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Network Security 
Chapter 3 

Symmetric Cryptography 

!  Modes of Encryption 
!  Data Encryption Standard (DES) 
!  Advanced Encryption Standard (AES) 
!  The Block Cipher RC4 
!  KASUMI 
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Symmetric Encryption 

!  General description: 
!  The same key KA,B is used for enciphering and deciphering of messages: 

!  Notation: 
!  If P denotes the plaintext message E(KA,B, P) denotes the ciphertext and it 

holds D(KA,B, E(KA,B, P)) = P 
!  Alternatively we sometimes write {P} KA,B

 or EKA,B
(P) for E(KA,B, P)  

!  Examples: DES, 3DES, AES, ... 
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Symmetric Block Ciphers - Modes of Encryption 1 

!  General Remarks & Notation: 
!  A plaintext p is segmented in blocks p1, p2, ... each of length b or j, 

respectively, where b denotes the block size of the encryption algorithm 
and j < b 

!  The ciphertext c is the combination of c1, c2, ... where ci denotes the result 
of the encryption of the ith block of the plaintext message 

!  The entities encrypting and decrypting a message have agreed upon a 
key K.  
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Symmetric Block Ciphers - ECB 

!  Electronic Code Book Mode (ECB): 
!  Every block pi of length b is encrypted independently: ci = E(K, pi) 
!  A bit error in one ciphertext block ci results in a completely wrongly 

recovered plaintext block pi´ 
!  Loss of synchronization does not have any effect if integer multiples of 

the block size b are lost.  
If any other number of bits are lost, explicit re-synchronization is needed. 

!  Drawback: identical plaintext blocks are encrypted to identical ciphertext! 
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Symmetric Block Ciphers - CBC 

!  Cipher Block Chaining Mode (CBC): 
!  Before encrypting a plaintext block pi it is XORed (⊕) with the preceding 

ciphertext block ci-1:  
■  ci = E(K, ci-1 ⊕ pi)  
■  pi´ = ci-1 ⊕ D(K, ci) 

!  In order to compute c1 both parties agree on an initial value (IV) for c0  
!  Properties: 

!  Error propagation: 
■  A distorted ciphertext block results in two distorted plaintext blocks, as 

pi´ is computed using ci-1 and ci 
!  Synchronisation: 

■  If the number of lost bits is a multiple integer of b, one additional block 
pi+1 is distorted before synchronization is re-established.  
If any other number of bits are lost explicit re-synchronization is 
needed. 

!  Advantage: identical plaintext blocks are encrypted to non-identical 
ciphertext. 
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Symmetric Block Ciphers - CBC 2 

Time = 1 Time = 2 Time = n 
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Symmetric Block Ciphers - CFB 

!  Ciphertext Feedback Mode (CFB):  
!  A block encryption algorithm working on blocks of size b can be converted 

to an algorithm working on blocks of size j (j<b): 
■  Let:  S(j, x) denote the j higher significant bits of x 

 Pi, Ci denote the ith block of plain- and ciphertext of length j  
 IV be an initial value both parties have agreed upon 

then : 
 
 
 
 
 
 

!  A current value of j is 8 for encryption of one character per step 

( ) 11 2mod2 −− ⊕⋅= n
bj

nn CRR
IVR =1

( )( ) nnKn PREjSC ⊕= ,
( )( ) ( )( ) ( )( ) nnKnKnnK PREjSREjSCREjS ⊕⊕=⊕ ,,,
( )( ) nnnK PCREjS =⊕,

// j-bit left shift and XOR with old ciphertext 
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Symmetric Block Ciphers - CFB 2 
Time = 1 Time = 2 Time = m 
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Symmetric Block Ciphers - CFB 3 

!  Properties of CFB: 
!  Error propagation: 

■  As the ciphertext blocks are shifted through the register step by step, 
an erroneous block ci distorts the recovered plaintext block pi´ as well 
as the following "b / j# blocks 

!  Synchronisation: 
■  If the number of lost bits is a multiple integer of j then "b / j# additional 

blocks are distorted before synchronization is re-established.  
If any other number of bits are lost explicit re-synchronization is 
needed. 

