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Network Security 
Chapter 4 

Asymmetric Cryptography 

�However, prior exposure to discrete mathematics will help the reader to  
appreciate the concepts presented here.� 
E. Amoroso in another context [Amo94] :o) 
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Asymmetric Cryptography (1) 

!  General idea: 
!  Use two different keys -K and +K for encryption and decryption 
!  Given a random ciphertext c = E(+K, m) and +K it should be infeasible to 

compute m = D(-K, c) = D(-K, E(+K, m)) 
■  This implies that it should be infeasible to compute -K when given +K 

!  The key -K is only known to one entity A and is called A�s private key -KA  
!  The key +K can be publicly announced and is called A�s public key +KA 

!  Applications: 
!  Encryption:  

■  If B encrypts a message with A�s public key +KA, he can be sure that 
only A can decrypt it using -KA 

!  Signing:  
■  If A encrypts a message with his own private key -KA, everyone can 

verify this signature by decrypting it with A�s public key +KA 

!  Attention: It is crucial, that everyone can verify that he really knows A�s 
public key and not the key of an adversary! 
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Asymmetric Cryptography (2) 

!  Design of asymmetric cryptosystems: 
!  Difficulty: Find an algorithm and a method to construct two keys -K, +K 

such that it is not possible to decipher E(+K, m) with the knowledge of +K 
!  Constraints: 

■  The key length should be �manageable� 
■  Encrypted messages should not be arbitrarily longer than unencrypted 

messages (we would tolerate a small constant factor) 
■  Encryption and decryption should not consume too much resources 

(time, memory) 
!  Basic idea: Take a problem in the area of mathematics / computer 

science, that is hard to solve when knowing only +K, but easy to solve 
when knowing -K 
■  Knapsack problems: basis of first working algorithms, which were 

unfortunately almost all proven to be insecure 
■  Factorization problem: basis of the RSA algorithm 
■  Discrete logarithm problem: basis of Diffie-Hellman and ElGamal 
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Some Mathematical Background (1) 

!  Definitions: 
!  Let 
 be the number of integers, and a, b, n ∈ 
  
!  We say a divides b (�a | b�) if there exists an integer k ∈ 
 such that a × k = b 
!  We say a is prime if it is positive and the only divisors of a are 1 and a 
!  We say r is the remainder of a divided by n if r = a - #a / n$ × n 

where #x$ denotes the largest integer less than or equal to x 
■  Example: 4 is the remainder of 11 divided by 7 as 4 = 11 - #11 / 7$ × 7 
■  We can write this in another way: a = q × n + r with q = #a / n$ 

!  For the remainder r of the division of a by n we write a MOD n  
!  We say b is congruent a mod n if it has the same remainder like a when 

divided by n. So, n divides (a-b), and we write b ≡ a mod n  
■  Examples:  4  ≡ 11  mod 7,  25  ≡ 11  mod 7,  11 ≡ 25 mod 7,  

 11  ≡ 4  mod 7,  -10 ≡ 4  mod 7 
!  As the remainder r of division by n is always smaller than n, we sometimes 

represent the set   {x MOD n | x ∈ 
}  
by elements of the set  
n = {0, 1, ..., n - 1} 
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Some Mathematical Background (2) 

Property Expression 

Commutative Laws 

 

Associative Laws 

 

Distributive Law 

Identities 

 

Inverses 

 

(a + b) MOD n = (b + a) MOD n 

(a × b) MOD n = (b × a) MOD n 

[(a + b) + c] MOD n = [a + (b + c)] MOD n 

[(a × b) × c] MOD n = [a × (b × c)] MOD n 

[a × (b + c)] MOD n = [(a × b) + (a × c)] MOD n 

(0 + a) MOD n = a MOD n 

(1 × a) MOD n = a MOD n 

∀ a ∈ 
n: ∃ (-a) ∈ 
n : a + (-a) ≡ 0 mod n 

p is prime ⇒ ∀ a ∈ 
p: ∃ (a-1) ∈ 
p: a × (a-1) ≡ 1 mod p 

Properties of Modular Arithmetic 
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Some Mathematical Background (3) 

!  Greatest common divisor: 
!  c = gcd(a, b) :⇔ (c | a) !  (c | b) !  [∀ d: (d | a) !  (d | b) ⇒ (d | c)] 

and gcd(a, 0) := |a| 
!  The gcd recursion theorem: 

!  ∀ a, b ∈ 
+: gcd(a, b) = gcd(b, a MOD b) 
!  Proof:  

■  As gcd(a, b) divides both a and b it also divides any linear combination 
of them, especially (a - #a / b$ × b) = a MOD b,  
so gcd(a, b) | gcd(b, a MOD b) 

■  As gcd(b, a MOD b) divides both b and a MOD b it also divides any 
linear combination of them, especially #a / b$ × b + (a MOD b) = a, 
so gcd(b, a MOD b) | gcd(a, b) 

!  Euclidean Algorithm: 
!  The algorithm Euclid given a, b computes gcd(a, b) 
!  int Euclid(int a, b) 

{  if  (b = 0)  { return(a);} 
    { return(Euclid(b, a MOD b);}  } 

■ 
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Some Mathematical Background (4) 

!  Extended Euclidean Algorithm: 
!  The algorithm ExtendedEuclid given a, b computes d, m, n such that: 

d = gcd(a, b) = m × a + n × b 
!  struct{int d, m, n}   ExtendedEuclid(int a, b) 

{  int d, d�, m, m�, n, n�; 
 if  (b = 0) {return(a, 1, 0); } 
 (d�, m�, n�) = ExtendedEuclid(b, a MOD b); 
 (d, m, n) = (d�, n�, m� - #a / b$ × n�);  
 return(d, m, n); } 

