
1
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Network Security
Chapter 4

Asymmetric Cryptography

�However, prior exposure to discrete mathematics will help the reader to
appreciate the concepts presented here.�
E. Amoroso in another context [Amo94] :o)

2
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Asymmetric Cryptography (1)

!  General idea:
!  Use two different keys -K and +K for encryption and decryption
!  Given a random ciphertext c = E(+K, m) and +K it should be infeasible to

compute m = D(-K, c) = D(-K, E(+K, m))
■  This implies that it should be infeasible to compute -K when given +K

!  The key -K is only known to one entity A and is called A�s private key -KA
!  The key +K can be publicly announced and is called A�s public key +KA

!  Applications:
!  Encryption:

■  If B encrypts a message with A�s public key +KA, he can be sure that
only A can decrypt it using -KA

!  Signing:
■  If A encrypts a message with his own private key -KA, everyone can

verify this signature by decrypting it with A�s public key +KA

!  Attention: It is crucial, that everyone can verify that he really knows A�s
public key and not the key of an adversary!

3
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Asymmetric Cryptography (2)

!  Design of asymmetric cryptosystems:
!  Difficulty: Find an algorithm and a method to construct two keys -K, +K

such that it is not possible to decipher E(+K, m) with the knowledge of +K
!  Constraints:

■  The key length should be �manageable�
■  Encrypted messages should not be arbitrarily longer than unencrypted

messages (we would tolerate a small constant factor)
■  Encryption and decryption should not consume too much resources

(time, memory)
!  Basic idea: Take a problem in the area of mathematics / computer

science, that is hard to solve when knowing only +K, but easy to solve
when knowing -K
■  Knapsack problems: basis of first working algorithms, which were

unfortunately almost all proven to be insecure
■  Factorization problem: basis of the RSA algorithm
■  Discrete logarithm problem: basis of Diffie-Hellman and ElGamal

4
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (1)

!  Definitions:
!  Let
 be the number of integers, and a, b, n ∈

!  We say a divides b (�a | b�) if there exists an integer k ∈
 such that a × k = b
!  We say a is prime if it is positive and the only divisors of a are 1 and a
!  We say r is the remainder of a divided by n if r = a - #a / n$ × n

where #x$ denotes the largest integer less than or equal to x
■  Example: 4 is the remainder of 11 divided by 7 as 4 = 11 - #11 / 7$ × 7
■  We can write this in another way: a = q × n + r with q = #a / n$

!  For the remainder r of the division of a by n we write a MOD n
!  We say b is congruent a mod n if it has the same remainder like a when

divided by n. So, n divides (a-b), and we write b ≡ a mod n
■  Examples: 4 ≡ 11 mod 7, 25 ≡ 11 mod 7, 11 ≡ 25 mod 7,

 11 ≡ 4 mod 7, -10 ≡ 4 mod 7
!  As the remainder r of division by n is always smaller than n, we sometimes

represent the set {x MOD n | x ∈
}
by elements of the set
n = {0, 1, ..., n - 1}

5
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (2)

Property Expression

Commutative Laws

Associative Laws

Distributive Law

Identities

Inverses

(a + b) MOD n = (b + a) MOD n

(a × b) MOD n = (b × a) MOD n

[(a + b) + c] MOD n = [a + (b + c)] MOD n

[(a × b) × c] MOD n = [a × (b × c)] MOD n

[a × (b + c)] MOD n = [(a × b) + (a × c)] MOD n

(0 + a) MOD n = a MOD n

(1 × a) MOD n = a MOD n

∀ a ∈
n: ∃ (-a) ∈
n : a + (-a) ≡ 0 mod n

p is prime ⇒ ∀ a ∈
p: ∃ (a-1) ∈
p: a × (a-1) ≡ 1 mod p

Properties of Modular Arithmetic

6
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (3)

!  Greatest common divisor:
!  c = gcd(a, b) :⇔ (c | a) ! (c | b) ! [∀ d: (d | a) ! (d | b) ⇒ (d | c)]

and gcd(a, 0) := |a|
!  The gcd recursion theorem:

!  ∀ a, b ∈
+: gcd(a, b) = gcd(b, a MOD b)
!  Proof:

■  As gcd(a, b) divides both a and b it also divides any linear combination
of them, especially (a - #a / b$ × b) = a MOD b,
so gcd(a, b) | gcd(b, a MOD b)

■  As gcd(b, a MOD b) divides both b and a MOD b it also divides any
linear combination of them, especially #a / b$ × b + (a MOD b) = a,
so gcd(b, a MOD b) | gcd(a, b)

!  Euclidean Algorithm:
!  The algorithm Euclid given a, b computes gcd(a, b)
!  int Euclid(int a, b)

{ if (b = 0) { return(a);}
 { return(Euclid(b, a MOD b);} }

■

7
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (4)

!  Extended Euclidean Algorithm:
!  The algorithm ExtendedEuclid given a, b computes d, m, n such that:

d = gcd(a, b) = m × a + n × b
!  struct{int d, m, n} ExtendedEuclid(int a, b)

{ int d, d�, m, m�, n, n�;
 if (b = 0) {return(a, 1, 0); }
 (d�, m�, n�) = ExtendedEuclid(b, a MOD b);
 (d, m, n) = (d�, n�, m� - #a / b$ × n�);
 return(d, m, n); }

!  Proof: (by induction)
■  Basic case (a, 0): gcd(a, 0) = a = 1 × a + 0 × 0
■  Induction from (b, a MOD b) to (a, b):

–  ExtendedEuclid computes d�, m�, n� correctly (induction hypothesis)
–  d = d� = m� × b + n� × (a MOD b) = m� × b + n��× (a - #a / b$ × b)

 = n� × a + (m� - #a / b$ × n�) × b
!  The run time of Euclid(a, b) and ExtendedEuclid(a, b) is of O(log b)

■  Proof: see [Cor90a], section 33.2

■

8
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (5)

!  Summarizing the discussion of the Euclidean algorithms we have:
 Lemma 1:

 Let a, b ∈ ! and d = gcd(a, b). Then there exists m, n ∈ ! such that:
d = m × a + n × b

!  We can use this lemma to prove the following:
 Theorem 1 (Euclid):

 If a prime divides the product of two integers, then it divides at least one of
the integers: p | (a × b) ⇒ (p | a) ∨ (p | b)

!  Proof: Let p | (a × b)

■  If p | a then we are done.

