activities composed of primitive actions. This leads to models

constructed in fUML being executable in the same sense as a program written in a

traditional programming language, with the difference that the fUML model is written

with the level of abstraction of a modeling language.1 Code generation for fUML

models is already supported by MDE4CPP.

 PSCS

PSCS is an extension of the fUML syntax and semantics and is short for “Precise

Semantics of UML Composite Structures”. PSCS allows for modeling and execution

of UML composite structures.2

 OCL

Another approach to work in the future is the Object Constraint Language (OCL) that

is a textual sublanguage of the UML. It can be used to express additional constraints

on UML models that cannot be expressed, or are very difficult to express, with the

graphical means provided by the UML. OCL is based on first-order predicate logic,

but it uses a syntax similar to programming languages and closely related to the

syntax of UML. It is, thus, more adequate for every-day modelling than pure first-

order predicate logic.3 For both PSCS and OCL there are already some examples in

MDE4CPP (under src/ocl or src/pscs), which can be used to understand how OCL

and PSCS work.

1 Definition is taken from https://modeldriven.github.io/fUML-Reference-Implementation/, slightly modified
2 Definition is taken from https://www.omg.org/spec/PSCS/1.2/About-PSCS/, slightly modified
3 Definition is taken from http://www-st.inf.tu-dresden.de/ocl/, slightly modified

https://modeldriven.github.io/fUML-Reference-Implementation/
https://www.omg.org/spec/PSCS/1.2/About-PSCS/
http://www-st.inf.tu-dresden.de/ocl/