!  Proof: (by induction) 
■  Basic case (a, 0): gcd(a, 0) = a = 1 × a + 0 × 0 
■  Induction from (b, a MOD b) to (a, b): 

–  ExtendedEuclid computes d�, m�, n� correctly (induction hypothesis) 
–  d = d�  = m� × b + n� × (a MOD b) = m� × b + n��× (a - #a / b$ × b) 

 = n� × a + (m� - #a / b$ × n�) × b 
!  The run time of Euclid(a, b) and ExtendedEuclid(a, b) is of O(log b) 

■  Proof: see [Cor90a], section 33.2  

■ 
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Some Mathematical Background (5) 

!  Summarizing the discussion of the Euclidean algorithms we have: 
 Lemma 1:  

 Let a, b ∈ ! and d = gcd(a, b). Then there exists m, n ∈ ! such that: 
d = m × a + n × b 

!  We can use this lemma to prove the following: 
 Theorem 1 (Euclid): 

 If a prime divides the product of two integers, then it divides at least one of 
the integers: p | (a × b ) ⇒ (p | a) ∨ (p | b) 

!  Proof: Let p | (a × b) 

■  If p | a then we are done.  

■  If not then gcd(p, a) = 1 ⇒  
∃ m, n ∈ !:  1 = m × p + n × a 

 ⇔ b = m × p × b + n × a × b 
As p | (a × b ), p divides both summands of the equation and so it 
divides also the sum which is b 

■ 
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Some Mathematical Background (6) 

!  A small, but nice excursion: 
!  With the help of Theorem 1 the proof that      is not a rational number can 

be given in a very elegant way: 

 Assume that      can be expressed as a rational number m / n and that this 
fraction has been reduced such that gcd(m, n) = 1: 
     

 
 So, 2 divides m2, and thus by Theorem 1 it also divides m, and so 4 
divides m2. But then 4 divides 2n2 and, therefore, 2 divides also n2. 
 Again by Theorem 1 this implies that 2 divides n and so 2 divides both m 
and n, which is a contradiction to the assumption that the fraction m / n is 
reduced. 

!  And now to something more useful... – for cryptography :o) 
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■ 
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Some Mathematical Background (7) 

Theorem 2 (fundamental theorem of arithmetic): 

 Factorization into primes is unique up to order. 

!  Proof: 
!  We will show that every integer with a non-unique factorization has a 

proper divisor with a non-unique factorization which leads to a clear 
contradiction when we finally have reduced to a prime number. 

!  Let�s assume that n is an integer with a non-unique factorization: 
 n  = p1 × p2 × ... × pr 
  = q1 × q2 × ... × qs 
 The primes are not necessarily distinct, but the second factorization is not 
simply a reordering of the first one. 
 As p1 divides n it also divides the product q1 × q2 × ... × qs. By repeated 
application of Theorem 1 we show that there is at least one qi which is 
divisible by p1. If necessary reorder the qi�s so that it is q1. As both p1 and 
q1 are prime they have to be equal. So we can divide by p1 and we have 
that n / p1 has a non-unique factorization. 

■ 
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Some Mathematical Background (8) 

!  We will use Theorem 2 to prove the following  
 Corollary 1: 
 If gcd(c, m) = 1 and (a × c) ≡ (b × c) mod m, then a ≡ b mod m 

!  Proof: As (a × c) ≡ (b × c) mod m ⇒ ∃ n ∈ !: (a × c) - (b × c) = n × m 

  ⇔      (a - b)  ×  c  =  n   ×  m  

  ⇔  p1 × ... × pi  ×     q1 × ... × qj  =     r1 × ... × rk   ×     s1 × ... × sl 

 Please note that the p�s, q�s, r�s and s�s are prime and do not need to be 
distinct, but as gcd(c, m) = 1, there are no indices g, h such that qg = sh. 
 So we can continuously divide the equation by all q�s without ever 
�eliminating� one s and will finally end up with something like 
 ⇔  p1 × ... × pi   =     r1 × ... × ro   ×     s1 × ... × sl 

                                      (note that there will be fewer r�s) 
 ⇔  (a - b)   =     r1 × ... × ro   ×     m 

 ⇒                         a  ≡  b mod m 
■ 
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Some Mathematical Background (9) 

!  Let Φ(n) denote the number of positive integers less than n and 
relatively prime to n 
!  Examples: Φ(4) = 2, Φ(6) = 2, Φ(7) = 6, Φ(15) = 8 
!  If p is prime ⇒ Φ(p) = p - 1 

 Theorem 3 (Euler): 
 Let n and b be positive and relatively prime integers, i.e. gcd(n, b) = 1 
 ⇒ bΦ(n) ≡  1 mod n 

 Proof:  
!  Let t = Φ(n) and a1, ... at be the positive integers less than n which are 

relatively prime to n.  
Define r1, ..., rt to be the residues of b × a1 mod n, ..., b × at mod n 
that is to say: b × ai ≡  ri mod n. 