■  If not then gcd(p, a) = 1 ⇒
∃ m, n ∈ !: 1 = m × p + n × a

 ⇔ b = m × p × b + n × a × b
As p | (a × b), p divides both summands of the equation and so it
divides also the sum which is b

■

9
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (6)

!  A small, but nice excursion:
!  With the help of Theorem 1 the proof that is not a rational number can

be given in a very elegant way:

 Assume that can be expressed as a rational number m / n and that this
fraction has been reduced such that gcd(m, n) = 1:

 So, 2 divides m2, and thus by Theorem 1 it also divides m, and so 4
divides m2. But then 4 divides 2n2 and, therefore, 2 divides also n2.
 Again by Theorem 1 this implies that 2 divides n and so 2 divides both m
and n, which is a contradiction to the assumption that the fraction m / n is
reduced.

!  And now to something more useful... – for cryptography :o)

2

22
2

2

222 mn
n
m

n
m

=⇔=⇔=⇒

■

2

10
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (7)

Theorem 2 (fundamental theorem of arithmetic):

 Factorization into primes is unique up to order.

!  Proof:
!  We will show that every integer with a non-unique factorization has a

proper divisor with a non-unique factorization which leads to a clear
contradiction when we finally have reduced to a prime number.

!  Let�s assume that n is an integer with a non-unique factorization:
 n = p1 × p2 × ... × pr
 = q1 × q2 × ... × qs
 The primes are not necessarily distinct, but the second factorization is not
simply a reordering of the first one.
 As p1 divides n it also divides the product q1 × q2 × ... × qs. By repeated
application of Theorem 1 we show that there is at least one qi which is
divisible by p1. If necessary reorder the qi�s so that it is q1. As both p1 and
q1 are prime they have to be equal. So we can divide by p1 and we have
that n / p1 has a non-unique factorization.

■

11
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (8)

!  We will use Theorem 2 to prove the following
 Corollary 1:
 If gcd(c, m) = 1 and (a × c) ≡ (b × c) mod m, then a ≡ b mod m

!  Proof: As (a × c) ≡ (b × c) mod m ⇒ ∃ n ∈ !: (a × c) - (b × c) = n × m

 ⇔ (a - b) × c = n × m

 ⇔ p1 × ... × pi × q1 × ... × qj = r1 × ... × rk × s1 × ... × sl

 Please note that the p�s, q�s, r�s and s�s are prime and do not need to be
distinct, but as gcd(c, m) = 1, there are no indices g, h such that qg = sh.
 So we can continuously divide the equation by all q�s without ever
�eliminating� one s and will finally end up with something like
 ⇔ p1 × ... × pi = r1 × ... × ro × s1 × ... × sl

 (note that there will be fewer r�s)
 ⇔ (a - b) = r1 × ... × ro × m

 ⇒ a ≡ b mod m
■

12
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (9)

!  Let Φ(n) denote the number of positive integers less than n and
relatively prime to n
!  Examples: Φ(4) = 2, Φ(6) = 2, Φ(7) = 6, Φ(15) = 8
!  If p is prime ⇒ Φ(p) = p - 1

 Theorem 3 (Euler):
 Let n and b be positive and relatively prime integers, i.e. gcd(n, b) = 1
 ⇒ bΦ(n) ≡ 1 mod n

 Proof:
!  Let t = Φ(n) and a1, ... at be the positive integers less than n which are

relatively prime to n.
Define r1, ..., rt to be the residues of b × a1 mod n, ..., b × at mod n
that is to say: b × ai ≡ ri mod n.

!  Note that i ≠ j ⇒ ri ≠ rj.
If this would not hold, we would have b × ai ≡ b × aj mod n
and as gcd(b, n) = 1, Corollary 1 would imply ai ≡ aj mod n which can not
be as ai and aj are by definition distinct integers between 0 and n

13
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (10)

 Proof (continued):
!  We also know that each ri is relatively prime to n because any common

divisor k of ri and n, i.e. n = k × m and ri = pi × k, would also have to divide ai,
as b × ai ≡ (pi × k) mod (k × m) ⇒ ∃ s ∈ !: (b × ai) - (pi × k) = s × k × m

 ⇔ (b × ai) = s × k × m + (pi × k)
Because k divides each of the summands on the right-hand side and k does
not divide b by assumption (n and b are relatively prime), it would also have
to divide ai which is supposed to be relatively prime to n

!  Thus r1, ..., rt is a set of Φ(n) distinct integers which are relatively prime to n.
This means that they are exactly the same as a1, ... at, except that they are
in a different order. In particular, we know that r1× ... × rt = a1 × ... × at

!  We now use the congruence
 r1× ... × rt ≡ b × a1 × ... × b × at mod n

 ⇔ r1× ... × rt ≡ bt × a1 × ... × at mod n
 ⇔ r1× ... × rt ≡ bt × r1× ... × rt mod n

!  As all ri are relatively prime to n we can use Corollary 1 and divide by their
product giving: 1 ≡ bt mod n ⇔ 1 ≡ bΦ(n) mod n

