Network Security

Chapter 4 Asymmetric Cryptography

"However, prior exposure to discrete mathematics will help the reader to appreciate the concepts presented here."
E. Amoroso in another context [Amo94] :o)

- General idea:
- Use two different keys $-K$ and $+K$ for encryption and decryption
a Given a random ciphertext $c=E(+K, m)$ and $+K$ it should be infeasible to compute $m=D(-K, c)=D(-K, E(+K, m))$
- This implies that it should be infeasible to compute $-K$ when given $+K$
- The key $-K$ is only known to one entity A and is called A 's private key $-K_{A}$
- The key $+K$ can be publicly announced and is called A 's public key $+K_{A}$
- Applications:
- Encryption:
- If B encrypts a message with A's public key $+K_{A}$, he can be sure that only A can decrypt it using $-K_{A}$
- Signing:
- If A encrypts a message with his own private key $-K_{A}$, everyone can verify this signature by decrypting it with A's public key $+K_{A}$
- Attention: It is crucial, that everyone can verify that he really knows A's public key and not the key of an adversary!
- Design of asymmetric cryptosystems:
- Difficulty: Find an algorithm and a method to construct two keys $-K,+K$ such that it is not possible to decipher $E(+K, m)$ with the knowledge of $+K$
- Constraints:
- The key length should be "manageable"
- Encrypted messages should not be arbitrarily longer than unencrypted messages (we would tolerate a small constant factor)
- Encryption and decryption should not consume too much resources (time, memory)
- Basic idea: Take a problem in the area of mathematics / computer science, that is hard to solve when knowing only $+K$, but easy to solve when knowing -K
- Knapsack problems: basis of first working algorithms, which were unfortunately almost all proven to be insecure
- Factorization problem: basis of the RSA algorithm
- Discrete logarithm problem: basis of Diffie-Hellman and ElGamal

Some Mathematical Background (1)

- Definitions:

- Let \mathbb{Z} be the number of integers, and $a, b, n \in \mathbb{Z}$
- We say a divides b (" $a \mid b$ ") if there exists an integer $k \in \mathbb{Z}$ such that $a \times k=b$
- We say a is prime if it is positive and the only divisors of a are 1 and a
- We say r is the remainder of a divided by n if $r=a-\lfloor a / n\rfloor \times n$ where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x
- Example: 4 is the remainder of 11 divided by 7 as $4=11-\lfloor 11 / 7\rfloor \times 7$
- We can write this in another way: $a=q \times n+r$ with $q=\lfloor a / n\rfloor$
- For the remainder r of the division of a by n we write a MOD n
- We say b is congruent a mod n if it has the same remainder like a when divided by n. So, n divides ($a-b$), and we write $b \equiv a \bmod n$

$$
\text { - Examples: } \begin{aligned}
4 & \equiv 11 \bmod 7, \quad 25 \equiv 11 \bmod 7, \quad 11 \equiv 25 \bmod 7, \\
11 & \equiv 4 \bmod 7, \quad-10 \equiv 4 \bmod 7
\end{aligned}
$$

- As the remainder r of division by n is always smaller than n, we sometimes represent the set $\quad\{x$ MOD $n \mid x \in \mathbb{Z}\}$
by elements of the set $\mathbb{Z}_{\mathrm{n}}=\{0,1, \ldots, n-1\}$

Properties of Modular Arithmetic

Property	Expression
Commutative Laws	$(a+b) M O D n=(b+a)$ MOD n
	$(a \times b)$ MOD $n=(b \times a)$ MOD n
Associative Laws	$[(a+b)+c]$ MOD $n=[a+(b+c)]$ MOD n
	$[(a \times b) \times c]$ MOD $n=[a \times(b \times c)]$ MOD n
Distributive Law	$[a \times(b+c)]$ MOD $n=[(a \times b)+(a \times c)]$ MOD n
Identities	$(0+a)$ MOD $n=a$ MOD n
	$(1 \times a)$ MOD $n=a$ MOD n
Inverses	$\forall a \in \mathbb{Z}_{n}: \exists(-a) \in \mathbb{Z}_{n}: a+(-a) \equiv 0 \bmod n$
	p is prime $\Rightarrow \forall a \in \mathbb{Z}_{p}: \exists\left(a^{-1}\right) \in \mathbb{Z}_{p}: a \times\left(a^{-1}\right) \equiv 1 \bmod p$