!  Note that i ≠ j ⇒ ri ≠ rj.  
If this would not hold, we would have b × ai ≡ b × aj mod n  
and as gcd(b, n) = 1, Corollary 1 would imply ai ≡ aj mod n which can not 
be as ai and aj are by definition distinct integers between 0 and n 
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Some Mathematical Background (10) 

 Proof (continued): 
!  We also know that each ri is relatively prime to n because any common 

divisor k of ri and n, i.e. n = k × m and ri = pi × k, would also have to divide ai, 
as b × ai ≡ (pi × k) mod (k × m) ⇒ ∃ s ∈ !: (b × ai) - (pi × k) = s × k × m 

                                                       ⇔  (b × ai) = s × k × m + (pi × k)  
Because k divides each of the summands on the right-hand side and k does 
not divide b by assumption (n and b are relatively prime), it would also have 
to divide ai which is supposed to be relatively prime to n 

!  Thus r1, ..., rt is a set of Φ(n) distinct integers which are relatively prime to n. 
This means that they are exactly the same as a1, ... at, except that they are 
in a different order. In particular, we know that r1× ... × rt = a1 × ... × at  

!  We now use the congruence 
 r1× ... × rt ≡  b × a1 × ... × b × at mod n 

 ⇔  r1× ... × rt ≡  bt × a1 × ... × at mod n 
 ⇔  r1× ... × rt ≡  bt × r1× ... × rt mod n 

!  As all ri are relatively prime to n we can use Corollary 1 and divide by their 
product giving: 1 ≡  bt mod n ⇔ 1 ≡  bΦ(n) mod n 

■ 

14 
©  Dr.-Ing G. Schäfer 

Network Security (WS 14/15): 04 – Asymmetric Cryptography 

Some Mathematical Background (11) 

 Theorem 4 (Chinese Remainder Theorem): 

 Let m1, ..., mr be positive integers that are pairwise relatively prime,  
i.e. ∀ i ≠ j: gcd(mi, mj) = 1. Let a1, ..., ar be arbitrary integers.  
Then there exists an integer a such that: 
  a ≡ a1 mod m1 

 a ≡ a2 mod m2 
        ... 

  a ≡ ar mod mr 

 Furthermore, a is unique modulo M := m1 × ... × mr 

 Proof: 
!  For all i ∈{1, .., r} we define Mi := (M / mi)Φ(mi) 

!  As Mi is by definition relatively prime to mi we can apply Theorem 3 and 
know that Mi ≡ 1 mod mi  

!  Since Mi is divisible by mj for every j ≠ i, we have ∀ j ≠ i : Mi ≡ 0 mod mj  
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Some Mathematical Background (12) 

 Proof (continued): 
!  We can now construct the solution by defining: 

 a := a1 × M1 + a2 × M2 + ... + ar × Mr 

!  The two arguments given above concerning the congruences of the Mi 
imply that a actually satisfies all of the congruences. 

!  To see that a is unique modulo M, let b be any other integer satisfying the 
r congruences. As a ≡ c mod n and b ≡ c mod n ⇒ a ≡ b mod n  
we have   ∀ i ∈{1, .., r}: a ≡ b mod mi  

 ⇒  ∀ i ∈{1, .., r}: mi | (a - b)  
 ⇒  M | (a-b)  as the mi are pairwise relatively prime 
 ⇔  a ≡ b mod M   

 
 

■ 
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Some Mathematical Background (13) 

 Lemma 2: 

 If gcd(m, n) = 1, then Φ(m × n) = Φ(m) × Φ(n) 

 Proof: 
!  Let a be a positive integer less than and relatively prime to m × n. In other 

words, a is one of the integers counted by Φ(m × n).  

!  Consider the correspondence a → (a MOD m, a MOD n) 

 The integer a is relatively prime to m and relatively prime to n (if not it would 
divide m × n). 

 So, (a MOD m) is relatively prime to m and (a MOD n) is relatively prime to n 
as: a = #a / m$  × m + (a MOD m), so if there would be a common divisor of 
m and (a MOD m), this divisor would also divide a. 

 Thus every number a counted by Φ(m × n) corresponds to a pair of two 
integers (a MOD m, a MOD n), the first one counted by Φ(m) and the 
second one counted by Φ(n). 
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Some Mathematical Background (14) 

 Proof (continued): 
!  Because of the second part of Theorem 4, the uniqueness of the solution a 

modulo (m × n) to the simultaneous congruences:  

  a ≡ (a MOD m) mod m 
 a ≡ (a MOD n) mod n 

we can deduce, that distinct integers counted by Φ(m × n) correspond to 
distinct pairs: 

■  Too see this, suppose that a ≠ b counted by Φ(m × n) does correspond 
to the same pair (a MOD m, a MOD n). This leads to a contradiction as 
b would also fulfill the congruences: 

  b ≡ (a MOD m) mod m 
 b ≡ (a MOD n) mod n 

 but the solution to these congruences is unique modulo (m × n) 

 Therefore, Φ(m × n) is at most the number of such pairs: 

 Φ(m × n)  ≤ Φ(m) ×  Φ(n)  
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Some Mathematical Background (15) 

 Proof (continued): 
!  Consider now a pair of integers (b, c), one counted by Φ(m) and the other 

one counted by Φ(n): 

 Using the first part of Theorem 4 we can construct a unique positive 
integer a less than and relatively prime to m × n: 

 a ≡ b mod m 
a ≡ c mod n  

 So, the number of such pairs is at most Φ(m × n):  

 Φ(m × n) ≥ Φ(m) × Φ(n) 
■ 
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The RSA Public Key Algorithm (1) 

!  The RSA algorithm was invented in 1977 by R. Rivest, A. Shamir and 
L. Adleman [RSA78] and is based on Theorem 3. 