■

14
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (11)

 Theorem 4 (Chinese Remainder Theorem):

 Let m1, ..., mr be positive integers that are pairwise relatively prime,
i.e. ∀ i ≠ j: gcd(mi, mj) = 1. Let a1, ..., ar be arbitrary integers.
Then there exists an integer a such that:
 a ≡ a1 mod m1

 a ≡ a2 mod m2
 ...

 a ≡ ar mod mr

 Furthermore, a is unique modulo M := m1 × ... × mr

 Proof:
!  For all i ∈{1, .., r} we define Mi := (M / mi)Φ(mi)

!  As Mi is by definition relatively prime to mi we can apply Theorem 3 and
know that Mi ≡ 1 mod mi

!  Since Mi is divisible by mj for every j ≠ i, we have ∀ j ≠ i : Mi ≡ 0 mod mj

15
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (12)

 Proof (continued):
!  We can now construct the solution by defining:

 a := a1 × M1 + a2 × M2 + ... + ar × Mr

!  The two arguments given above concerning the congruences of the Mi
imply that a actually satisfies all of the congruences.

!  To see that a is unique modulo M, let b be any other integer satisfying the
r congruences. As a ≡ c mod n and b ≡ c mod n ⇒ a ≡ b mod n
we have ∀ i ∈{1, .., r}: a ≡ b mod mi

 ⇒ ∀ i ∈{1, .., r}: mi | (a - b)
 ⇒ M | (a-b) as the mi are pairwise relatively prime
 ⇔ a ≡ b mod M

■

16
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (13)

 Lemma 2:

 If gcd(m, n) = 1, then Φ(m × n) = Φ(m) × Φ(n)

 Proof:
!  Let a be a positive integer less than and relatively prime to m × n. In other

words, a is one of the integers counted by Φ(m × n).

!  Consider the correspondence a → (a MOD m, a MOD n)

 The integer a is relatively prime to m and relatively prime to n (if not it would
divide m × n).

 So, (a MOD m) is relatively prime to m and (a MOD n) is relatively prime to n
as: a = #a / m$ × m + (a MOD m), so if there would be a common divisor of
m and (a MOD m), this divisor would also divide a.

 Thus every number a counted by Φ(m × n) corresponds to a pair of two
integers (a MOD m, a MOD n), the first one counted by Φ(m) and the
second one counted by Φ(n).

17
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (14)

 Proof (continued):
!  Because of the second part of Theorem 4, the uniqueness of the solution a

modulo (m × n) to the simultaneous congruences:

 a ≡ (a MOD m) mod m
 a ≡ (a MOD n) mod n

we can deduce, that distinct integers counted by Φ(m × n) correspond to
distinct pairs:

■  Too see this, suppose that a ≠ b counted by Φ(m × n) does correspond
to the same pair (a MOD m, a MOD n). This leads to a contradiction as
b would also fulfill the congruences:

 b ≡ (a MOD m) mod m
 b ≡ (a MOD n) mod n

 but the solution to these congruences is unique modulo (m × n)

 Therefore, Φ(m × n) is at most the number of such pairs:

 Φ(m × n) ≤ Φ(m) × Φ(n)

18
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some Mathematical Background (15)

 Proof (continued):
!  Consider now a pair of integers (b, c), one counted by Φ(m) and the other

one counted by Φ(n):

 Using the first part of Theorem 4 we can construct a unique positive
integer a less than and relatively prime to m × n:

 a ≡ b mod m
a ≡ c mod n

 So, the number of such pairs is at most Φ(m × n):

 Φ(m × n) ≥ Φ(m) × Φ(n)
■

19
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

The RSA Public Key Algorithm (1)

!  The RSA algorithm was invented in 1977 by R. Rivest, A. Shamir and
L. Adleman [RSA78] and is based on Theorem 3.

!  Let p, q be distinct large primes and n = p × q. Assume, we have also
two integers e and d such that:
 d × e ≡ 1 mod Φ(n)

!  Let M be an integer that represents the message to be encrypted, with
M positive, smaller than and relatively prime to n.
!  Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35

So �HELLO� would be encoded as 1714212124.
If necessary, break M into blocks of smaller messages: 17142 12124

!  To encrypt, compute: E = Me MOD n
!  This can be done efficiently using the square-and-multiply algorithm

!  To decrypt, compute: M� = Ed MOD n
!  As d × e ≡ 1 mod Φ(n) ⇒∃ k ∈
: (d × e) - 1 = k × Φ(n)

 ⇔ (d × e) = k × Φ(n) + 1
we have: M� ≡ Ed ≡ M(e× d) ≡ M(k × Φ(n) + 1) ≡ 1k × M ≡ M mod n

■

20
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

The RSA Public Key Algorithm (2)

!  As (d × e) = (e × d) the operation also works in the opposite direction,
that means you can encrypt with d and decrypt with e
!  This property allows to use the same keys d and e for:

■  Receiving messages that have been encrypted with one�s public key
■  Sending messages that have been signed with one�s private key

!  To set up a key pair for RSA:
!  Randomly choose two primes p and q (of 100 to 200 digits each)
!  Compute n = p × q, Φ(n) = (p - 1) × (q - 1) (Lemma 2)
!  Randomly choose e, so that gcd(e, Φ(n)) = 1
!  With the extended euclidean algorithm compute d and c, such that:

 e × d + Φ(n) × c = 1, note that this implies, that e × d ≡ 1 mod Φ(n)
!  The public key is the pair (e, n)
!  The private key is the pair (d, n)

21
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

The RSA Public Key Algorithm (3)

!  The security of the scheme lies in the difficulty of factoring n = p × q
as it is easy to compute Φ(n) and then d, when p and q are known