Some Mathematical Background（3）

－Greatest common divisor：
－$c=\operatorname{gcd}(a, b): \Leftrightarrow(c \mid a)$ 団 $(c \mid b)$ 団［ $\forall \mathrm{d}:(d \mid a)$ 龱 $(d \mid b) \Rightarrow(d \mid c)]$ and $\operatorname{gcd}(a, 0):=|a|$
－The gcd recursion theorem：
－$\forall \mathrm{a}, \mathrm{b} \in \mathbb{Z}^{+}: \operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a}$ MOD b）
－Proof：
－As $\operatorname{gcd}(a, b)$ divides both a and b it also divides any linear combination of them，especially $(a-\lfloor a / b\rfloor \times b)=a$ MOD b ， so $\operatorname{gcd}(a, b) \mid \operatorname{gcd}(b, a \operatorname{MOD} b)$
－As $\operatorname{gcd}(b, a \operatorname{MOD} b)$ divides both b and a MOD b it also divides any linear combination of them，especially $\lfloor a / b\rfloor \times b+(a$ MOD $b)=a$ ， so $\operatorname{gcd}(b$, a MOD $b) \mid \operatorname{gcd}(a, b)$
－Euclidean Algorithm：
－The algorithm Euclid given a, b computes $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$
－int Euclid（int a，b） \｛ if $(b=0)\{$ return $(a) ;\}$
\｛ return（Euclid（b，a MOD b）；\} \}

Some Mathematical Background（4）

－Extended Euclidean Algorithm：

\square The algorithm ExtendedEuclid given a, b computes d, m, n such that：
$d=\operatorname{gcd}(a, b)=m \times a+n \times b$
－struct\｛int d，$m, n\}$ ExtendedEuclid（int a, b ）
\｛ int d，d＇，m，m＇，n, n^{\prime} ；
if $(b=0)\{$ return $(a, 1,0) ;\}$
（ $\left.d^{\prime}, m^{\prime}, n^{\prime}\right)=$ ExtendedEuclid（b，a MOD b）；
$(d, m, n)=\left(d^{\prime}, n^{\prime}, m^{\prime}-\lfloor a / b\rfloor \times n^{\prime}\right)$ ；
return（d，m, n ）；\}
－Proof：（by induction）
－Basic case $(a, 0): \operatorname{gcd}(a, 0)=a=1 \times a+0 \times 0$
－Induction from（b，a MOD b）to（a，b）：
－ExtendedEuclid computes d＇，m＇，n＇correctly（induction hypothesis）
$-d=d^{\prime}=m^{\prime} \times b+n^{\prime} \times(a \operatorname{MOD} b)=m^{\prime} \times b+n^{\prime} \times(a-\lfloor a / b\rfloor \times b)$
$=n^{\prime} \times a+\left(m^{\prime}-\lfloor a / b\rfloor \times n^{\prime}\right) \times b$
－The run time of Euclid（ a, b ）and ExtendedEuclid（ $a, b)$ is of $O(\log b)$
－Proof：see［Cor90a］，section 33.2

Some Mathematical Background（5）

－Summarizing the discussion of the Euclidean algorithms we have：

Lemma 1：

Let $a, b \in$ 団 and $d=\operatorname{gcd}(a, b)$ ．Then there exists $m, n \in$ 団 such that： $\mathrm{d}=m \times a+n \times b$
－We can use this lemma to prove the following：
Theorem 1 （Euclid）：
If a prime divides the product of two integers，then it divides at least one of the integers：$p \mid(a \times b) \Rightarrow(p \mid a) \vee(p \mid b)$
－Proof：Let $p \mid(a \times b)$
－If $p \mid a$ then we are done．
－If not then $\operatorname{gcd}(p, a)=1 \Rightarrow$
$\exists m, n \in$ 困： $1=m \times p+n \times a$
$\Leftrightarrow b=m \times p \times b+\mathrm{n} \times a \times b$
As $p \mid(a \times b), p$ divides both summands of the equation and so it divides also the sum which is b

