
1
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Network Security
Chapter 3

Symmetric Cryptography

!  Modes of Encryption
!  Data Encryption Standard (DES)
!  Advanced Encryption Standard (AES)
!  The Block Cipher RC4
!  KASUMI

2
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Symmetric Encryption

!  General description:
!  The same key KA,B is used for enciphering and deciphering of messages:

!  Notation:
!  If P denotes the plaintext message E(KA,B, P) denotes the ciphertext and it

holds D(KA,B, E(KA,B, P)) = P
!  Alternatively we sometimes write {P} KA,B

 or EKA,B
(P) for E(KA,B, P)

!  Examples: DES, 3DES, AES, ...

Plain-
text

Encrypt
Cipher-

text

Cipher-
text

Decrypt
Plain-
text

3
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Symmetric Block Ciphers - Modes of Encryption 1

!  General Remarks & Notation:
!  A plaintext p is segmented in blocks p1, p2, ... each of length b or j,

respectively, where b denotes the block size of the encryption algorithm
and j < b

!  The ciphertext c is the combination of c1, c2, ... where ci denotes the result
of the encryption of the ith block of the plaintext message

!  The entities encrypting and decrypting a message have agreed upon a
key K.

4
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Symmetric Block Ciphers - ECB

!  Electronic Code Book Mode (ECB):
!  Every block pi of length b is encrypted independently: ci = E(K, pi)
!  A bit error in one ciphertext block ci results in a completely wrongly

recovered plaintext block pi´
!  Loss of synchronization does not have any effect if integer multiples of

the block size b are lost.
If any other number of bits are lost, explicit re-synchronization is needed.

!  Drawback: identical plaintext blocks are encrypted to identical ciphertext!

Time = 1

P1

Encrypt

C1

K

Time = 2

P2

Encrypt

C2

K

Time = n

Pn

Encrypt

Cn

K Encrypt ...

... ECB

5
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Symmetric Block Ciphers - CBC

!  Cipher Block Chaining Mode (CBC):
!  Before encrypting a plaintext block pi it is XORed (⊕) with the preceding

ciphertext block ci-1:
■  ci = E(K, ci-1 ⊕ pi)
■  pi´ = ci-1 ⊕ D(K, ci)

!  In order to compute c1 both parties agree on an initial value (IV) for c0
!  Properties:

!  Error propagation:
■  A distorted ciphertext block results in two distorted plaintext blocks, as

pi´ is computed using ci-1 and ci
!  Synchronisation:

■  If the number of lost bits is a multiple integer of b, one additional block
pi+1 is distorted before synchronization is re-established.
If any other number of bits are lost explicit re-synchronization is
needed.

!  Advantage: identical plaintext blocks are encrypted to non-identical
ciphertext.

6
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Symmetric Block Ciphers - CBC 2

Time = 1 Time = 2 Time = n

Encrypt

C1

K

P2

Encrypt

C2

K

Pn

Encrypt

Cn

K Encrypt ...

...

C1

Decrypt

P1

K

C2

Decrypt

P2

K

Cn

Decrypt

Pn

K Decrypt ...

P1

+ IV + + Cn-1

+ IV + + Cn-1

CBC

7
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Symmetric Block Ciphers - CFB

!  Ciphertext Feedback Mode (CFB):
!  A block encryption algorithm working on blocks of size b can be converted

to an algorithm working on blocks of size j (j<b):
■  Let: S(j, x) denote the j higher significant bits of x

 Pi, Ci denote the ith block of plain- and ciphertext of length j
 IV be an initial value both parties have agreed upon

then :

!  A current value of j is 8 for encryption of one character per step

() 11 2mod2 −− ⊕⋅= n
bj

nn CRR
IVR =1

()() nnKn PREjSC ⊕= ,
()() ()() ()() nnKnKnnK PREjSREjSCREjS ⊕⊕=⊕ ,,,
()() nnnK PCREjS =⊕,

// j-bit left shift and XOR with old ciphertext

8
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Symmetric Block Ciphers - CFB 2
Time = 1 Time = 2 Time = m

Encrypt

...