!  Drawback:  
■  The encryption function E needs to be computed more often, as one 

encryption of b bit has to be performed to conceal j bit of plaintext 
■  Example: Use of DES with encryption of one character at a time: 

 ⇒ encryption has to be performed 8 times more often 
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Symmetric Block Ciphers - OFB 

!  Output Feedback Mode (OFB):  
!  The block encryption algorithm is used to generate a pseudo-random 

sequence Ri, that depends only on K and IV: 
■  Let:  S(j, x) denote the j higher significant bits of x 

 Pi, Ci denote the ith block of plain- and ciphertext of length j  
 IV be an initial value both parties have agreed upon 

then : 
 
 
 
 
 

■  The plaintext is XORed with the pseudo-random sequence to obtain 
the ciphertext and vice versa 

 

( ) ( )( )11 ,2mod2 −− ⊕⋅= nK
bj

nn REjSRR
IVR =1

( )( ) nnKn PREjSC ⊕= ,
( )( ) ( )( ) ( )( ) nnKnKnnK PREjSREjSCREjS ⊕⊕=⊕ ,,,
( )( ) nnnK PCREjS =⊕,

// j-bit left shift + encrypted old value 
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Symmetric Block Ciphers - OFB 2 
Time = 1 Time = 2 Time = m 
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Symmetric Block Ciphers - OFB 3 

!  Properties of OFB: 
!  Error propagation: 

■  Single bit errors result only in single bit errors ⇒ no error multiplication 
!  Synchronisation: 

■  If some bits are lost explicit re-synchronization is needed 

!  Advantage: 
■  The pseudo-random sequence can be pre-computed in order to keep 

the impact of encryption to the end-to-end delay low 
!  Drawbacks:  

■  Like with CFB the encryption function E needs to be computed more 
often, as one encryption of b bit has to be performed to conceal j bit of 
plaintext 

■  It is possible for an attacker to manipulate specific bits of the plaintext 
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Symmetric Block Ciphers - Algorithm Overview  

!  Data Encryption Standard (DES) 
!  Old American Standard from the 70s 
!  Insecure because of key and block length 
!  Fundamental design 
!  Triple encryption with a block cipher, e.g. Triple-DES 

!  Advanced Encryption Standard (AES) 
!  Open standardization process with international participation 
!  In October 2000, one algorithm called Rijndael has been proposed for AES 
!  AES standard announced in November 2001 
!  See also http://www.nist.gov/aes/ 

 
!  Other popular algorithms: 

!  RC4 
!  KASUMI 
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The Data Encryption Standard (DES) – History 

!  1973 the National Bureau of Standards (NBS, now National Institute of 
Standards and Technology, NIST) issued a request for proposals for a 
national cipher standard, demanding the algorithm to: 

!  provide a high level of security, 
!  be completely specified and easy to understand, 
!  provide security only by its� key and not by its� own secrecy, 
!  be available to all users, 
!  be adaptable for use in diverse applications, 
!  be economically implementable in electronic devices, 
!  be efficient to use,  
!  be able to be validated, and 
!  be exportable. 

!  None of the submissions to this first call came close to these criteria. 
!  In response to a second call, IBM submitted its� algorithm LUCIFER, a 

symmetric block cipher, which works on blocks of length 128 bit using 
keys of length 128 bit and that was the only promising candidate 
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DES – History continued 

!  The NBS requested the help of the National Security Agency (NSA) in 
evaluating the algorithm�s security: 
!  The NSA reduced the block size to 64 bit, the size of the key to 56 bit and 

changed details in the algorithm�s substitution boxes. 
!  Many of the NSA�s reasoning for these modifications became clear in the 

early 1990�s, but raised great concern in the late 1970�s. 
!  Despite all criticism the algorithm was adopted as �Data Encryption 

Standard� in the series of Federal Information Processing Standards 
in 1977 (FIPS PUB 46) and authorized for use on all unclassified 
government communications. 