- A small, but nice excursion:
- With the help of Theorem 1 the proof that $\sqrt{2}$ is not a rational number can be given in a very elegant way:
Assume that $\sqrt{2}$ can be expressed as a rational number m / n and that this fraction has been reduced such that $\operatorname{gcd}(m, n)=1$:
$\Rightarrow \sqrt{2}=\frac{m}{n} \Leftrightarrow 2=\frac{m^{2}}{n^{2}} \Leftrightarrow 2 n^{2}=m^{2}$
So, 2 divides m^{2}, and thus by Theorem 1 it also divides m, and so 4 divides m^{2}. But then 4 divides $2 n^{2}$ and, therefore, 2 divides also n^{2}.
Again by Theorem 1 this implies that 2 divides n and so 2 divides both m and n, which is a contradiction to the assumption that the fraction m / n is reduced.
- And now to something more useful... - for cryptography :o)

Some Mathematical Background (7)

Theorem 2 (fundamental theorem of arithmetic):

Factorization into primes is unique up to order.

- Proof:
- We will show that every integer with a non-unique factorization has a proper divisor with a non-unique factorization which leads to a clear contradiction when we finally have reduced to a prime number.
- Let' s assume that n is an integer with a non-unique factorization:

$$
\begin{aligned}
n & =p_{1} \times p_{2} \times \ldots \times p_{\mathrm{r}} \\
& =q_{1} \times q_{2} \times \ldots \times q_{\mathrm{s}}
\end{aligned}
$$

The primes are not necessarily distinct, but the second factorization is not simply a reordering of the first one.
As p_{1} divides n it also divides the product $q_{1} \times q_{2} \times \ldots \times q_{\mathrm{s}}$. By repeated application of Theorem 1 we show that there is at least one q_{i} which is divisible by p_{1}. If necessary reorder the q_{i}^{\prime} s so that it is q_{1}. As both p_{1} and q_{1} are prime they have to be equal. So we can divide by p_{1} and we have that n / p_{1} has a non-unique factorization.

- We will use Theorem 2 to prove the following

Corollary 1:

If $g c d(c, m)=1$ and $(a \times c) \equiv(b \times c) \bmod m$, then $a \equiv b \bmod m$

- Proof: As $(a \times c) \equiv(b \times c) \bmod m \Rightarrow \exists n \in$ 网: $(a \times c)-(b \times c)=n \times m$

$$
\Leftrightarrow \overbrace{p_{1} \times \ldots \times p_{i}}^{(a-b)} \times \overbrace{q_{1} \times \ldots \times q_{j}}^{c}=\overbrace{r_{1} \times \ldots \times r_{k}}^{n} \times \overbrace{s_{1} \times \ldots \times s_{1}}^{m}
$$

Please note that the p ' s, q ' s, r ' s and s ' s are prime and do not need to be distinct, but as $\operatorname{gcd}(\mathrm{c}, \mathrm{m})=1$, there are no indices g, h such that $q_{g}=s_{h}$.
So we can continuously divide the equation by all q ' s without ever "eliminating" one s and will finally end up with something like

$$
\begin{array}{rlrl}
\Leftrightarrow & p_{1} \times \ldots \times p_{i} & & r_{1} \times \ldots \times r_{0} \times s_{1} \times \ldots \times s_{1} \\
\Leftrightarrow & (a-b) & & =r_{1} \times \ldots \times r_{0} \times m \\
\Rightarrow & & & \\
& & \equiv b \bmod m
\end{array}
$$

Some Mathematical Background (9)

- Let $\Phi(n)$ denote the number of positive integers less than n and relatively prime to n
- Examples: $\Phi(4)=2, \Phi(6)=2, \Phi(7)=6, \Phi(15)=8$
- If p is prime $\Rightarrow \Phi(p)=p-1$