Decrypt

CFB

C1

Cm-1

P1

Encrypt K

+

Shift-Reg.
 b -j | j

b

Select Discard
 j | b-j

b

j

j

j
P2

Encrypt K

+

Shift-Reg.
 b-j | j

b

Select Discard
 j | b-j

b

j

j

C2 j
Pm

Encrypt K

+

Shift-Reg.
 b-j | j

b

Select Discard
 j | b-j

b

j

j

Cm j

...

C1

Cm-1

P1

Encrypt K

+

Shift-Reg.
 b-j | j

b

Select Discard
 j | b-j

b

j

j

j
P2

Encrypt K

+

Shift-Reg.
 b-j | j

b

Select Discard
 j | b-j

b

j

j

C2 j
Pm

Encrypt K

+

Shift-Reg.
 b-j | j

b

Select Discard
 j | b-j

b

j

j

Cm j

...

9
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Symmetric Block Ciphers - CFB 3

!  Properties of CFB:
!  Error propagation:

■  As the ciphertext blocks are shifted through the register step by step,
an erroneous block ci distorts the recovered plaintext block pi´ as well
as the following "b / j# blocks

!  Synchronisation:
■  If the number of lost bits is a multiple integer of j then "b / j# additional

blocks are distorted before synchronization is re-established.
If any other number of bits are lost explicit re-synchronization is
needed.

!  Drawback:
■  The encryption function E needs to be computed more often, as one

encryption of b bit has to be performed to conceal j bit of plaintext
■  Example: Use of DES with encryption of one character at a time:

 ⇒ encryption has to be performed 8 times more often

10
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Symmetric Block Ciphers - OFB

!  Output Feedback Mode (OFB):
!  The block encryption algorithm is used to generate a pseudo-random

sequence Ri, that depends only on K and IV:
■  Let: S(j, x) denote the j higher significant bits of x

 Pi, Ci denote the ith block of plain- and ciphertext of length j
 IV be an initial value both parties have agreed upon

then :

■  The plaintext is XORed with the pseudo-random sequence to obtain
the ciphertext and vice versa

() ()()11 ,2mod2 −− ⊕⋅= nK
bj

nn REjSRR
IVR =1

()() nnKn PREjSC ⊕= ,
()() ()() ()() nnKnKnnK PREjSREjSCREjS ⊕⊕=⊕ ,,,
()() nnnK PCREjS =⊕,

// j-bit left shift + encrypted old value

11
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Symmetric Block Ciphers - OFB 2
Time = 1 Time = 2 Time = m

Encrypt

...

Decrypt

OFB

C1 P1

Encrypt K

+

Shift-Reg.
 b-j | j

b

Select Discard
 j | b-j

b

j

j

j
P2

Encrypt K

+

Shift-Reg.
 b-j | j

b

Select Discard
 j | b-j

b

j

j

C2 j
Pm

Encrypt K

+

Shift-Reg.
 b-j | j

b

Select Discard
 j | b-j

b

j

j

Cm j

...

C1

S(j, EK(Rm-1))

P1

Encrypt K

+

Shift-Reg.
 b-j | j

b

Select Discard
 j | b-j

b

j

j

j
P2

Encrypt K

+

Shift-Reg.
 b-j | j

b

Select Discard
 j | b-j

b

j

j

C2 j
Pm

Encrypt K

+

Shift-Reg.
 b-j | j

b

Select Discard
 j | b-j

b

j

j

Cm j

...

S(j, EK(Rm-1))

12
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Symmetric Block Ciphers - OFB 3

!  Properties of OFB:
!  Error propagation:

■  Single bit errors result only in single bit errors ⇒ no error multiplication
!  Synchronisation:

■  If some bits are lost explicit re-synchronization is needed

!  Advantage:
■  The pseudo-random sequence can be pre-computed in order to keep

the impact of encryption to the end-to-end delay low
!  Drawbacks:

■  Like with CFB the encryption function E needs to be computed more
often, as one encryption of b bit has to be performed to conceal j bit of
plaintext

■  It is possible for an attacker to manipulate specific bits of the plaintext

13
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Symmetric Block Ciphers - Algorithm Overview

