

Network Security

Chapter 2 Basics of Cryptography

- Overview Cryptographic Algorithms
- □ Attacking Cryptography
- Properties of Encryption Algorithms
- Classification of Encryption Algorithms

Network Security (WS 14/15): 02 - Basics of Cryptography

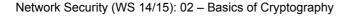
Cryptographic Algorithms: Overview

- During this course two main applications of cryptographic algorithms are of principal interest:
 - Encryption of data: transforms plaintext data into ciphertext in order to conceal its' meaning
 - Signing of data: computes a check value or digital signature to a given plain- or ciphertext, that can be verified by some or all entities being able to access the signed data
- □ Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- □ Principal categories of cryptographic algorithms:
 - Symmetric cryptography using 1 key for en-/decryption or signing/checking
 - Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
 - □ *Cryptographic hash functions* using 0 keys (the "key" is not a separate input but "appended" to or "mixed" with the data).

2

1

Attacking Cryptography (1): Cryptanalysis

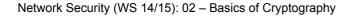

- Cryptanalysis is the process of attempting to discover the plaintext and / or the key
- □ Types of cryptanalysis:
 - □ *Ciphertext only:* specific patterns of the plaintext may remain in the ciphertext (frequencies of letters, digraphs, etc.)
 - □ Known ciphertext / plaintext pairs
 - □ Chosen plaintext or chosen ciphertext
 - □ Newer developments: *differential cryptanalysis, linear cryptanalysis*
- □ Cryptanalysis of public key cryptography:
 - □ The fact that one key is publicly exposed may be exploited
 - Public key cryptanalysis is more aimed at breaking the cryptosystem itself and is closer to pure mathematical research than to classical cryptanalysis
 - □ Important directions:
 - Computation of discrete logarithms
 - Factorization of large integers

Network Security (WS 14/15): 02 - Basics of Cryptography

- □ The *brute force attack* tries every possible key until it finds an intelligible plaintext:
 - □ Every cryptographic algorithm can in theory be attacked by brute force
 - □ On average, half of all possible keys will have to be tried

Average Time Required for Exhaustive Key Search					
Key Size [bit]	Number of keys	Time required at 1 encryption / μs	Time required at 10 ⁶ encryption / μ s		
56	2^{56} = 7.2 * 10 ¹⁶	2 ⁵⁵ μs = 1142 years	10.01 hours		
128	$2^{128} = 3.4 * 10^{38}$	$2^{127}\mu s$ = 5.4 * 10 ²⁴ years	5.4 * 10 ¹⁸ years		
256	$2^{256} = 1.2 * 10^{77}$	$2^{255}\mu s$ = 3.7 * 10 ⁶³ years	3.7 * 10 ⁵⁷ years		

4


3

Attacking Cryptography (3): How large is large?

Reference numbers Comparing Relative Magnitudes				
Reference	Magnitude			
Seconds in a year	≈ 3	* 10 ⁷		
Seconds since creation of solar system	≈ 2	* 10 ¹⁷		
Clock cycles per year (50 MHz computer)	≈ 1.6	* 10 ¹⁵		
Binary strings of length 64 2	2 ⁶⁴ ≈ 1.8	* 10 ¹⁹		
Binary strings of length 128 2	2 ¹²⁸ ≈ 3.4	* 10 ³⁸		
Binary strings of length 256 2	2 ²⁵⁶ ≈ 1.2	* 10 ⁷⁷		
Number of 75-digit prime numbers	≈ 5.2	* 10 ⁷²		
Electrons in the universe	≈ 8.37	* 10 ⁷⁷		

Reference Numbers Comparing Relative Magnitudes

Important Properties of Encryption Algorithms

Consider, a sender is encrypting plaintext messages P_1 , P_2 , ... to ciphertext messages C_1 , C_2 , ...

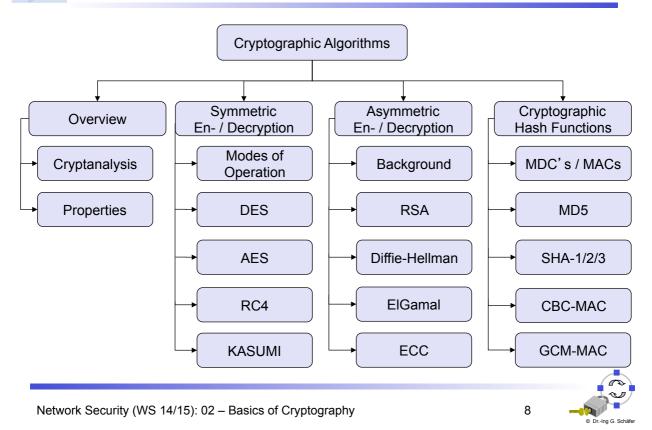
Then the following properties of the encryption algorithm are of special interest:

- □ *Error propagation* characterizes the effects of bit-errors during transmission of ciphertext to reconstructed plaintext P_1 , P_2 , ...
 - Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit
- Synchronization characterizes the effects of lost ciphertext data units to the reconstructed plaintext
 - Some encryption algorithms can not recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages
 - Other algorithms do automatically re-synchronize after 0 to n (n depending on the algorithm) ciphertext bits

6

5

Classification of Encryption Algorithms: Three Dimensions


- □ The type of operations used for transforming plaintext to ciphertext:
 - □ *Substitution*, which maps each element in the plaintext (bit, letter, group of bits or letters) into another element
 - □ *Transposition,* which re-arranges elements in the plaintext
- □ The number of keys used:
 - Symmetric ciphers, which use the same key for en- / decryption
 - □ Asymmetric ciphers, which use different keys for en- / decryption
- □ The way in which the plaintext is processed:
 - Stream ciphers work on bit streams and encrypt one bit after another:
 - Many stream ciphers are based on the idea of linear feedback shift registers, and there have been detected vulnerabilities of a lot of algorithms of this class, as there exists a profound mathematical theory on this subject.

7

- Most stream ciphers do not propagate errors but are sensible to loss of synchronization.
- □ *Block ciphers* work on blocks of width *b* with *b* depending on the specific algorithm.

Network Security (WS 14/15): 02 - Basics of Cryptography

Cryptographic Algorithms – Outline