Theorem 3 (Euler):
Let n and b be positive and relatively prime integers, i.e. $\operatorname{gcd}(n, b)=1$
$\Rightarrow b^{\Phi(n)} \equiv 1 \bmod n$
Proof:

- Let $t=\Phi(n)$ and $a_{1}, \ldots a_{t}$ be the positive integers less than n which are relatively prime to n.
Define r_{1}, \ldots, r_{t} to be the residues of $b \times a_{1} \bmod n, \ldots, b \times a_{t} \bmod n$ that is to say: $b \times a_{i} \equiv r_{i} \bmod n$.
- Note that $\mathrm{i} \neq \mathrm{j} \Rightarrow r_{i} \neq r_{j}$.

If this would not hold, we would have $b \times a_{i} \equiv b \times a_{j} \bmod n$ and as $\operatorname{gcd}(\mathrm{b}, \mathrm{n})=1$, Corollary 1 would imply $a_{i} \equiv a_{j} \bmod \mathrm{n}$ which can not be as a_{i} and a_{j} are by definition distinct integers between 0 and n

Proof (continued):

- We also know that each r_{i} is relatively prime to n because any common divisor k of r_{i} and n, i.e. $n=k \times m$ and $r_{i}=p_{i} \times k$, would also have to divide a_{i}, as $b \times a_{i} \equiv\left(p_{i} \times k\right) \bmod (k \times m) \Rightarrow \exists s \in$ 団: $\left(b \times a_{i}\right)-\left(p_{i} \times k\right)=s \times k \times m$ $\Leftrightarrow \quad\left(b \times a_{i}\right)=s \times k \times m+\left(p_{i} \times k\right)$
Because k divides each of the summands on the right-hand side and k does not divide b by assumption (n and b are relatively prime), it would also have to divide a_{i} which is supposed to be relatively prime to n
- Thus r_{1}, \ldots, r_{t} is a set of $\Phi(n)$ distinct integers which are relatively prime to n. This means that they are exactly the same as $a_{1}, \ldots a_{t}$, except that they are in a different order. In particular, we know that $r_{1} \times \ldots \times r_{t}=a_{1} \times \ldots \times a_{t}$
- We now use the congruence

$$
\begin{aligned}
& r_{1} \times \ldots \times r_{t} \equiv b \times a_{1} \times \ldots \times b \times a_{t} \bmod n \\
\Leftrightarrow & r_{1} \times \ldots \times r_{t} \equiv b^{t} \times a_{1} \times \ldots \times a_{t} \bmod n \\
\Leftrightarrow & r_{1} \times \ldots \times r_{t} \equiv b^{t} \times r_{1} \times \ldots \times r_{t} \bmod n
\end{aligned}
$$

- As all r_{i} are relatively prime to n we can use Corollary 1 and divide by their product giving: $1 \equiv b^{t} \bmod n \Leftrightarrow 1 \equiv b^{\Phi(n)} \bmod n$

Rectrineyetze

Some Mathematical Background (11)

Theorem 4 (Chinese Remainder Theorem):

Let m_{1}, \ldots, m_{r} be positive integers that are pairwise relatively prime, i.e. $\forall i \neq j: \operatorname{gcd}\left(m_{i}, m_{j}\right)=1$. Let a_{1}, \ldots, a_{r} be arbitrary integers.

Then there exists an integer a such that:

$$
\begin{gathered}
a \equiv a_{1} \bmod m_{1} \\
a \equiv a_{2} \bmod m_{2} \\
\quad \ldots \\
a \equiv a_{r} \bmod m_{r}
\end{gathered}
$$

Furthermore, a is unique modulo $M:=m_{1} \times \ldots \times m_{r}$
Proof:

- For all $i \in\{1, . ., r\}$ we define $M_{i}:=\left(M / m_{i}\right)^{\Phi\left(m_{i}\right)}$
- As M_{i} is by definition relatively prime to m_{i} we can apply Theorem 3 and know that $M_{i} \equiv 1 \bmod m_{i}$
- Since M_{i} is divisible by m_{j} for every $j \neq i$, we have $\forall j \neq i: M_{i} \equiv 0 \bmod m_{j}$

Some Mathematical Background (12)