!  This class will not teach why it is difficult to factor large n�s, as this
would require to dive deep into mathematics
!  If p and q fulfill certain properties, the best known algorithms are

exponential in the number of digits of n
■  Please be aware that if you choose p and q in an �unfortunate� way,

there might be algorithms that can factor more efficiently and your RSA
encryption is not at all secure:

–  Therefore, p and q should be about the same bitlength and sufficiently large
–  (p - q) should not be too small
–  If you want to choose a small encryption exponent, e.g. 3, there might be

additional constraints, e.g. gcd(p - 1, 3) = 1 and gcd(q - 1, 3) = 1

■  The security of RSA also depends on the primes generated being truly
random (like every key creation method for any algorithm)

■  Moral: If you are to implement RSA by yourself, ask a mathematician or
better a cryptographer to check your design

22
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Diffie-Hellman Key Exchange (1)

!  The Diffie-Hellman key exchange was first published in the landmark
paper [DH76], which also introduced the fundamental idea of
asymmetric cryptography

!  The DH exchange in its basic form enables two parties A and B to
agree upon a shared secret using a public channel:
!  Public channel means, that a potential attacker E (E stands for

eavesdropper) can read all messages exchanged between A and B
!  It is important, that A and B can be sure, that the attacker is not able to alter

messages, as in this case he might launch a man-in-the-middle attack
!  The mathematical basis for the DH exchange is the problem of finding

discrete logarithms in finite fields
!  The DH exchange is not an asymmetric encryption algorithm, but is

nevertheless introduced here as it goes well with the mathematical flavor of
this lecture... :o)

23
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some More Mathematical Background (1)

!  Definition: finite groups
!  A group (S, ⊕) is a set S together with a binary operation ⊕ for which the

following properties hold:
■  Closure: For all a, b ∈ S, we have a ⊕ b ∈ S

■  Identity: There is an element e ∈ S, such that e ⊕ a = a ⊕ e = a for all
a ∈ S

■  Associativity: For all a, b, c ∈ S, we have (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)

■  Inverses: For each a ∈ S, there exists a unique element b ∈ S, such
that a ⊕ b = b ⊕ a = e

!  If a group (S, ⊕) satisfies the commutative law ∀ a, b ∈ S: a ⊕ b = b ⊕ a
then it is called an Abelian group

!  If a group (S, ⊕) has only a finite set of elements, i.e. |S| < ∞, then it is
called a finite group

24
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some More Mathematical Background (2)

!  Examples:
!  (
n, +n)

■  with
n := {[0]n , [1]n, ..., [n - 1]n }
■  where [a]n := {b ∈
 | b ≡ a mod n} and
■  +n is defined such that [a]n +n [b]n = [a + b]n

 is a finite abelian group
 For the proof see the table showing the properties of modular arithmetic

!  (
*
n, ×n)

■  with
*
n := {[a]n ∈
n | gcd(a, n) = 1 }, and

■  ×n is defined such that [a]n ×n [b]n = [a × b]n

 is a finite Abelian group. Please note that
*
n just contains those elements

of
n that have a multiplicative inverse modulo n
 For the proof see the properties of modular arithmetic

■  Example:
*
15 = {[1]15, [2]15, [4]15, [7]15, [8]15, [11]15, [13]15, [14]15}, as

 1 × 1 ≡ 1 mod 15, 2 × 8 ≡ 1 mod 15, 4 × 4 ≡ 1 mod 15,
 7 × 13 ≡ 1 mod 15, 11 × 11 ≡ 1 mod 15, 14 × 14 ≡ 1 mod 15

25
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some More Mathematical Background (3)

!  If it is clear that we are talking about (
n, +n) or (
*
n, ×n) we often

represent equivalence classes [a]n by their representative elements a
and denote +n and ×n by + and ×, respectively.

!  Definition: finite fields
!  A field (S, ⊕, ⊗) is a set S together with two operations ⊕, ⊗ such that

■  (S, ⊕) and (S \ {e⊕}, ⊗) are commutative groups, i.e. only the identity
element concerning the operation ⊕ does not need to have an inverse
regarding the operation ⊗

■  For all a, b, c ∈ S, we have a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c)
!  If |S| < ∞ then (S, ⊕, ⊗) is called a finite field

!  Example:
!  (
p, +p, ×p) is a finite field for each prime p

26
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some More Mathematical Background (4)

!  Definition: primitive root, generator
!  Let (S, •) be a group, g ∈ S and ga := g • g • ... • g (a times with a ∈
+)

 Then g is called a primitive root or generator of (S, •)

 :⇔ {ga | 1 ≤ a ≤ |S|} = S

!  Examples:
!  1 is a primitive root of (
n, +n)

!  3 is a primitive root of (
*
7, ×7)

!  Not all groups do have primitive roots and those who have are called
cyclic groups

!  Theorem 5:

 (
*
n, ×n) does have a primitive root ⇔ n ∈ {2, 4, p, 2 × pe} where p is an

odd prime and e ∈
+

!  For the proof see [Niv80a]

27
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some More Mathematical Background (5)

!  Theorem 6:
 If (S, •) is a group and b ∈ S then (S�, •) with S� = {ba | a ∈
+} is also a
group.
!  For the proof refer to [Cor90a] section 33.3

!  As S��⊆ S, (S�, •) is called a subgroup of (S, •)

!  If b is a primitive root of (S, •) then S��= S

!  Definition: order of a group and of an element
!  Let (S, •) be a group, e ∈ S its identity element and b ∈ S any element of S:

■  Then |S| is called the order of (S, •)

■  Let c ∈
+ be the smallest element so that bc = e (if such a c exists, if not
set c = ∞). Then c is called the order of b.