!  Data Encryption Standard (DES)
!  Old American Standard from the 70s
!  Insecure because of key and block length
!  Fundamental design
!  Triple encryption with a block cipher, e.g. Triple-DES

!  Advanced Encryption Standard (AES)
!  Open standardization process with international participation
!  In October 2000, one algorithm called Rijndael has been proposed for AES
!  AES standard announced in November 2001
!  See also http://www.nist.gov/aes/

!  Other popular algorithms:

!  RC4
!  KASUMI

14
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

The Data Encryption Standard (DES) – History

!  1973 the National Bureau of Standards (NBS, now National Institute of
Standards and Technology, NIST) issued a request for proposals for a
national cipher standard, demanding the algorithm to:

!  provide a high level of security,
!  be completely specified and easy to understand,
!  provide security only by its� key and not by its� own secrecy,
!  be available to all users,
!  be adaptable for use in diverse applications,
!  be economically implementable in electronic devices,
!  be efficient to use,
!  be able to be validated, and
!  be exportable.

!  None of the submissions to this first call came close to these criteria.
!  In response to a second call, IBM submitted its� algorithm LUCIFER, a

symmetric block cipher, which works on blocks of length 128 bit using
keys of length 128 bit and that was the only promising candidate

15
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

DES – History continued

!  The NBS requested the help of the National Security Agency (NSA) in
evaluating the algorithm�s security:
!  The NSA reduced the block size to 64 bit, the size of the key to 56 bit and

changed details in the algorithm�s substitution boxes.
!  Many of the NSA�s reasoning for these modifications became clear in the

early 1990�s, but raised great concern in the late 1970�s.
!  Despite all criticism the algorithm was adopted as �Data Encryption

Standard� in the series of Federal Information Processing Standards
in 1977 (FIPS PUB 46) and authorized for use on all unclassified
government communications.

!  DES has been widely adopted in the years to follow

16
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

DES – Algorithm Outline

Permuted
Choice 1

64 bit plaintext 56 bit key

Initial
Permutation

Iteration 1 Permuted
Choice 2

Left Circular
Shift / 2

K1

Iteration 2 Permuted
Choice 2

Left Circular
Shift / 2

K2

Iteration 16 Permuted
Choice 2

Left Circular
Shift / 2

K16

32 bit Swap

Inverse Initial
Permutation

64 bit ciphertext

...

17
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

DES – Single Iteration (1)

Li-1 Ri-1

Expansion
Permutation

Ci-1 Di-1

Left Shift Left Shift

Permutation Contraction
(Perm. Choice 2) +

48
48 Ki

S-Box: Choice
Substitution

Permutation

+

Li Ri Ci Di

48

32

32 bit 32 bit 28 bit 28 bit

32

Data to be encrypted Key used for encryption

f(Ri-1, Ki)

...

Ri-1

Ki

18
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

DES – Single Iteration (2)
!  The right-hand 32 bit of the data to be encrypted are expanded to 48

bit by the use of an expansion / permutation table
!  Both the left- and the right-hand 28 bit of the key (also called subkeys)

are circularly left-shifted and the resulting value is contracted to 48 bit
by the use of a permutation / contraction table

!  The above two values are XORed and fed into a choice and
substitution box:
!  Internally this operation is realized by 8 so-called s-boxes, each of them

mapping a six bit value to a four bit value according to a box-specific table,
altogether leading to a 32 bit output

!  The design of these s-boxes was strengthened by the NSA, which led to
intense discussion in the 1970�s and was understood in the 1990�s after
the discovery of differential cryptanalysis

!  The output of the above step is permuted again and XORed with the
left-hand 32 bit of data leading to the new right-hand 32 bit of data

!  The new left-hand 32 bit of data are the right-hand value of the
previous iteration

19
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

DES – Decryption (1)

!  Using the abbreviation f(R, K) the encryption process can be written as:
!  Li = Ri-1
!  Ri = Li-1 ⊕ f(Ri-1, Ki)
!  This design idea (splitting the data into two halfs and organize encryption

according to the above equations) is used in many block ciphers and is called
a Feistel network (after its inventor H. Feistel)