Proof (continued):

- We can now construct the solution by defining:

$$
a:=a_{1} \times M_{1}+a_{2} \times M_{2}+\ldots+a_{r} \times M_{r}
$$

- The two arguments given above concerning the congruences of the M_{i} imply that a actually satisfies all of the congruences.
- To see that a is unique modulo M, let b be any other integer satisfying the r congruences. As $a \equiv c \bmod n$ and $b \equiv c \bmod n \Rightarrow a \equiv b \bmod n$
we have $\quad \forall i \in\{1, . ., r\}: a \equiv b \bmod m_{i}$
$\Rightarrow \forall i \in\{1, \ldots, r\}: m_{i} \mid(a-b)$
$\Rightarrow M \mid(a-b) \quad$ as the m_{i} are pairwise relatively prime
$\Leftrightarrow a \equiv b \bmod M$

Lemma 2:

If $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, then $\Phi(m \times n)=\Phi(m) \times \Phi(n)$
Proof:

- Let a be a positive integer less than and relatively prime to $m \times n$. In other words, a is one of the integers counted by $\Phi(m \times n)$.
\square Consider the correspondence $a \rightarrow(a$ MOD m, a MOD $n)$
The integer a is relatively prime to m and relatively prime to n (if not it would divide $m \times n$).

So, (a MOD m) is relatively prime to m and (a MOD n) is relatively prime to n as: $a=\lfloor a / m\rfloor \times m+(a$ MOD $m)$, so if there would be a common divisor of m and (a MOD m), this divisor would also divide a.

Thus every number a counted by $\Phi(m \times n)$ corresponds to a pair of two integers (a MOD m, a MOD n), the first one counted by $\Phi(m)$ and the second one counted by $\Phi(n)$.

Proof (continued):

- Because of the second part of Theorem 4, the uniqueness of the solution a modulo ($m \times n$) to the simultaneous congruences:

$$
\begin{aligned}
& a \equiv(a M O D m) \bmod m \\
& a \equiv(a M O D n) \bmod n
\end{aligned}
$$

we can deduce, that distinct integers counted by $\Phi(m \times n)$ correspond to distinct pairs:

- Too see this, suppose that $\mathrm{a} \neq \mathrm{b}$ counted by $\Phi(m \times n)$ does correspond to the same pair (a MOD m, a MOD n). This leads to a contradiction as b would also fulfill the congruences:

$$
\begin{aligned}
& b \equiv(a M O D m) \bmod m \\
& b \equiv(a M O D n) \bmod n
\end{aligned}
$$

but the solution to these congruences is unique modulo ($\mathrm{m} \times \mathrm{n}$)
Therefore, $\Phi(m \times n)$ is at most the number of such pairs:

$$
\Phi(m \times n) \leq \Phi(m) \times \Phi(n)
$$

TELEMATIK
 Rechnerpetze

Some Mathematical Background (15)

Proof (continued):

- Consider now a pair of integers (b, c), one counted by $\Phi(m)$ and the other one counted by $\Phi(n)$:

Using the first part of Theorem 4 we can construct a unique positive integer a less than and relatively prime to $m \times n$:

$$
\begin{aligned}
& a \equiv b \bmod m \\
& a \equiv c \bmod n
\end{aligned}
$$

So, the number of such pairs is at most $\Phi(m \times n)$:

$$
\Phi(m \times n) \geq \Phi(m) \times \Phi(n)
$$

The RSA Public Key Algorithm (1)

- The RSA algorithm was invented in 1977 by R. Rivest, A. Shamir and L. Adleman [RSA78] and is based on Theorem 3.
- Let p, q be distinct large primes and $n=p \times q$. Assume, we have also two integers e and d such that:

$$
d \times e \equiv 1 \bmod \Phi(n)
$$

- Let M be an integer that represents the message to be encrypted, with M positive, smaller than and relatively prime to n.
- Example: Encode with <blank> = 99, A = 10, B = 11, \ldots, $Z=35$ So "HELLO" would be encoded as 1714212124. If necessary, break M into blocks of smaller messages: 1714212124
- To encrypt, compute: $E=M^{e}$ MOD n
- This can be done efficiently using the square-and-multiply algorithm
- To decrypt, compute: $M^{\prime}=E^{d}$ MOD n
- As $d \times e \equiv 1 \bmod \Phi(n) \quad \Rightarrow \exists \mathrm{k} \in \mathbb{Z}:(d \times e)-1=\mathrm{k} \times \Phi(n)$ $\Leftrightarrow(d \times e)=\mathrm{k} \times \Phi(n)+1$
we have: $M^{\prime} \equiv E^{d} \equiv M^{(e \times d)} \equiv M^{(k \times \Phi(n)+1)} \equiv 1^{k} \times M \equiv M \bmod n$

The RSA Public Key Algorithm (2)

- As $(d \times e)=(e \times d)$ the operation also works in the opposite direction, that means you can encrypt with d and decrypt with e
- This property allows to use the same keys d and e for:
- Receiving messages that have been encrypted with one' s public key
- Sending messages that have been signed with one's private key
- To set up a key pair for RSA:
- Randomly choose two primes p and q (of 100 to 200 digits each)
- Compute $n=p \times q, \Phi(n)=(p-1) \times(q-1)$ (Lemma 2)
- Randomly choose e, so that $\operatorname{gcd}(e, \Phi(n))=1$
- With the extended euclidean algorithm compute d and c, such that: $e \times d+\Phi(n) \times c=1, \quad$ note that this implies, that $\mathrm{e} \times \mathrm{d} \equiv 1 \bmod \Phi(n)$
- The public key is the pair (e, n)
- The private key is the pair (d, n)

The RSA Public Key Algorithm (3)

- The security of the scheme lies in the difficulty of factoring $n=p \times q$ as it is easy to compute $\Phi(n)$ and then d, when p and q are known
- This class will not teach why it is difficult to factor large n ' s, as this would require to dive deep into mathematics
- If p and q fulfill certain properties, the best known algorithms are exponential in the number of digits of n
- Please be aware that if you choose p and q in an "unfortunate" way, there might be algorithms that can factor more efficiently and your RSA encryption is not at all secure:
- Therefore, p and q should be about the same bitlength and sufficiently large
- $(p-q)$ should not be too small
- If you want to choose a small encryption exponent, e.g. 3, there might be additional constraints, e.g. $\operatorname{gcd}(p-1,3)=1$ and $\operatorname{gcd}(q-1,3)=1$
- The security of RSA also depends on the primes generated being truly random (like every key creation method for any algorithm)
■ Moral: If you are to implement RSA by yourself, ask a mathematician or better a cryptographer to check your design

Diffie-Hellman Key Exchange (1)

- The Diffie-Hellman key exchange was first published in the landmark paper [DH76], which also introduced the fundamental idea of asymmetric cryptography
- The DH exchange in its basic form enables two parties A and B to agree upon a shared secret using a public channel:
- Public channel means, that a potential attacker E (E stands for eavesdropper) can read all messages exchanged between A and B
- It is important, that A and B can be sure, that the attacker is not able to alter messages, as in this case he might launch a man-in-the-middle attack
- The mathematical basis for the DH exchange is the problem of finding discrete logarithms in finite fields
- The DH exchange is not an asymmetric encryption algorithm, but is nevertheless introduced here as it goes well with the mathematical flavor of this lecture... :o)

Some More Mathematical Background (1)

Definition: finite groups

- A group (S, \oplus) is a set S together with a binary operation \oplus for which the following properties hold:
- Closure: For all $a, b \in S$, we have $a \oplus b \in S$
- Identity: There is an element $e \in S$, such that $e \oplus a=a \oplus e=a$ for all $a \in S$
- Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c=a \oplus(b \oplus c)$
- Inverses: For each $a \in S$, there exists a unique element $b \in S$, such that $a \oplus b=b \oplus a=e$
- If a group (S, \oplus) satisfies the commutative law $\forall a, b \in S$: $a \oplus b=b \oplus a$ then it is called an Abelian group
- If a group (S, \oplus) has only a finite set of elements, i.e. $|S|<\infty$, then it is called a finite group