28
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some More Mathematical Background (6)

!  Theorem 7 (Lagrange):

 If G is a finite group and H is a subgroup of G, then |H| divides |G|.
Hence, if b ∈ G then the order of b divides |G|.

!  Theorem 8:

 If G is a cyclic finite group of order n and d divides n then G has exactly
Φ(d) elements of order d. In particular, G has Φ(n) elements of order n.

!  Theorems 5, 7, and 8 are the basis of the following algorithm that finds a
cyclic group
*

p and a primitive root g of it:
!  Choose a large prime q such that p = 2q + 1 is prime.

■  As p is prime, Theorem 5 states that
*
p is cyclic.

■  The order of
*
p is 2 × q and Φ(2 × q) = Φ(2) × Φ(q) = q -1 as q is prime.

■  So, the odds of randomly choosing a primitive root are (q - 1) / 2q ≈ 1 / 2
■  In order to efficiently test, if a randomly chosen g is a primitive root, we

just have to test if g2 ≡ 1 mod p or gq ≡ 1 mod p. If not, then its order has
to be |
*

p|, as Theorem 7 states that the order of g has to divide |
*
p|

29
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Some More Mathematical Background (7)

!  Definition: discrete logarithm
!  Let p be prime, g be a primitive root of (
*

p, ×p) and c be any element of

*

p. Then there exists z such that: gz ≡ c mod p
 z is called the discrete logarithm of c modulo p to the base g

!  Example 6 is the discrete logarithm of 1 modulo 7 to the base 3 as
 36 ≡ 1 mod 7

!  The calculation of the discrete logarithm z when given g, c, and p is a
computationally difficult problem and the asymptotical runtime of the best
known algorithms for this problem is exponential in the bitlength of p

30
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Diffie-Hellman Key Exchange (2)

!  If Alice (A) and Bob (B) want to agree on a shared secret s and their
only means of communication is a public channel, they can proceed as
follows:
!  A chooses a prime p, a primitive root g of
*

p, and a random number q:
■  A and B can agree upon the values p and g prior to any

communication, or A can choose p and g and send them with his first
message

■  A computes v = gq MOD p and sends to B: {p, g, v}
!  B chooses a random number r:

■  B computes w = gr MOD p and sends to A: {p, g, w} (or just {w})
!  Both sides compute the common secret:

■  A computes s = wq MOD p
■  B computes s� = vr MOD p
■  As g(q × r) MOD p = g(r × q) MOD p it holds: s = s�

!  An attacker Eve who is listening to the public channel can only compute
the secret s, if she is able to compute either q or r which are the discrete
logarithms of v, w modulo p to the base g

31
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Diffie-Hellman Key Exchange (3)

!  If the attacker Eve is able to alter messages on the public channel, she
can launch a man-in-the-middle attack:
!  Eve generates to random numbers q� and r�:

■  Eve computes v� = gq� MOD p and w� = gr� MOD p
!  When A sends {p, g, v} she intercepts the message and sends

to B: {p, g, v��}
!  When B sends {p, g, w} she intercepts the message and sends

to A: {p, g, w��}
!  When the supposed �shared secret� is computed we get:

■  A computes s1 = w�q MOD p = vr� MOD p the latter computed by E
■  B computes s2 = v�r MOD p = wq� MOD p the latter computed by E
■  So, in fact A and E have agreed upon a shared secret s1 as well as

E and B have agreed upon a shared secret s2
!  If the �shared secret� is now used by A and B to encrypt messages to be

exchanged over the public channel, E can intercept all the messages and
decrypt / re-encrypt them before forwarding them between A and B.

32
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Diffie-Hellman Key Exchange (4)

!  Two countermeasures against the man-in-the-middle attack:
!  The shared secret is �authenticated� after it has been agreed upon

■  We will treat this in the section on key management
!  A and B use a so-called interlock protocol after agreeing on a shared

secret:
■  For this they have to exchange messages that E has to relay before

she can decrypt / re-encrypt them
■  The content of these messages has to be checkable by A and B
■  This forces E to invent messages and she can be detected
■  One technique to prevent E from decrypting the messages is to split

them into two parts and to send the second part before the first one.
–  If the encryption algorithm used inhibits certain characteristics E can not encrypt the

second part before she receives the first one.
–  As A will only send the first part after he received an answer (the second part of it)

from B, E is forced to invent two messages, before she can get the first parts.

!  Remark: In practice the number g does not necessarily need to be a
primitive root of p, it is sufficient if it generates a large subgroup of
*

p

33
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

The ElGamal Algorithm (1)

!  The ElGamal algorithm can be used for both, encryption and digital
signatures (see also [ElG85a])

!  Like the DH exchange it is based on the difficulty of computing
discrete logarithms in finite fields

!  In order to set up a key pair:
!  Choose a large prime p, a generator g of the multiplicative group
*

p and a
random number v such that 1 ≤ v ≤ p - 2. Calculate: y = gv mod p

!  The public key is (y, g, p)
!  The private key is v

!  To sign a message m:
!  Choose a random number k such that k is relatively prime to p - 1.
!  Compute r = gk mod p
!  With the Extended Euclidean Algorithm compute k-1, the inverse of

k mod (p - 1)
!  Compute s = k-1 × (m - v × r) mod (p - 1)
!  The signature over the message is (r, s)

34
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

The ElGamal Algorithm (2)

!  To verify a signature (r, s) over a message m:
!  Confirm that yr × rs MOD p = gm MOD p
!  Proof: We need the following

■  Lemma 3:
 Let p be prime and g be a generator of
*

p.
Then i ≡ j mod (p -1) ⇒ gi ≡ gj mod p
 Proof:

–  i ≡ j mod (p -1) ⇒ there exists k ∈
+ such that (i - j) = (p -1) × k
–  So, g(i - j) = g(p - 1) × k ≡ 1k ≡ 1 mod p, because of Theorem 3 (Euler)