!  DES has been widely adopted in the years to follow 
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DES – Algorithm Outline 
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DES – Single Iteration (1) 
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DES – Single Iteration (2) 
!  The right-hand 32 bit of the data to be encrypted are expanded to 48 

bit by the use of an expansion / permutation table 
!  Both the left- and the right-hand 28 bit of the key (also called subkeys) 

are circularly left-shifted and the resulting value is contracted to 48 bit 
by the use of a permutation / contraction table 

!  The above two values are XORed and fed into a choice and 
substitution box: 
!  Internally this operation is realized by 8 so-called s-boxes, each of them 

mapping a six bit value to a four bit value according to a box-specific table, 
altogether leading to a 32 bit output 

!  The design of these s-boxes was strengthened by the NSA, which led to 
intense discussion in the 1970�s and was understood in the 1990�s after 
the discovery of differential cryptanalysis 

!  The output of the above step is permuted again and XORed with the 
left-hand 32 bit of data leading to the new right-hand 32 bit of data 

!  The new left-hand 32 bit of data are the right-hand value of the 
previous iteration 
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DES – Decryption (1) 

!  Using the abbreviation f(R, K) the encryption process can be written as: 
!  Li = Ri-1 
!  Ri = Li-1 ⊕ f(Ri-1, Ki) 
!  This design idea (splitting the data into two halfs and organize encryption 

according to the above equations) is used in many block ciphers and is called 
a Feistel network (after its inventor H. Feistel) 

!  The DES decryption process is essentially the same as encryption. It uses 
the ciphertext as input to the encryption algorithm, but applies the subkeys 
in reverse order 

!  So, the initial values are: 
!  L�0 || R�0 = InitialPermutation(ciphertext) 
!  ciphertext = InverseInitialPermutation(R16 || L16) 
!  L�0 || R�0 = InitialPermuation(InverseInitialPermutation(R16 || L16)) = R16 || L16 

!  After one step of decryption: 
!  L�1 = R�0 = L16 = R15 
!  R�1 = L�0 ⊕ f(R�0, K16) = R16 ⊕ f(R15, K16) = [L15 ⊕ f(R15, K16)] ⊕ f(R15, K16) = 

L15 
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DES – Decryption (2) 

!  This relationship holds through all the process as: 
!  Ri-1 = Li 
!  Li-1 = Ri ⊕ f(Ri-1, Ki) = Ri ⊕ f(Li, Ki) 

!  Finally, the output of the last round is: 
!  L�16 || R�16 = R0 || L0 

!  After the last round, DES performs a 32-bit swap and the inverse initial 
permutation: 
!  InverseInitialPermutation(L0 || R0) = 

InverseInitialPermutation(InitialPermutation(plaintext)) = plaintext 
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DES – Security (1) 

!  Key weaknesses: 
!  Weak keys: four keys are weak as they generate subkeys with either all 

0�s or all 1�s 
!  Semiweak keys: there are six pairs of keys, which encrypt plaintext to 

identical ciphertext as they generate only  two different subkeys 
!  Possibly weak keys: there are 48 keys, which generate only four different 

subkeys 
!  As a whole 64 keys out of 72,057,594,037,927,936 are considered weak 

!  Algebraic structure: 
!  If DES were closed, then for every K1, K2 there would be a K3 such that: 

E(K2, E(K1,M)) = E(K3, M), thus double encryption would be useless 
!  If DES were pure, Then for every K1, K2, K3 there would be a K4 such that 

E(K3, E(K2, E(K1, M))) = E(K4, M) thus triple encryption would be useless 
!  DES is neither closed nor pure, thus a multiple encryption scheme might 

be used to increase the key length (see also below) 
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DES – Security (2) 

!  Differential cryptanalysis:  
!  In 1990 E. Biham and A. Shamir published this method of analysis 
!  It looks specifically for differences in ciphertexts whose plaintexts have 

particular differences and tries to guess the correct key from this 
!  The basic approach needs chosen plaintext together with its ciphertext 
!  DES with 16 rounds is immune against this attack, as the attack needs 247 

chosen plaintexts or (when �converted� to a known plaintext attack) 255 
known plaintexts. 