!  Let p, q be distinct large primes and n = p × q. Assume, we have also 
two integers e and d such that: 
  d × e ≡ 1 mod Φ(n)   

!  Let M be an integer that represents the message to be encrypted, with 
M positive, smaller than and relatively prime to n.  
!  Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35 

So �HELLO� would be encoded as 1714212124.  
If necessary, break M into blocks of smaller messages: 17142 12124 

!  To encrypt, compute: E = Me MOD n 
!  This can be done efficiently using the square-and-multiply algorithm 

!  To decrypt, compute: M� = Ed MOD n 
!  As d × e ≡ 1 mod Φ(n)  ⇒∃ k ∈ 
:  (d × e) - 1 = k × Φ(n)  

                ⇔  (d × e) = k × Φ( n) + 1  
we have: M� ≡ Ed ≡ M(e×  d) ≡ M(k × Φ( n) + 1) ≡ 1k × M ≡ M mod n 

■ 
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The RSA Public Key Algorithm (2) 

!  As (d × e) = (e × d) the operation also works in the opposite direction, 
that means you can encrypt with d and decrypt with e 
!  This property allows to use the same keys d and e for: 

■  Receiving messages that have been encrypted with one�s public key 
■  Sending messages that have been signed with one�s private key 

!  To set up a key pair for RSA: 
!  Randomly choose two primes p and q (of 100 to 200 digits each) 
!  Compute n = p × q, Φ(n) = (p - 1) × (q - 1)  (Lemma 2) 
!  Randomly choose e, so that gcd(e, Φ(n)) = 1 
!  With the extended euclidean algorithm compute d and c, such that: 

 e × d + Φ(n) × c = 1,  note that this implies, that e × d ≡ 1 mod Φ(n) 
!  The public key is the pair (e, n)  
!  The private key is the pair (d, n) 
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The RSA Public Key Algorithm (3) 

!  The security of the scheme lies in the difficulty of factoring n = p × q  
as it is easy to compute Φ(n) and then d, when p and q are known 

!  This class will not teach why it is difficult to factor large n�s, as this 
would require to dive deep into mathematics 
!  If p and q fulfill certain properties, the best known algorithms are 

exponential in the number of digits of n 
■  Please be aware that if you choose p and q in an �unfortunate� way, 

there might be algorithms that can factor more efficiently and your RSA 
encryption is not at all secure: 

–  Therefore, p and q should be about the same bitlength and sufficiently large 
–  (p - q) should not be too small 
–  If you want to choose a small encryption exponent, e.g. 3, there might be 

additional constraints, e.g. gcd(p - 1, 3) = 1 and gcd(q - 1, 3) = 1 

■  The security of RSA also depends on the primes generated being truly 
random (like every key creation method for any algorithm) 

■  Moral: If you are to implement RSA by yourself, ask a mathematician or 
better a cryptographer to check your design 
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Diffie-Hellman Key Exchange (1) 

!  The Diffie-Hellman key exchange was first published in the landmark 
paper [DH76], which also introduced the fundamental idea of 
asymmetric cryptography  

!  The DH exchange in its basic form enables two parties A and B to 
agree upon a shared secret using a public channel: 
!  Public channel means, that a potential attacker E (E stands for 

eavesdropper) can read all messages exchanged between A and B 
!  It is important, that A and B can be sure, that the attacker is not able to alter 

messages, as in this case he might launch a man-in-the-middle attack 
!  The mathematical basis for the DH exchange is the problem of finding 

discrete logarithms in finite fields 
!  The DH exchange is not an asymmetric encryption algorithm, but is 

nevertheless introduced here as it goes well with the mathematical flavor of 
this lecture... :o) 
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Some More Mathematical Background (1) 

!  Definition: finite groups 
!  A group (S, ⊕) is a set S together with a binary operation ⊕ for which the 

following properties hold: 
■  Closure: For all a, b ∈ S, we have a ⊕ b ∈ S 

■  Identity: There is an element e ∈ S, such that e ⊕ a = a ⊕ e = a for all 
a ∈ S 

■  Associativity: For all a, b, c ∈ S, we have (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) 

■  Inverses: For each a ∈ S, there exists a unique element b ∈ S, such 
that a ⊕ b = b ⊕ a = e 

!  If a group (S, ⊕) satisfies the commutative law ∀ a, b ∈ S: a ⊕ b = b ⊕ a 
then it is called an Abelian group 

!  If a group (S, ⊕) has only a finite set of elements, i.e. |S| < ∞, then it is 
called a finite group 
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Some More Mathematical Background (2) 

!  Examples: 
!  (
n, +n)  

■  with 
n := {[0]n , [1]n, ..., [n - 1]n }  
■  where [a]n := {b ∈ 
 | b ≡ a mod n} and  
■  +n is  defined such that [a]n +n [b]n = [a + b]n  

 is a finite abelian group 
 For the proof see the table showing the properties of modular arithmetic 

!  (
*
n, ×n)  

■  with 
*
n := {[a]n ∈ 
n | gcd(a, n) = 1 }, and 

■  ×n is  defined such that [a]n ×n [b]n = [a × b]n 

 is a finite Abelian group. Please note that 
*
n  just contains those elements 

of 
n that have a multiplicative inverse modulo n 
 For the proof see the properties of modular arithmetic 

■  Example: 
*
15 = {[1]15, [2]15, [4]15, [7]15, [8]15, [11]15, [13]15, [14]15}, as  

  1 ×   1  ≡ 1 mod 15,     2 ×   8  ≡ 1 mod 15,     4 ×   4  ≡ 1 mod 15, 
 7 × 13  ≡ 1 mod 15,   11 × 11  ≡ 1 mod 15,   14 × 14  ≡ 1 mod 15 



25 
©  Dr.-Ing G. Schäfer 

Network Security (WS 14/15): 04 – Asymmetric Cryptography 

Some More Mathematical Background (3) 

!  If it is clear that we are talking about (
n, +n) or (
*
n, ×n) we often 

represent equivalence classes [a]n by their representative elements a 
and denote +n and ×n by + and ×, respectively. 