 ⇒ gi ≡ gj mod p

■  So as s ≡ k-1 × (m - v × r) mod (p - 1)
 ⇔ k × s ≡ m - v × r mod (p - 1)
 ⇔ m ≡ v × r + k × s mod (p - 1)
 ⇒ gm ≡ g(v × r + k × s) mod p with Lemma 3
 ⇔ gm ≡ g(v × r) × g (k × s) mod p
 ⇔ gm ≡ yr × rs mod p

■

■

35
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

The ElGamal Algorithm (3)

!  Security of ElGamal signatures:
!  As the private key v is needed to be able to compute s, an attacker would

have to compute the discrete logarithm of y modulo p to the basis g in
order to forge signatures

!  It is crucial to the security, that a new random number k is chosen for
every message, because an attacker can compute the secret v if he gets
two messages together with their signatures based on the same k
(see [Men97a], Note 11.66.ii)

!  In order to prevent an attacker to be able to create a message M with a
matching signature, it is necessary not to sign directly the message M as
explained before, but to sign a cryptographic hash value m = h(M) of it
(these will be treated soon, see also [Men97a], Note 11.66.iii)

36
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

The ElGamal Algorithm (4)

!  To encrypt a message m using the public key (y, g, p):
!  Choose a random k ∈
+ with k < p - 1
!  Compute r = gk MOD p
!  Compute s = m × yk MOD p
!  The ciphertext is (r, s), which is twice as long as m

!  To decrypt the message (r, s) using v:
!  Use the private key v to compute r(p - 1 - v) MOD p = r(-v) MOD p
!  Recover m by computing m = r(-v) × s MOD p
!  Proof:

 r(-v) × s ≡ r(-v) × m × yk ≡ g(-vk) × m × yk ≡ g(-v × k) × m × g(v × k) ≡ m mod p

!  Security:
!  The only known means for an attacker to recover m is to compute the

discrete logarithm v of y modulo p to the basis g
!  For every message a new random k is needed ([Men97a], Note 8.23.ii)

■

37
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Elliptic Curve Cryptography (1)

!  The algorithms presented so far have been invented for the
multiplicative group (
*

p, ×p) and the field (
p, +p, ×p), respectively

!  It has been found during the 1980�s that they can be generalized and
be used with other groups and fields as well

!  The main motivation for this generalization is:
!  A lot of mathematical research in the area of primality testing, factorization

and computation of discrete logarithms has led to techniques that allow to
solve these problems in a more efficient way, if certain properties are met:
■  When the RSA-129 challenge was given in 1977 it was expected that

it will take some 40 quadrillion years to factor the 129-digit number
(≈ 428 bit)

■  In 1994 it took 8 months to factor it by a group of computers
networked over the Internet, calculating for about 5000 MIPS-years

■  Advances in factoring algorithms allowed 2009 to factor a 232-digit
number (768 bit) in about 1500 AMD64-years [KAFL10]

 ⇒ the key length has to be increased (currently about 2048 bit)

38
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Elliptic Curve Cryptography (2)

!  Motivation (continued):
!  Some of the more efficient techniques do rely on specific

properties of the algebraic structures (
*
p, ×p) and (
p, +p, ×p)

!  Different algebraic structures may therefore provide the same
security with shorter key lengths

!  A very promising structure for cryptography can be obtained from the
group of points on an elliptic curve over a finite field
!  The mathematical operations in these groups can be efficiently

implemented both in hardware and software
!  The discrete logarithm problem is believed to be hard in the

general class obtained from the group of points on an elliptic curve
over a finite field

39
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC - Group Elements

!  Algebraic group consisting of
!  Points on Weierstrass’ Equation: y2 = x3 + ax + b
!  Additional point O in “infinity”

!  May be calculated over 	, but in cryptography�
��and ���2n)�are used
!  Already in 	 arguments influence form significantly:

!  y2 = x3 - 3x + 5 y2 = x3 - 40x + 5

40
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

!  Addition of elements = Addition of points on the curve
!  Geometric interpretation:

!  Each point P: (x,y) has an inverse -P: (x,-y)
!  A line through two points P and Q usually intersects with a third point R
!  Generally, sum of two points P and Q equals –R

Foundations of ECC - Point Addition

P

Q

R

-R = P+Q

41
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC - Point Addition (Special cases)

!  The additional point O is the neutral element, i.e., P + O = P
!  P + (-P):

!  If the inverse point is added to P, the line and curve intersect in “infinity”
!  By definition: P + (-P) = O

!  P + P: The sum of two identical points P is the inverse of the
intersecting point with the tangent through P:

P R

-R = P+P

42
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC - Algebraic Addition

!  If one of the summands is O, the sum is the other summand
!  If the summands are inverse to each other the sum is O
!  For the more general cases the slope of the line is:

!  Result of point addition, where (xr, yr) is already the reflected point (-R)

xr = ↵

2 � xp � xq

yr = ↵(xp � xr)� yp

↵ =

(
yQ�yP

xQ�xP
for P 6= �Q ^ P 6= Q

3x2
P+a

2yP
for P = Q

43
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC - Multiplication

!  Multiplication of natural number n and point P performed by multiple
repeated additions
!  Numbers are grouped into powers of 2 to achieve logarithmic runtime, e.g.

25P = P + 8P + 16P
!  This is possible if and only if the n is known!
!  If n is unknown for nP = Q, a logarithm has to be solved, which is possible

if the coordinate values are chosen from 	�

!  For
��and ���2n)�����discrete logarithm problem for elliptic curves
has to be solved, which cannot be done efficiently!