!  The DES decryption process is essentially the same as encryption. It uses
the ciphertext as input to the encryption algorithm, but applies the subkeys
in reverse order

!  So, the initial values are:
!  L�0 || R�0 = InitialPermutation(ciphertext)
!  ciphertext = InverseInitialPermutation(R16 || L16)
!  L�0 || R�0 = InitialPermuation(InverseInitialPermutation(R16 || L16)) = R16 || L16

!  After one step of decryption:
!  L�1 = R�0 = L16 = R15
!  R�1 = L�0 ⊕ f(R�0, K16) = R16 ⊕ f(R15, K16) = [L15 ⊕ f(R15, K16)] ⊕ f(R15, K16) =

L15

20
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

DES – Decryption (2)

!  This relationship holds through all the process as:
!  Ri-1 = Li
!  Li-1 = Ri ⊕ f(Ri-1, Ki) = Ri ⊕ f(Li, Ki)

!  Finally, the output of the last round is:
!  L�16 || R�16 = R0 || L0

!  After the last round, DES performs a 32-bit swap and the inverse initial
permutation:
!  InverseInitialPermutation(L0 || R0) =

InverseInitialPermutation(InitialPermutation(plaintext)) = plaintext

21
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

DES – Security (1)

!  Key weaknesses:
!  Weak keys: four keys are weak as they generate subkeys with either all

0�s or all 1�s
!  Semiweak keys: there are six pairs of keys, which encrypt plaintext to

identical ciphertext as they generate only two different subkeys
!  Possibly weak keys: there are 48 keys, which generate only four different

subkeys
!  As a whole 64 keys out of 72,057,594,037,927,936 are considered weak

!  Algebraic structure:
!  If DES were closed, then for every K1, K2 there would be a K3 such that:

E(K2, E(K1,M)) = E(K3, M), thus double encryption would be useless
!  If DES were pure, Then for every K1, K2, K3 there would be a K4 such that

E(K3, E(K2, E(K1, M))) = E(K4, M) thus triple encryption would be useless
!  DES is neither closed nor pure, thus a multiple encryption scheme might

be used to increase the key length (see also below)

22
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

DES – Security (2)

!  Differential cryptanalysis:
!  In 1990 E. Biham and A. Shamir published this method of analysis
!  It looks specifically for differences in ciphertexts whose plaintexts have

particular differences and tries to guess the correct key from this
!  The basic approach needs chosen plaintext together with its ciphertext
!  DES with 16 rounds is immune against this attack, as the attack needs 247

chosen plaintexts or (when �converted� to a known plaintext attack) 255
known plaintexts.

!  The designers of DES told in the 1990�s that they knew about this kind of
attacks in the 1970�s and that the s-boxes were designed accordingly

!  Key length:
!  As a 56 bit key can be searched in 10.01 hours when being able to

perform 106 encryptions / µs (which is feasible today), DES can no longer
be considered as sufficiently secure

23
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Extending the Key-Length of DES by Multiple Encryption (1)

!  Double DES: as DES is not closed, double encryption results in a cipher
that uses 112 bit keys:
!  Unfortunately, it can be attacked with an effort of 256
!  As C = E(K2, E(K1, P)) we have X := E(K1, P) = D(K2, C)
!  If an attacker can get one known plaintext / ciphertext pair then he can

construct two tables (meet-in-the-middle-attack):
■  Table 1 holds the values of X when P is encrypted with all possible

values of K
■  Table 2 holds the values of X when C is decrypted with all possible

values of K
■  Sort the two tables and construct keys KT1 || KT2 for all combinations of

entries that yield to the same value
!  As there are 264 possible ciphertext values for any given plaintext that could

be produced by Double-DES, there will be on the average 2112/264 = 248
false alarms on the first known plaintext / ciphertext pair.

!  Every additional plaintext / ciphertext pair reduces the chance of getting a
wrong key by a factor of 1 / 264, so with two known blocks the chance is 2-16

24
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Extending the Key-Length of DES by Multiple Encryption (2)

!  So, the effort required to break Double DES is on the magnitude of 256,
which is only slightly better than the effort of 255 required to break
Single DES with a known plaintext attack and far from the 2111 we
would expect from cipher with a key length of 112 bit!