!  Definition: finite fields 
!  A field (S, ⊕, ⊗) is a set S together with two operations ⊕, ⊗ such that 

■  (S, ⊕) and (S \ {e⊕}, ⊗) are commutative groups, i.e. only the identity 
element concerning the operation ⊕ does not need to have an inverse 
regarding the operation ⊗ 

■  For all a, b, c ∈ S, we have a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) 
!  If |S| < ∞ then (S, ⊕, ⊗) is called a finite field 

!  Example: 
!  (
p, +p, ×p) is a finite field for each prime p 
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Some More Mathematical Background (4) 

!  Definition: primitive root, generator 
!  Let (S, •) be a group, g ∈ S and ga := g • g • ... • g    (a times with a ∈ 
+) 

 Then g is called a primitive root or generator of (S, •)  

 :⇔ {ga | 1 ≤ a ≤ |S|} = S 

!  Examples: 
!  1 is a primitive root of (
n, +n) 

!  3 is a primitive root of (
*
7, ×7)  

!  Not all groups do have primitive roots and those who have are called 
cyclic groups 

!  Theorem 5:  

 (
*
n, ×n) does have a primitive root ⇔ n ∈ {2, 4, p, 2 × pe} where p is an 

odd prime and e ∈ 
+ 

!  For the proof see [Niv80a] 
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Some More Mathematical Background (5) 

!  Theorem 6:  
 If (S, •) is a group and b ∈ S then (S�, •) with S� = {ba | a ∈ 
+} is also a 
group.  
!  For the proof refer to [Cor90a] section 33.3 

!  As S��⊆ S, (S�, •) is called a subgroup of (S, •) 

!  If b is a primitive root of (S, •) then S��= S 

!  Definition: order of a group and of an element 
!  Let (S, •) be a group, e ∈ S its identity element and b ∈ S any element of S:  

■  Then |S| is called the order of (S, •) 

■  Let c ∈ 
+ be the smallest element so that bc = e (if such a c exists, if not 
set c = ∞). Then c is called the order of b. 
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Some More Mathematical Background (6) 

!  Theorem 7 (Lagrange):  

 If G is a finite group and H is a subgroup of G, then |H| divides |G|. 
Hence, if b ∈ G then the order of b divides |G|. 

!  Theorem 8:  

 If G is a cyclic finite group of order n and d divides n then G has exactly 
Φ(d) elements of order d. In particular, G has Φ(n) elements of order n. 

!  Theorems 5, 7, and 8 are the basis of the following algorithm that finds a 
cyclic group 
*

p and a primitive root g of it: 
!  Choose a large prime q such that p = 2q + 1 is prime.  

■  As p is prime, Theorem 5 states that 
*
p is cyclic. 

■  The order of 
*
p is 2 × q and Φ(2 × q) = Φ(2) × Φ(q) = q -1 as q is prime.  

■  So, the odds of randomly choosing a primitive root are (q - 1) / 2q ≈ 1 / 2 
■  In order to efficiently test, if a randomly chosen g is a primitive root, we 

just have to test if g2 ≡ 1 mod p or gq ≡ 1 mod p. If not, then its order has 
to be |
*

p|, as Theorem 7 states that the order of g has to divide |
*
p| 
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Some More Mathematical Background (7) 

!  Definition: discrete logarithm 
!  Let p be prime, g be a primitive root of (
*

p, ×p) and c be any element of 

*

p. Then there exists z such that: gz ≡ c mod p  
 z is called the discrete logarithm of c modulo p to the base g  

!  Example 6 is the discrete logarithm of 1 modulo 7 to the base 3 as 
 36 ≡ 1 mod 7  

!  The calculation of the discrete logarithm z when given g, c, and p is a 
computationally difficult problem and the asymptotical runtime of the best 
known algorithms for this problem is exponential in the bitlength of p 
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Diffie-Hellman Key Exchange (2) 

!  If Alice (A) and Bob (B) want to agree on a shared secret s and their 
only means of communication is a public channel, they can proceed as 
follows: 
!  A chooses a prime p, a primitive root g of 
*

p, and a random number q: 
■  A and B can agree upon the values p and g prior to any 

communication, or A can choose p and g and send them with his first 
message 

■  A computes v = gq MOD p and sends to B: {p, g, v} 
!  B chooses a random number r: 

■  B computes w = gr MOD p and sends to A: {p, g, w} (or just {w}) 
!  Both sides compute the common secret: 

■  A computes s = wq MOD p  
■  B computes s� = vr MOD p  
■  As g(q × r) MOD p = g(r × q) MOD p it holds: s = s�  

!  An attacker Eve who is listening to the public channel can only compute 
the secret s, if she is able to compute either q or r which are the discrete 
logarithms of v, w modulo p to the base g 
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Diffie-Hellman Key Exchange (3) 

!  If the attacker Eve is able to alter messages on the public channel, she 
can launch a man-in-the-middle attack: 
!  Eve generates to random numbers q� and r�: 

■  Eve computes v� = gq� MOD p and w� = gr� MOD p  
!  When A sends {p, g, v} she intercepts the message and sends  

to B: {p, g, v��} 
!  When B sends {p, g, w} she intercepts the message and sends  

to A: {p, g, w��} 
!  When the supposed �shared secret� is computed we get: 

■  A computes s1 = w�q MOD p =  vr� MOD p the latter computed by E 
■  B computes s2 = v�r MOD p =  wq� MOD p the latter computed by E 
■  So, in fact A and E have agreed upon a shared secret s1 as well as  

E and B have agreed upon a shared secret s2  
!  If the �shared secret� is now used by A and B to encrypt messages to be 

exchanged over the public channel, E can intercept all the messages and 
decrypt / re-encrypt them before forwarding them between A and B. 
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Diffie-Hellman Key Exchange (4) 

!  Two countermeasures against the man-in-the-middle attack: 
!  The shared secret is �authenticated� after it has been agreed upon 

■  We will treat this in the section on key management 
!  A and B use a so-called interlock protocol after agreeing on a shared 

secret: 
■  For this they have to exchange messages that E has to relay before 

she can decrypt / re-encrypt them 
■  The content of these messages has to be checkable by A and B 
■  This forces E to invent messages and she can be detected 
■  One technique to prevent E from decrypting the messages is to split 

them into two parts and to send the second part before the first one.  
–  If the encryption algorithm used inhibits certain characteristics E can not encrypt the 

second part before she receives the first one.  
–  As A will only send the first part after he received an answer (the second part of it) 

from B, E is forced to invent two messages, before she can get the first parts.  