!  Note: it is not defined how two points are multiplied, but only a natural
number n and point P

44
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC – Curves over
�

!  Over
p the curve degrades to a set of points
!  For :

!  Note: There is no y value for each x value!

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x

y

y

2 ⌘ x

3 � 3x+ 5 mod 19

45
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC – Calculate the y-values in
�

!  In general a little bit more problematic: determine the y-values for a
given x (as its square value is calculated) by

!  Hence p is often chosen s.t.
!  Then y is calculated by and

if and only if a solution exists at all
!  Short proof:

!  From the Euler Theorem 3 we know that
!  Thus the square root must be 1 or -1
!  Case 1:

■  Multiply both sides by f(x):
■  As p + 1 is divisible by 4 we can take the square root so that

!  Case 2: In this case no solution exists for the given x value (as shown
by Euler)

y

2 ⌘ f(x) mod p

p ⌘ 3 mod 4

y2 ⌘ �f(x)

p+1
4

mod p

y1 ⌘ f(x)

p+1
4

mod p

f(x)

p�1 ⌘ 1 mod p

f(x)

p�1
2 ⌘ ±1 mod p

f(x)

p�1
2 ⌘ 1 mod p

f(x)

p+1
2 ⌘ f(x) ⌘ y

2
mod p

f(x)

p+1
4 ⌘ y mod p

■

46
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC – Addition and Multiplication in
�

!  Due to the discrete structure point mathematical operations do not
have a geometric interpretation any more, but

!  Algebraic addition similar to addition over 	�
!  If the inverse point is added to P, the line and “curve” still intersect in

“infinity”
!  All x- and y-values are calculated mod p
!  Division is replaced by multiplication with the inverse element of the

denominator
■  Use the Extended Euclidean Algorithm with w and p to derive the

inverse -w
!  Algebraic multiplication of a natural number n and a point P is also

performed by repeated addition of summands of the power of 2
!  The discrete logarithm problem is to determine a natural number n in

nP = Q for two known points P and Q

47
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC – Size of generated groups

!  Please note that the order of a group generated by a point on a curve
over
��is not p-1!

!  Determining the exact order is not easy, but can be done in logarithmic
time by Schoofs algorithm [Sch85] (requires much more mathematical
background than desired here)

!  But Hasse’s theorem on elliptic curves states that the group size n
must lay between:
!  p + 1 - 2√p ≤ n ≤ p + 1 + 2√p

!  As mentioned before: Generating rather large groups is sufficient

48
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC - ECDH

!  The Diffie-Hellman-Algorithm can easily be adapted to elliptic curves
!  If Alice (A) and Bob (B) want to agree on a shared secret s:

!  A and B agree on a cryptographically secure elliptic curve and a point P on
that curve

!  A chooses a random number q:
■  A computes Q = q P and transmits Q to Bob

!  B chooses a random number r:
■  B computes R = r P and transmits P to Alice

!  Both sides compute the common secret:
■  A computes S = q R
■  B computes S��= r Q
■  As q r P = r q P the secret point S = S�

!  Attackers listening to the public channel can only compute S, if able to
compute either q or r which are the discrete logarithms of Q and R for
the point P

49
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC – EC version of ElGamal Algorithm (I)

!  Adapting ElGamal for elliptic curves is rather straight forward for the
encryption routine

!  To set up a key pair:
!  Choose an elliptic curve over a finite field, a point G that generates a large

group, and a random number v such that 1 < v < n, where n denotes to the
size of the induced group, Calculate: Y = vG

!  The public key is (Y, G, curve)
!  The private key is v

50
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC – EC version of ElGamal Algorithm (II)

!  To encrypt a message:
!  Choose a random k ∈
+ with k < n – 1, compute R = kG
!  Compute S = M + kY, where M is a point derived by the message

■  Problem: Interpreting the message m as a x coordinate of M is not
sufficient, as the y value does not have to exist

■  Solution from [Ko87]: Choose a constant c (e.g. 100) check if cm is the
x coordinate of a valid point, if not try cm+1, then cm+2 and so on

■  To decode m: take the x value of M and do an integer division by c
(receiver has to know c too)

!  The ciphertext are the points (R, S)
!  Twice as long as m, if stored in so-called compressed form, i.e. only x

coordinates are stored and a single bit, indicating whether the larger or
smaller corresponding y-coordinate shall be used

!  To decrypt a message:
!  Derive M by calculating S – vR
!  Proof: S – vR = M + kY – vR = M + kvG – vkG = M + O = M

■

51
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC – EC version of ElGamal Algorithm (II)

!  To sign a message:
!  Choose a random k ∈
+ with k < n – 1, compute R = kG
!  Compute s = k-1(m + rv) mod n, where r is the x-value of R
!  The signature are (r, s), again about as twice as long as n

!  To verify a signed message:
!  Check if the point P = ms-1G+rs-1Y has the x-coordinate r
!  Note: s-1 is calculated by the Extended Euclidian Algorithm with the input s

and n (the order of the group)
!  Proof: ms-1G+rs-1Y = ms-1G+rs-1vG = (m+rv)(s-1)G = (ks)(s-1)G = kG = R

!  Security discussion:
!  As in the original version of ElGamal it is crucial to not use k twice
!  Messages should not be signed directly
!  Further checks may be required, i.e., G must not be O, a valid point on the

curve etc. (see [NIST09] for further details)

■

52
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC – Security (I)

!  The security heavily depends on the chosen curve and point:
!  The discriminant of the curve must not be zero, i.e.,

 otherwise the curve is degraded (a so called singular curve)
!  Menezes et. al. have found a sub-exponential algorithm for so-called

supersingular elliptic curves but this does not work in the general case
[Men93a]