!  The designers of DES told in the 1990�s that they knew about this kind of 
attacks in the 1970�s and that the s-boxes were designed accordingly 

!  Key length: 
!  As a 56 bit key can be searched in 10.01 hours when being able to 

perform 106 encryptions / µs (which is feasible today), DES can no longer 
be considered as sufficiently secure 
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Extending the Key-Length of DES by Multiple Encryption (1) 

!  Double DES: as DES is not closed, double encryption results in a cipher 
that uses 112 bit keys: 
!  Unfortunately, it can be attacked with an effort of 256 
!  As C = E(K2, E(K1, P)) we have X := E(K1, P) = D(K2, C) 
!  If an attacker can get one known plaintext / ciphertext pair then he can 

construct two tables (meet-in-the-middle-attack): 
■  Table 1 holds the values of X when P is encrypted with all possible 

values of K 
■  Table 2 holds the values of X when C is decrypted with all possible 

values of K 
■  Sort the two tables and construct keys KT1 || KT2 for all combinations of 

entries that yield to the same value 
!  As there are 264 possible ciphertext values for any given plaintext that could 

be produced by Double-DES, there will be on the average 2112/264 = 248 
false alarms on the first known plaintext / ciphertext pair.  

!  Every additional plaintext / ciphertext pair reduces the chance of getting a 
wrong key by a factor of 1 / 264, so with two known blocks the chance is 2-16 
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Extending the Key-Length of DES by Multiple Encryption (2) 

!  So, the effort required to break Double DES is on the magnitude of 256, 
which is only slightly better than the effort of 255 required to break 
Single DES with a known plaintext attack and far from the 2111 we 
would expect from cipher with a key length of 112 bit! 

!  This kind of attack can be circumvented by using a triple encryption 
scheme, as proposed by W. Tuchman in 1979: 
!  C = E(K3, D(K2, E(K1, P))) 
!  The use of the decryption function D in the middle allows to use triple 

encryption devices with peers that only own single encryption devices by 
setting K1 = K2 = K3 

!  Triple encryption  can be used with two (set K1 = K3) or three different keys 
!  There are no known practical attacks against this scheme up to now 
!  Drawback: the performance is only 1/3 of that of single encryption, so it 

might be a better idea to use a different cipher, which offers a bigger key-
length right away 
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The Advanced Encryption Standard AES (1) 

!  Jan. 1997: the National Institute of Standards and Technology (NIST) 
of the USA announces the AES development effort. 
!  The overall goal is to develop a Federal Information Processing Standard 

(FIPS) that specifies an encryption algorithm(s) capable of protecting 
sensitive government information well into the next century.  

!  Sep. 1997: formal call for algorithms, open to everyone on earth 
!  AES would specify an unclassified, publicly disclosed encryption 

algorithm(s), available royalty-free, worldwide.  
!  Aug. 1998: first AES candidate conference 

!  NIST announces the selection of 15 candidate algorithms  
!  Demand for public comments 

!  April 1999:  
!  Using the analyses and comments received, NIST selects five algorithms 

as finalist candidates: MARS, RC6, Rijndael, Serpent, and Twofish 
!  October 2000: Rijndael is announced as NIST�s proposal for AES 
!  26. November 2001: official announcement of the AES standard 
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The Advanced Encryption Standard AES (2) 