!  Remark: In practice the number g does not necessarily need to be a 
primitive root of p, it is sufficient if it generates a large subgroup of 
*

p 
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The ElGamal Algorithm (1) 

!  The ElGamal algorithm can be used for both, encryption and digital 
signatures (see also [ElG85a] ) 

!  Like the DH exchange it is based on the difficulty of computing 
discrete logarithms in finite fields 

!  In order to set up a key pair: 
!  Choose a large prime p, a generator g of the multiplicative group 
*

p and a 
random number v such that 1 ≤ v ≤ p - 2. Calculate: y = gv mod p 

!  The public key is (y, g, p) 
!  The private key is v 

!  To sign a message m: 
!  Choose a random number k such that k is relatively prime to p - 1.  
!  Compute r = gk mod p 
!  With the Extended Euclidean Algorithm compute k-1, the inverse of  

k mod (p - 1) 
!  Compute s = k-1 × (m - v × r) mod (p - 1) 
!  The signature over the message is (r, s)  
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The ElGamal Algorithm (2) 

!  To verify a signature (r, s) over a message m: 
!  Confirm that yr × rs MOD p = gm MOD p 
!  Proof: We need the following  

■  Lemma 3: 
 Let p be prime and g be a generator of 
*

p.  
Then i ≡ j mod (p -1) ⇒ gi ≡ gj mod p 
 Proof: 

–  i ≡ j mod (p -1) ⇒ there exists k ∈ 
+ such that (i - j) = (p -1) × k 
–  So, g(i - j) = g(p - 1) × k ≡ 1k ≡ 1 mod p,  because of Theorem 3 (Euler) 

 ⇒ gi ≡ gj mod p 

■  So as      s  ≡ k-1 × (m - v × r)  mod (p - 1)  
  ⇔  k ×  s  ≡ m - v × r  mod (p - 1)  
  ⇔    m  ≡ v × r + k × s  mod (p - 1)  
  ⇒      gm  ≡ g(v × r + k × s)  mod p  with Lemma 3 
  ⇔      gm  ≡ g(v × r) × g (k × s)  mod p 
  ⇔      gm  ≡ yr × rs  mod p 

■ 

■ 
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The ElGamal Algorithm (3) 

!  Security of ElGamal signatures: 
!  As the private key v is needed to be able to compute s, an attacker would 

have to compute the discrete logarithm of y modulo p to the basis g in 
order to forge signatures 

!  It is crucial to the security, that a new random number k is chosen for 
every message, because an attacker can compute the secret v if he gets 
two messages together with their signatures based on the same k  
(see [Men97a], Note 11.66.ii) 

!  In order to prevent an attacker to be able to create a message M with a 
matching signature, it is necessary not to sign directly the message M as 
explained before, but to sign a cryptographic hash value m = h(M) of it 
(these will be treated soon, see also [Men97a], Note 11.66.iii) 
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The ElGamal Algorithm (4) 

!  To encrypt a message m using the public key (y, g, p): 
!  Choose a random k ∈ 
+ with k < p - 1 
!  Compute r = gk MOD p 
!  Compute s = m × yk MOD p 
!  The ciphertext is (r, s), which is twice as long as m  

!  To decrypt the message (r, s) using v: 
!  Use the private key v to compute r(p - 1 - v) MOD p = r(-v) MOD p 
!  Recover m by computing m = r(-v) × s MOD p 
!  Proof: 

  r(-v) × s ≡ r(-v) × m × yk ≡ g(-vk) × m × yk ≡ g(-v × k) × m × g(v × k) ≡ m mod p 
 

!  Security: 
!  The only known means for an attacker to recover m is to compute the 

discrete logarithm v of y modulo p to the basis g 
!  For every message a new random k is needed ([Men97a], Note 8.23.ii) 

■ 
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Elliptic Curve Cryptography (1) 

!  The algorithms presented so far have been invented for the 
multiplicative group (
*

p, ×p) and the field (
p, +p, ×p), respectively 

!  It has been found during the 1980�s that they can be generalized and 
be used with other groups and fields as well 

!  The main motivation for this generalization is: 
!  A lot of mathematical research in the area of primality testing, factorization 

and computation of discrete logarithms has led to techniques that allow to 
solve these problems in a more efficient way, if certain properties are met: 
■  When the RSA-129 challenge was given in 1977 it was expected that 

it will take some 40 quadrillion years to factor the 129-digit number  
(≈ 428 bit) 

■  In 1994 it took 8 months to factor it by a group of computers 
networked over the Internet, calculating for about 5000 MIPS-years 

■  Advances in factoring algorithms allowed 2009 to factor a 232-digit 
number (768 bit) in about 1500 AMD64-years [KAFL10] 

 ⇒ the key length has to be increased (currently about 2048 bit) 
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Elliptic Curve Cryptography (2) 

!  Motivation (continued): 
!  Some of the more efficient techniques do rely on specific 

properties of the algebraic structures (
*
p, ×p) and (
p, +p, ×p) 

!  Different algebraic structures may therefore provide the same 
security with shorter key lengths  

!  A very promising structure for cryptography can be obtained from the 
group of points on an elliptic curve over a finite field 
!  The mathematical operations in these groups can be efficiently 

implemented both in hardware and software 
!  The discrete logarithm problem is believed to be hard in the 

general class obtained from the group of points on an elliptic curve 
over a finite field 
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Foundations of ECC - Group Elements 

!  Algebraic group consisting of 
!  Points on Weierstrass’ Equation: y2 = x3 + ax + b 
!  Additional point O in “infinity” 