!  The constructed algebraic groups should have as many elements a possible
!  This class will not go into more details of elliptic curve cryptography as this

requires way more mathematics than desired for this course... :o)
!  For non-cryptographers it is best to depend on predefined curves, e.g., [LM10]

or [NIST99] and standards such as ECDSA
!  Many publications choose parameters a and b such that they are provably

chosen by a random process (e.g. publish x for h(x) = a and y for h(y) = b);
Shall ensure that the curves do not contain a cryptographic weakness that
only the authors knows about

4a3 + 27b2 6⌘ 0 mod p

53
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC – Security (II)

!  The security depends on the length of p
!  Key lengths with comparable strengths according to [NIST12]:

Symmetric
Algorithms

RSA ECC

112 2048 224-255
128 3072 256-383
192 7680 384-511
256 15360 > 512

54
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC – Security (III)

!  The security also heavily depends on the implementation!
!  The different cases (e.g. with O) in ECC calculation may be

observable, i.e., power consumption and timing differences
!  Attackers might deduct side-channel attacks, as in OpenSSL

0.9.8o [BT11]
■  Attacker may deduce the bit length of a value k in kP by

measuring the time required for the square and multiply
algorithm

■  Algorithm was aborted early in OpenSSL when no further bits
where set to “1”

!  Attackers might try to generate invalid points to derive facts about
the used key as in OpenSSL 0.9.8g, leading to a recovery of a full
256-bit ECC key after only 633 queries [BBP12]

!  Lesson learned: Do not do it on your own, unless you have to and
know what you are doing!

55
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Foundations of ECC – Further remarks

!  As mentioned earlier it is possible to construct cryptographic elliptic
curves over G(2n), which may be faster in hardware implementations
!  We refrained from details as this would not have brought many

different insights!
!  Elliptic curves and similar algebraic groups are an active field of

research and allow other advanced applications e.g.:
!  So-called Edwards Curves are currently discussed, as they seem

more robust against side-channel attacks (e.g. [BLR08])
!  Bilinear pairings allow

■  Programs to verify that they belong to the same group, without
revealing their identity (Secret handshakes, e.g. [SM09])

■  Public keys to be structured, e.g. use “Alice” as public key for
Alice (Identity based encryption, foundations in [BF03])

!  Before deploying elliptic curve cryptography in a product, make sure to
not violate patents, as there are still many valid ones in this field!

56
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Conclusion

!  Asymmetric cryptography allows to use two different keys for:
!  Encryption / Decryption
!  Signing / Verifying

!  The most practical algorithms that are still considered to be secure are:
!  RSA, based on the difficulty of factoring and solving discrete logarithms
!  Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
!  ElGamal, like DH based on the difficulty of computing discrete logarithms

!  As their security is entirely based on the difficulty of certain mathematical
problems, algorithmic advances constitute their biggest threat

!  Practical considerations:
!  Asymmetric cryptographic operations are about magnitudes slower than

symmetric ones
!  Therefore, they are often not used for encrypting / signing bulk data
!  Symmetric techniques are used to encrypt / compute a cryptographic hash

value and asymmetric cryptography is just used to encrypt a key / hash value

57
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Additional References

[Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.
[Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. The

MIT Press, 1990.
[DH76] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Transactions

on Information Theory, IT-22 , pp. 644-654, 1976.
[ElG85a] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on

Discrete Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4,
pp. 469-472, July 1985.

[Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.
[Men93a] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic

Publishers, 1993.
[Niv80a] I. Niven, H. Zuckerman. An Introduction to the Theory of Numbers. John Wiley

& Sons, 4th edition, 1980.
[RSA78] R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital

Signatures and Public Key Cryptosystems. Communications of the ACM,
February 1978.

58
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Additional References

[KAFL10] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos, P. Gaudry, A.
Kruppa, P. Montgomery, D. Osvik, H. Te Riele, A.Timofeev, P. Zimmermann.
Factorization of a 768-bit RSA modulus. In Proceedings of the 30th annual
conference on Advances in cryptology (CRYPTO'10), 2010.

[LM10] M. Lochter, J. Merkle. Elliptic Curve Cryptography (ECC) Brainpool Standard
Curves and Curve Generation, IETF Request for Comments: 5639, 2010.

[NIST99] NIST. Recommended Elliptic Curves for Federal Government Use. 1999.
[NIST12] NIST. Recommendation for Key Management: Part 1: General (Revision 3). NIST

Special Publication 800-57. 2012.
[Ko87] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, Vol. 48,

No. 177 (Jan., 1987), pp. 203-209. 1987.
[BBP12] B.B. Brumley, M. Barbosa, D. Page, F. Vercauteren. Practical realisation and

elimination of an ECC-related software bug attack. Cryptology ePrint Archive:
Report 2011/633 and CT-RSA Pages 171-186. 2012.

[BT11] B.B. Brumley, N. Tuveri. Remote timing attacks are still practical. Proceedings of
the 16th European conference on Research in computer security (ESORICS'11).
Pages 355-371. 2011.

59
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 04 – Asymmetric Cryptography

Additional References

[BLR08] D. Bernstein, T. Lange, R. Rezaeian Farashahi. Binary Edwards Curves.
Cryptographic Hardware and Embedded Systems (CHES). Pages 244-265. 2008.

[NIST09] NIST. Digital Signature Standard (DSS). FIPS PUB 186-3. 2009.
[SM09] A. Sorniotti, R. Molva. A provably secure secret handshake with dynamic

controlled matching. Computers & Security, 2009.
[BF03] D. Boneh, M. Franklin. Identity-Based Encryption from the Weil Pairing. SIAM J. of

Computing, Vol. 32, No. 3, Pages 586-615, 2003.
[Sch85] R. Schoof. Elliptic Curves over Finite Fields and the Computation of Square Roots

mod p. Math. Comp., 44(170). Pages 483–494. 1985.