!  Round-based symmetric cipher 
!  No Feistel Structure (different Encryption and Decryption Functions) 
!  Key and block lengths: 

!  Key Length: 128, 192, or 256 bit 
!  Block Length: 128, 192, or 256 bit (only 128 bit Version standardized) 
!  Number of Rounds: 10, 12, 14 

Key Size [bit] Block Length [bit] # Rounds 

128 

192 

256 

128 

128 

128 

10 

12 

14 

Standardized AES Configurations 
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The Advanced Encryption Standard AES (3) 

!  The algorithm operates on: 
!  state[4, 4]: a byte-array of 4 rows and 4 columns (for 128 bit block size) 
!  key[4, 4]: an array of 4 rows and 4 columns (for 128 bit key size) 

!  Encryption: (for block and key size of 128 bit) 
!  Rounds 1 - 9 make use of four different operations: 

■  ByteSub: a non-linear byte substitution by a fixed table (basically an s-box) 
■  ShiftRow:  the rows of the state are cyclically shifted by various offsets 
■  MixColumn: the columns of state[] are considered as polynomials over 

GF(28) and multiplied modulo x4 + 1 with a fixed polynomial c(x), given by 
c(x) = �03� x3 + �01� x2 + �01� x + �02�  

■  RoundKey: a round-key is XORed with the state 
!  Round 10 does not make use of the MixColumn operation 

!  Decryption: 
!  Round-keys and operations applied in reverse order 
!  MixColumn step can only be inversed by finding the inverse element in GF(28)  
!  Often tabularized pre-calculated solutions are used, but slower than encryption 
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The Advanced Encryption Standard AES (4) 

(source: �Rijndael�, a presentation by J. Daemen and V. Rijmen)  

Structure of one Round in Rijndael 
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AES - Security 

!  The simple mathematical structure of AES is the major reason for its 
speed, but led to criticism 

!  Only the ByteSub function is really non-linear and prevents effective 
analysis 

!  AES may be described as a large matrix operation 
!  Already during standardization attacks for reduced versions have been 

developed 
!  An attack with 232 chosen plaintext  against a 7 round version of AES 

[GM00] 
!  Significant reduction of complexity even for a 9 round version of AES with 

256 key size with a related key attack 
!  2011 the first attack against a full AES became known [BKR11] 

!  Key recovery in 2126.1 for AES with 128 bits, 2189.7 for AES with 192 bits, 
2254.4 for AES with 256 bits 

!  “Practical” attack (does not assume related keys), but 
!  only a small scratch when considering 10 years of cryptographic research 
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The Stream Cipher Algorithm RC4 (1) 

!  RC4 is a stream cipher that has been invented by Ron Rivest in 1987 
!  It was proprietary until 1994 when someone posted it anonymously to 

a mailing list 
!  RC4 is operated in the output feedback mode (OFB): 

!  The encryption algorithm generates a pseudo-random sequence  
RC4(IV, K), that depends only on the key K and an initialization vector IV 

!  The plaintext Pi is then XORed with the pseudo-random sequence to 
obtain the ciphertext and vice versa: 
■  C1 = P1 ⊕  RC4(IV1 , K)  
■  P1 = C1 ⊕  RC4(IV1 , K) 

!  The pseudo-random sequence is often also called keystream  
!  It is crucial to the security that keystream is never re-used!!! 

■  If keystream is re-used (that is IV1  =  IV2  with the same K), then the 
XOR of two plaintexts can be obtained: 
 C1 ⊕ C2 = P1 ⊕  RC4(IV, K) ⊕ P2 ⊕  RC4(IV, K) = P1 ⊕ P2  
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The Stream Cipher Algorithm RC4 (2) 

!  RC4 uses a variable length key up to 2048 bit 
!  Actually, the key serves as the seed for a pseudo-random-bit-generator 