!  May be calculated over 	, but in cryptography�
��and ���2n)�are used 
!  Already in 	 arguments influence form significantly: 

!  y2 = x3 - 3x + 5                    y2 = x3 - 40x + 5 
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!  Addition of elements = Addition of points on the curve 
!  Geometric interpretation: 

!  Each point P: (x,y) has an inverse -P: (x,-y) 
!  A line through two points P and Q usually intersects with a third point R 
!  Generally, sum of two points P and Q equals –R 

Foundations of ECC - Point Addition 

P 

Q 

R 

-R = P+Q 
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Foundations of ECC - Point Addition (Special cases) 

!  The additional point O is the neutral element, i.e., P + O = P 
!  P + (-P):  

!  If the inverse point is added to P, the line and curve intersect in “infinity” 
!  By definition: P + (-P) = O 

!  P + P: The sum of two identical points P is the inverse of the 
intersecting point with the tangent through P: 

P R 

-R = P+P 
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Foundations of ECC - Algebraic Addition 

!  If one of the summands is O, the sum is the other summand 
!  If the summands are inverse to each other the sum is O 
!  For the more general cases the slope of the line is: 

!  Result of point addition, where (xr, yr) is already the reflected point (-R) 

xr = ↵

2 � xp � xq

yr = ↵(xp � xr)� yp

↵ =

(
yQ�yP

xQ�xP
for P 6= �Q ^ P 6= Q

3x2
P+a

2yP
for P = Q
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Foundations of ECC - Multiplication 

!  Multiplication of natural number n and point P performed by multiple 
repeated additions  
!  Numbers are grouped into powers of 2 to achieve logarithmic runtime, e.g. 

25P = P + 8P + 16P 
!  This is possible if and only if the n is known! 
!  If n is unknown for nP = Q, a logarithm has to be solved, which is possible 

if the coordinate values are chosen from 	�

!  For 
��and ���2n)�����discrete logarithm problem for elliptic curves 
has to be solved, which cannot be done efficiently! 

!  Note: it is not defined how two points are multiplied, but only a natural 
number n and point P 
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Foundations of ECC – Curves over 
� 

!  Over 
p the curve degrades to a set of points 
!  For                                                     : 

!  Note: There is no y value for each x value! 

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x

y

y

2 ⌘ x

3 � 3x+ 5 mod 19
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Foundations of ECC – Calculate the y-values in 
�  

!  In general a little bit more problematic: determine the y-values for a 
given x (as its square value is calculated) by  

!  Hence p is often chosen s.t.  
!  Then y is calculated by                                  and 

if and only if a solution exists at all 
!  Short proof: 

!  From the Euler Theorem 3 we know that 
!  Thus the square root must be 1 or -1 
!  Case 1:  

■  Multiply both sides by f(x): 
■  As p + 1 is divisible by 4 we can take the square root so that 

!  Case 2: In this case no solution exists for the given x value (as shown 
by Euler) 

 
 
 

y

2 ⌘ f(x) mod p

p ⌘ 3 mod 4

y2 ⌘ �f(x)

p+1
4

mod p

y1 ⌘ f(x)

p+1
4

mod p

f(x)

p�1 ⌘ 1 mod p

f(x)

p�1
2 ⌘ ±1 mod p

f(x)

p�1
2 ⌘ 1 mod p

f(x)

p+1
2 ⌘ f(x) ⌘ y

2
mod p

f(x)

p+1
4 ⌘ y mod p

■ 
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Foundations of ECC – Addition and Multiplication in 
� 

!  Due to the discrete structure point mathematical operations do not 
have a geometric interpretation any more, but 

!  Algebraic addition similar to addition over 	�
!  If the inverse point is added to P, the line and “curve” still intersect in 

“infinity” 
!  All x- and y-values are calculated mod p 
!  Division is replaced by multiplication with the inverse element of the 

denominator 
■  Use the Extended Euclidean Algorithm with w and p to derive the 

inverse -w 
!  Algebraic multiplication of a natural number n and a point P is also 

performed by repeated addition of summands of the power of 2 
!  The discrete logarithm problem is to determine a natural number n in 

nP = Q for two known points P and Q 
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Foundations of ECC – Size of generated groups 

!  Please note that the order of a group generated by a point on a curve 
over 
��is not p-1! 

!  Determining the exact order is not easy, but can be done in logarithmic 
time by Schoofs algorithm [Sch85] (requires much more mathematical 
background than desired here) 

!  But Hasse’s theorem on elliptic curves states that the group size n 
must lay between: 
!  p + 1 - 2√p ≤ n ≤ p + 1 + 2√p 

!  As mentioned before: Generating rather large groups is sufficient 
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Foundations of ECC - ECDH 

!  The Diffie-Hellman-Algorithm can easily be adapted to elliptic curves 
!  If Alice (A) and Bob (B) want to agree on a shared secret s: 

!  A and B agree on a cryptographically secure elliptic curve and a point P on 
that curve 

!  A chooses a random number q: 
■  A computes Q = q P and transmits Q to Bob 

!  B chooses a random number r: 
■  B computes R = r P and transmits P to Alice 

!  Both sides compute the common secret: 
■  A computes S   = q R 
■  B computes S��= r Q  
■  As q r P = r q P the secret point S = S� 

!  Attackers listening to the public channel can only compute S, if able to 
compute either q or r which are the discrete logarithms of Q and R for 
the point P 
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Foundations of ECC – EC version of ElGamal Algorithm (I) 

!  Adapting ElGamal for elliptic curves is rather straight forward for the 
encryption routine 

!  To set up a key pair: 
!  Choose an elliptic curve over a finite field, a point G that generates a large 

group, and a random number v such that 1 < v < n, where n denotes to the 
size of the induced group, Calculate: Y = vG 