Rechergetze

Some More Mathematical Background (2)

- Examples:
- $\left(\mathbb{Z}_{n},+_{n}\right)$
- with $\mathbb{Z}_{n}:=\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\}$
- where $[a]_{n}:=\{b \in \mathbb{Z} \mid b \equiv a \bmod n\}$ and
- $+_{n}$ is defined such that $[a]_{n}+_{n}[b]_{n}=[a+b]_{n}$
is a finite abelian group
For the proof see the table showing the properties of modular arithmetic
- $\left(\mathbb{Z}_{n}^{*}, x_{n}\right)$
- with $\mathbb{Z}_{n}^{*}:=\left\{[a]_{n} \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}$, and
- \times_{n} is defined such that $[a]_{n} \times_{n}[b]_{n}=[a \times b]_{n}$
is a finite Abelian group. Please note that \mathbb{Z}_{n}^{*} just contains those elements of \mathbb{Z}_{n} that have a multiplicative inverse modulo n
For the proof see the properties of modular arithmetic
- Example: $\mathbb{Z}_{15}^{*}=\left\{[1]_{15},[2]_{15},[4]_{15},[7]_{15},[8]_{15},[11]_{15},[13]_{15}\right.$, $\left.[14]_{15}\right\}$, as

$$
1 \times 1 \equiv 1 \bmod 15, \quad 2 \times 8 \equiv 1 \bmod 15, \quad 4 \times 4 \equiv 1 \bmod 15
$$

$$
7 \times 13 \equiv 1 \bmod 15, \quad 11 \times 11 \equiv 1 \bmod 15, \quad 14 \times 14 \equiv 1 \bmod 15
$$

Some More Mathematical Background (3)

- If it is clear that we are talking about $\left(\mathbb{Z}_{n},+_{n}\right)$ or $\left(\mathbb{Z}_{n}^{*}, x_{n}\right)$ we often represent equivalence classes [a] ${ }_{n}$ by their representative elements a and denote $+_{n}$ and \times_{n} by + and \times, respectively.
- Definition: finite fields
- A field (S, \oplus, \otimes) is a set S together with two operations \oplus, \otimes such that
- (S, \oplus) and $\left(\mathrm{S} \backslash\left\{\mathrm{e}_{\oplus}\right\}, \otimes\right)$ are commutative groups, i.e. only the identity element concerning the operation \oplus does not need to have an inverse regarding the operation \otimes
- For all $a, b, c \in S$, we have $a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)$
\square If $|S|<\infty$ then (S, \oplus, \otimes) is called a finite field
- Example:
- $\left(\mathbb{Z}_{p},{ }_{p}, x_{p}\right)$ is a finite field for each prime p

Some More Mathematical Background (4)

- Definition: primitive root, generator
- Let (S, \bullet) be a group, $g \in S$ and $g^{a}:=g \bullet g \bullet \ldots \bullet g \quad\left(a\right.$ times with $\left.a \in \mathbb{Z}^{+}\right)$

Then g is called a primitive root or generator of (S, \bullet)
$: \Leftrightarrow\left\{g^{a}|1 \leq a \leq|S|\}=S\right.$

- Examples:
- 1 is a primitive root of $\left(\mathbb{Z}_{n},+_{n}\right)$
- 3 is a primitive root of $\left(\mathbb{Z}_{7}^{*}, x_{7}\right)$
- Not all groups do have primitive roots and those who have are called cyclic groups

- Theorem 5:

$\left(\mathbb{Z}_{n}^{*}, x_{n}\right)$ does have a primitive root $\Leftrightarrow n \in\left\{2,4, p, 2 \times p^{e}\right\}$ where p is an odd prime and $e \in \mathbb{Z}^{+}$

- For the proof see [Niv80a]

Rechneryetze

Some More Mathematical Background (5)

- Theorem 6:

If (S, \bullet) is a group and $b \in S$ then $\left(S^{\prime}, \bullet\right)$ with $S^{\prime}=\left\{b^{a} \mid a \in \mathbb{Z}^{+}\right\}$is also a group.