!  RC4 works with two 256 byte arrays: S[0,255], K[0,255] 
!  Step 1: Initialize the arrays 

 for (i = 0; i < 256; i++) S[i] = i;  // fill array S[] with 0 to 255 
  // fill array K[] with the key and IV by repeating them until K[] is filled 
 n = 0; 
 for (i =0; i < 256; i++) { n = (n + S[i] + K[i]) MOD 256; swap(S[i], S[n]); } 

!  Step 2: Generate the keystream (after initializing i = 0; n = 0;) 
 i = (i + 1) MOD 256; n = (n + S[i])  MOD 256; 
 swap(S[i], S[n]); 
 t = (S[i] + S[n]) MOD 256; 
 Z = S[t]; // Z contains 8 bit of keystream produced by one iteration 

!  Step 3: XOR the keystream with the plaintext or ciphertext 
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The Stream Cipher Algorithm RC4 (3) 

!  Security of RC4: 
!  Security against brute force attacks (trying every possible key): 

■  The variable key length of up to 2048 bit allows to make them 
impractical (at least with the resources available in our universe) 

■  However, by reducing the key length RC4 can also be made arbitrarily 
insecure!  

!  RSA Data Security, Inc. claims that RC4 is immune to differential and 
linear cryptanalysis, and no small cycles are known  

!  RC4 with 40 bit keys had special export status, even when other 
ciphers were not allowed to be exported from the USA 
!  Secure Socket Layer (SSL) used RC4 with 40 bit keys as default algorithm 
!  40 bit key length is not immune against brute-force attacks 

!  However, depending on the key scheduling method, RC4 may be 
severely vulnerable! [FMS01a, Riv01a, SIR01a] 

!  It is recommended to discard the first 3072 bytes of the key stream 
[Mir02, Kle08] 

 



33 
©  Dr.-Ing G. Schäfer 

Network Security (WS 14/15): 03 – Symmetric Cryptography 

KASUMI 

!  Used to encrypt calls in GSM and UMTS, implements f(8) and f(9) 
(also called A5/3, UEA1, UIA1) 

!  Initially standardized by 3GPP in 2000 [ETS12] and based on MISTY1 
by Mitsubishi 

!  Designed for hardware implementation  
!  Fast implementation possible 
!  < 10k gates 

!  64 bit block size 
!  128 bit key length 
!  8 round Feistel network 
!  Safety margin not very large 
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KASUMI – Single Iteration (2) 

!  The left-hand 32 bit of the data to be encrypted is modified by two non-
linear functions FO and FL that both use keying material 

!  The order in which FO and FL are applied depends on the round 
number 

!  FL splits data into 16 bit words that are combined with keying material, 
permutated, and XORed with the original values 

!  FO is a 3-round Feistel network with a modifying function FI that is 
itself a Feistel-like network that employs two s-boxes 

!  The output of the above step is XORed with the right-hand 32 bit of 
data leading to the new right-hand 32 bit of data 

!  The new left-hand 32 bit of data is the right-hand value of the previous 
iteration 
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KASUMI – Security Discussion 

!  A reduced version of KASUMI (6 rounds) can be attacked by so-called 
impossible differential crypto-analysis, where impossible states of the 
cipher are deducted from ciphertext/plaintext pairs 
!  First published already one year after standardization 
!  Time complexity of 2100 [Kue01] 

!  For a full version of KASUMI related key attacks are possible 
!  Chosen plain-text attack, where attacker can encrypt the same data with 

multiple “related” keys 
!  Time complexity of 276.1 [BDN05] and 232 at best [DKS10] 
!  However, conditions where attackers have access to related keys in 3G 

networks are very seldom 
!  Interestingly MISTY is not affected by these attacks! 

!  However ETSI has adopted SNOW 3G (UEA2 and UIA2) [ETS06] to 
be prepared for a full breach of KASUMI 
!  Stream cipher based on LFSR, can be implemented in 7,500 ASIC gates 
!  But also vulnerable to related key attacks [KY11] 
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