!  The public key is (Y, G, curve) 
!  The private key is v 
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Foundations of ECC – EC version of ElGamal Algorithm (II) 

!  To encrypt a message: 
!  Choose a random k ∈ 
+ with k < n – 1, compute R = kG 
!  Compute S = M + kY, where M is a point derived by the message 

■  Problem: Interpreting the message m as a x coordinate of M is not 
sufficient, as the y value does not have to exist 

■  Solution from [Ko87]: Choose a constant c (e.g. 100) check if cm is the 
x coordinate of a valid point, if not try cm+1, then cm+2 and so on 

■  To decode m: take the x value of M and do an integer division by c 
(receiver has to know c too) 

!  The ciphertext are the points (R, S) 
!  Twice as long as m, if stored in so-called compressed form, i.e. only x 

coordinates are stored and a single bit, indicating whether the larger or 
smaller corresponding y-coordinate shall be used 

!  To decrypt a message: 
!  Derive M by calculating S – vR 
!  Proof: S – vR = M + kY – vR = M + kvG – vkG = M + O = M 

 

■ 
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Foundations of ECC – EC version of ElGamal Algorithm (II) 

!  To sign a message: 
!  Choose a random k ∈ 
+ with k < n – 1, compute R = kG 
!  Compute s = k-1(m + rv) mod n, where r is the x-value of R 
!  The signature are (r, s), again about as twice as long as n 

!  To verify a signed message: 
!  Check if the point P = ms-1G+rs-1Y has the x-coordinate r 
!  Note: s-1 is calculated by the Extended Euclidian Algorithm with the input s 

and n (the order of the group) 
!  Proof: ms-1G+rs-1Y = ms-1G+rs-1vG = (m+rv)(s-1)G = (ks)(s-1)G = kG = R 

!  Security discussion: 
!  As in the original version of ElGamal it is crucial to not use k twice 
!  Messages should not be signed directly 
!  Further checks may be required, i.e., G must not be O, a valid point on the 

curve etc. (see [NIST09] for further details) 
 

■ 
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Foundations of ECC – Security (I) 

!  The security heavily depends on the chosen curve and point: 
!  The discriminant of the curve must not be zero, i.e., 

 otherwise the curve is degraded (a so called singular curve) 
!  Menezes et. al. have found a sub-exponential algorithm for so-called 

supersingular elliptic curves but this does not work in the general case 
[Men93a] 

!  The constructed algebraic groups should have as many elements a possible 
!  This class will not go into more details of elliptic curve cryptography as this 

requires way more mathematics than desired for this course... :o) 
!  For non-cryptographers it is best to depend on predefined curves, e.g., [LM10] 

or [NIST99] and standards such as ECDSA 
!  Many publications choose parameters a and b such that they are provably 

chosen by a random process (e.g. publish x for h(x) = a and y for h(y) = b); 
Shall ensure that the curves do not contain a cryptographic weakness that 
only the authors knows about 

4a3 + 27b2 6⌘ 0 mod p
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Foundations of ECC – Security (II) 

!  The security depends on the length of p 
!  Key lengths with comparable strengths according to [NIST12]: 

 

Symmetric 
Algorithms 

RSA ECC 

112 2048 224-255 
128 3072 256-383 
192 7680 384-511 
256 15360 > 512 
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Foundations of ECC – Security (III) 

!  The security also heavily depends on the implementation! 
!  The different cases (e.g. with O) in ECC calculation may be 

observable, i.e., power consumption and timing differences 
!  Attackers might deduct side-channel attacks, as in OpenSSL 

0.9.8o [BT11] 
■  Attacker may deduce the bit length of a value k in kP by 

measuring the time required for the square and multiply 
algorithm  

■  Algorithm was aborted early in OpenSSL when no further bits 
where set to “1” 

!  Attackers might try to generate invalid points to derive facts about 
the used key as in OpenSSL 0.9.8g, leading to a recovery of a full 
256-bit ECC key after only 633 queries [BBP12] 

!  Lesson learned: Do not do it on your own, unless you have to and 
know what you are doing! 
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Foundations of ECC – Further remarks 

!  As mentioned earlier it is possible to construct cryptographic elliptic 
curves over G(2n), which may be faster in hardware implementations 
!  We refrained from details as this would not have brought many 

different insights! 
!  Elliptic curves and similar algebraic groups are an active field of 

research and allow other advanced applications e.g.: 
!  So-called Edwards Curves are currently discussed, as they seem 

more robust against side-channel attacks (e.g. [BLR08]) 
!  Bilinear pairings allow  

■  Programs to verify that they belong to the same group, without 
revealing their identity (Secret handshakes, e.g. [SM09]) 

■  Public keys to be structured, e.g. use “Alice” as public key for 
Alice (Identity based encryption, foundations in [BF03]) 

!  Before deploying elliptic curve cryptography in a product, make sure to 
not violate patents, as there are still many valid ones in this field! 
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Conclusion 

!  Asymmetric cryptography allows to use two different keys for: 
!  Encryption / Decryption 
!  Signing / Verifying 

!  The most practical algorithms that are still considered to be secure are: 
!  RSA, based on the difficulty of factoring and solving discrete logarithms 
!  Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol) 
!  ElGamal, like DH based on the difficulty of computing discrete logarithms 

!  As their security is entirely based on the difficulty of certain mathematical 
problems, algorithmic advances constitute their biggest threat 

!  Practical considerations: 
!  Asymmetric cryptographic operations are about magnitudes slower than 

symmetric ones 
!  Therefore, they are often not used for encrypting / signing bulk data 
!  Symmetric techniques are used to encrypt / compute a cryptographic hash 

value and asymmetric cryptography is just used to encrypt a key / hash value 
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