!  This kind of attack can be circumvented by using a triple encryption
scheme, as proposed by W. Tuchman in 1979:
!  C = E(K3, D(K2, E(K1, P)))
!  The use of the decryption function D in the middle allows to use triple

encryption devices with peers that only own single encryption devices by
setting K1 = K2 = K3

!  Triple encryption can be used with two (set K1 = K3) or three different keys
!  There are no known practical attacks against this scheme up to now
!  Drawback: the performance is only 1/3 of that of single encryption, so it

might be a better idea to use a different cipher, which offers a bigger key-
length right away

25
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

The Advanced Encryption Standard AES (1)

!  Jan. 1997: the National Institute of Standards and Technology (NIST)
of the USA announces the AES development effort.
!  The overall goal is to develop a Federal Information Processing Standard

(FIPS) that specifies an encryption algorithm(s) capable of protecting
sensitive government information well into the next century.

!  Sep. 1997: formal call for algorithms, open to everyone on earth
!  AES would specify an unclassified, publicly disclosed encryption

algorithm(s), available royalty-free, worldwide.
!  Aug. 1998: first AES candidate conference

!  NIST announces the selection of 15 candidate algorithms
!  Demand for public comments

!  April 1999:
!  Using the analyses and comments received, NIST selects five algorithms

as finalist candidates: MARS, RC6, Rijndael, Serpent, and Twofish
!  October 2000: Rijndael is announced as NIST�s proposal for AES
!  26. November 2001: official announcement of the AES standard

26
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

The Advanced Encryption Standard AES (2)

!  Round-based symmetric cipher
!  No Feistel Structure (different Encryption and Decryption Functions)
!  Key and block lengths:

!  Key Length: 128, 192, or 256 bit
!  Block Length: 128, 192, or 256 bit (only 128 bit Version standardized)
!  Number of Rounds: 10, 12, 14

Key Size [bit] Block Length [bit] # Rounds

128

192

256

128

128

128

10

12

14

Standardized AES Configurations

27
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

The Advanced Encryption Standard AES (3)

!  The algorithm operates on:
!  state[4, 4]: a byte-array of 4 rows and 4 columns (for 128 bit block size)
!  key[4, 4]: an array of 4 rows and 4 columns (for 128 bit key size)

!  Encryption: (for block and key size of 128 bit)
!  Rounds 1 - 9 make use of four different operations:

■  ByteSub: a non-linear byte substitution by a fixed table (basically an s-box)
■  ShiftRow: the rows of the state are cyclically shifted by various offsets
■  MixColumn: the columns of state[] are considered as polynomials over

GF(28) and multiplied modulo x4 + 1 with a fixed polynomial c(x), given by
c(x) = �03� x3 + �01� x2 + �01� x + �02�

■  RoundKey: a round-key is XORed with the state
!  Round 10 does not make use of the MixColumn operation

!  Decryption:
!  Round-keys and operations applied in reverse order
!  MixColumn step can only be inversed by finding the inverse element in GF(28)
!  Often tabularized pre-calculated solutions are used, but slower than encryption

28
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

The Advanced Encryption Standard AES (4)

(source: �Rijndael�, a presentation by J. Daemen and V. Rijmen)

Structure of one Round in Rijndael

29
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

AES - Security

!  The simple mathematical structure of AES is the major reason for its
speed, but led to criticism

!  Only the ByteSub function is really non-linear and prevents effective
analysis

!  AES may be described as a large matrix operation
!  Already during standardization attacks for reduced versions have been

developed
!  An attack with 232 chosen plaintext against a 7 round version of AES

[GM00]
!  Significant reduction of complexity even for a 9 round version of AES with

256 key size with a related key attack
!  2011 the first attack against a full AES became known [BKR11]

!  Key recovery in 2126.1 for AES with 128 bits, 2189.7 for AES with 192 bits,
2254.4 for AES with 256 bits

!  “Practical” attack (does not assume related keys), but
!  only a small scratch when considering 10 years of cryptographic research

30
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

The Stream Cipher Algorithm RC4 (1)

!  RC4 is a stream cipher that has been invented by Ron Rivest in 1987
!  It was proprietary until 1994 when someone posted it anonymously to

a mailing list
!  RC4 is operated in the output feedback mode (OFB):

!  The encryption algorithm generates a pseudo-random sequence
RC4(IV, K), that depends only on the key K and an initialization vector IV

!  The plaintext Pi is then XORed with the pseudo-random sequence to
obtain the ciphertext and vice versa:
■  C1 = P1 ⊕ RC4(IV1 , K)
■  P1 = C1 ⊕ RC4(IV1 , K)

!  The pseudo-random sequence is often also called keystream
!  It is crucial to the security that keystream is never re-used!!!

■  If keystream is re-used (that is IV1 = IV2 with the same K), then the
XOR of two plaintexts can be obtained:
 C1 ⊕ C2 = P1 ⊕ RC4(IV, K) ⊕ P2 ⊕ RC4(IV, K) = P1 ⊕ P2

31
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

The Stream Cipher Algorithm RC4 (2)

!  RC4 uses a variable length key up to 2048 bit
!  Actually, the key serves as the seed for a pseudo-random-bit-generator

!  RC4 works with two 256 byte arrays: S[0,255], K[0,255]
!  Step 1: Initialize the arrays

 for (i = 0; i < 256; i++) S[i] = i; // fill array S[] with 0 to 255
 // fill array K[] with the key and IV by repeating them until K[] is filled
 n = 0;
 for (i =0; i < 256; i++) { n = (n + S[i] + K[i]) MOD 256; swap(S[i], S[n]); }

!  Step 2: Generate the keystream (after initializing i = 0; n = 0;)
 i = (i + 1) MOD 256; n = (n + S[i]) MOD 256;
 swap(S[i], S[n]);
 t = (S[i] + S[n]) MOD 256;
 Z = S[t]; // Z contains 8 bit of keystream produced by one iteration

!  Step 3: XOR the keystream with the plaintext or ciphertext

32
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

The Stream Cipher Algorithm RC4 (3)

!  Security of RC4:
!  Security against brute force attacks (trying every possible key):

■  The variable key length of up to 2048 bit allows to make them
impractical (at least with the resources available in our universe)

■  However, by reducing the key length RC4 can also be made arbitrarily
insecure!

!  RSA Data Security, Inc. claims that RC4 is immune to differential and
linear cryptanalysis, and no small cycles are known

!  RC4 with 40 bit keys had special export status, even when other
ciphers were not allowed to be exported from the USA
!  Secure Socket Layer (SSL) used RC4 with 40 bit keys as default algorithm
!  40 bit key length is not immune against brute-force attacks

!  However, depending on the key scheduling method, RC4 may be
severely vulnerable! [FMS01a, Riv01a, SIR01a]

!  It is recommended to discard the first 3072 bytes of the key stream
[Mir02, Kle08]

33
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

KASUMI

!  Used to encrypt calls in GSM and UMTS, implements f(8) and f(9)
(also called A5/3, UEA1, UIA1)

!  Initially standardized by 3GPP in 2000 [ETS12] and based on MISTY1
by Mitsubishi

!  Designed for hardware implementation
!  Fast implementation possible
!  < 10k gates

!  64 bit block size
!  128 bit key length
!  8 round Feistel network
!  Safety margin not very large

34
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

32
FL

FO FL

FO

even
round

odd
round

32 32

32

KASUMI – Single Iteration (1)

Li-1 Ri-1

Li Ri

32 bit 32 bit
Data to be encrypted

f(Li-1, Ki)

...

Li-1

Ki

+

128 bit

Key used for encryption

Choice
Choice

Choice

+

K’

Constant

32

48

48

K

35
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

KASUMI – Single Iteration (2)

!  The left-hand 32 bit of the data to be encrypted is modified by two non-
linear functions FO and FL that both use keying material

!  The order in which FO and FL are applied depends on the round
number

!  FL splits data into 16 bit words that are combined with keying material,
permutated, and XORed with the original values

!  FO is a 3-round Feistel network with a modifying function FI that is
itself a Feistel-like network that employs two s-boxes

!  The output of the above step is XORed with the right-hand 32 bit of
data leading to the new right-hand 32 bit of data

!  The new left-hand 32 bit of data is the right-hand value of the previous
iteration

36
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

KASUMI – Security Discussion

!  A reduced version of KASUMI (6 rounds) can be attacked by so-called
impossible differential crypto-analysis, where impossible states of the
cipher are deducted from ciphertext/plaintext pairs
!  First published already one year after standardization
!  Time complexity of 2100 [Kue01]

!  For a full version of KASUMI related key attacks are possible
!  Chosen plain-text attack, where attacker can encrypt the same data with

multiple “related” keys
!  Time complexity of 276.1 [BDN05] and 232 at best [DKS10]
!  However, conditions where attackers have access to related keys in 3G

networks are very seldom
!  Interestingly MISTY is not affected by these attacks!

!  However ETSI has adopted SNOW 3G (UEA2 and UIA2) [ETS06] to
be prepared for a full breach of KASUMI
!  Stream cipher based on LFSR, can be implemented in 7,500 ASIC gates
!  But also vulnerable to related key attacks [KY11]

37
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Additional References

[AES01a] National Institute of Standards and Technology (NIST). Specification for the
Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication, February 2001.

[DR97a] J. Daemen, V. Rijmen. AES Proposal: Rijndael. http://csrc.nist.gov/encryption/
aes/rijndael/Rijndael.pdf, 1997.

[FMS01a] S. Fluhrer, I. Mantin, A. Shamir. Weaknesses in the Key Scheduling Algorithm
of RC4. Eighth Annual Workshop on Selected Areas in Cryptography, August
2001.

[Riv01a] R. Rivest. RSA Security Response to Weaknesses in Key Scheduling Algorithm
of RC4. http://www. rsa.com/rsalabs/node.asp?id=2009, 2001.

[SIR01a] A. Stubblefield, J. Ioannidis, A. D. Rubin. Using the Fluhrer, Mantin, and Shamir
Attack to Break WEP. AT&T Labs Technical Report TD-4ZCPZZ, August 2001.

[FKLS00] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D.Wagner, D. Whiting.
Improved cryptanalysis of Rijndael. In FSE’00, volume 1978 of Lecture Notes in
Computer Science, pages 213–230. Springer, 2000.

38
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 03 – Symmetric Cryptography

Additional References

[GM00] H. Gilbert and M. Minier. A Collision Attack on 7 Rounds of Rijndael. In AES
Candidate Conference, pages 230–241, 2000.

[BKR11] A. Bogdanov, D. Khovratovich, C. Rechberger. Biclique cryptanalysis of the full
AES. In ASIACRYPT’11, pages 344-371, 2001.

[Mir02] I. Mironov. (Not so) random shuffles of RC4. In Advances in Cryptology –
CRYPTO 2002, volume 2442 of LNCS, pages 304–319, 2002.

[Kle08] A.Klein. Attacks on the RC4 stream cipher. In Designs, Codes and
Cryptography. 48, volume 3, pages 269-286, 2008.

[ETS12] ETSI/SAGE. Specification of the 3GPP confidentiality and integrity algorithms;
Document 2: Kasumi specification. Release 11. 2012

[Kue01] U. Kühn. Cryptanalysis of Reduced-Round MISTY. In Advances in Cryptology –
EUROCRYPT 2001, 2001.

[BDN05] E. Biham, O. Dunkelman, N. Keller. A Related-Key Rectangle Attack on the Full
KASUMI, In ASIACRYPT 2005, 2005.

[DKS10] O. Dunkelman, N. Keller, A. Shamir. A practical-time related-key attack on the
KASUMI cryptosystem used in GSM and 3G telephony. In CRYPTO'10, 2010.

[ETS06] ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 2: SNOW 3G Specification. Version 1.1. 2006.

[KY11] A. Kircanski A.M. Youssef. On the Sliding Property of SNOW 3G and SNOW 2.0
IET Inf. Secur., Vol. 5, Iss. 4, pages. 199–206. 2011