- For the proof refer to [Cor90a] section 33.3
- As $S^{\prime} \subseteq S,\left(S^{\prime}, \bullet\right)$ is called a subgroup of (S, \bullet)
- If b is a primitive root of (S, \bullet) then $S^{\prime}=S$
\square Definition: order of a group and of an element
- Let (S, \bullet) be a group, $e \in S$ its identity element and $b \in S$ any element of S :
- Then $|\mathrm{S}|$ is called the order of (S, \bullet)
- Let $c \in \mathbb{Z}^{+}$be the smallest element so that $b^{c}=e$ (if such a c exists, if not set $c=\infty)$. Then c is called the order of b.

TELEMATIK
Rechnemetre

Some More Mathematical Background (6)

- Theorem 7 (Lagrange):

If G is a finite group and H is a subgroup of G, then $|H|$ divides $|G|$.
Hence, if $b \in G$ then the order of b divides $|G|$.

- Theorem 8:

If G is a cyclic finite group of order n and d divides n then G has exactly $\Phi(d)$ elements of order d. In particular, G has $\Phi(n)$ elements of order n.
. Theorems 5,7 , and 8 are the basis of the following algorithm that finds a cyclic group \mathbb{Z}_{p}^{*} and a primitive root g of it:

- Choose a large prime q such that $p=2 q+1$ is prime.
- As p is prime, Theorem 5 states that \mathbb{Z}_{p}^{*} is cyclic.
- The order of \mathbb{Z}_{p}^{*} is $2 \times q$ and $\Phi(2 \times q)=\Phi(2) \times \Phi(q)=q-1$ as q is prime.
- So, the odds of randomly choosing a primitive root are $(q-1) / 2 q \approx 1 / 2$
- In order to efficiently test, if a randomly chosen g is a primitive root, we just have to test if $g^{2} \equiv 1 \bmod p$ or $g^{q} \equiv 1 \bmod p$. If not, then its order has to be $\left|\mathbb{Z}_{p}^{*}\right|$, as Theorem 7 states that the order of g has to divide $\left|\mathbb{Z}_{p}^{*}\right|$
- Definition: discrete logarithm
- Let p be prime, g be a primitive root of $\left(\mathbb{Z}_{p}^{*}, x_{p}\right)$ and c be any element of \mathbb{Z}_{p}^{*}. Then there exists z such that: $g^{z} \equiv c \bmod p$ z is called the discrete logarithm of c modulo p to the base g
- Example 6 is the discrete logarithm of 1 modulo 7 to the base 3 as $3^{6} \equiv 1 \bmod 7$
- The calculation of the discrete logarithm z when given g, c, and p is a computationally difficult problem and the asymptotical runtime of the best known algorithms for this problem is exponential in the bitlength of p

Diffie-Hellman Key Exchange (2)

- If Alice (A) and Bob (B) want to agree on a shared secret s and their only means of communication is a public channel, they can proceed as follows:
- A chooses a prime p, a primitive root g of \mathbb{Z}_{p}^{*}, and a random number q :
- A and B can agree upon the values p and g prior to any communication, or A can choose p and g and send them with his first message
- A computes $v=g^{q}$ MOD p and sends to $\mathrm{B}:\{p, g, v\}$
- B chooses a random number r :
- B computes $w=g^{r}$ MOD p and sends to $\mathrm{A}:\{p, g, w\}$ (or just $\{w\}$)
- Both sides compute the common secret:
- A computes $s=w^{q}$ MOD p
- B computes $s^{\prime}=v^{r}$ MOD p
- As $g^{(q \times r)}$ MOD $p=g^{(r \times q)}$ MOD p it holds: $s=s^{\prime}$
- An attacker Eve who is listening to the public channel can only compute the secret s, if she is able to compute either q or r which are the discrete logarithms of v, w modulo p to the base g
. If the attacker Eve is able to alter messages on the public channel, she can launch a man-in-the-middle attack:
- Eve generates to random numbers q^{\prime} and r^{\prime} :
- Eve computes $v^{\prime}=g^{q^{\prime}}$ MOD p and $w^{\prime}=g^{r^{\prime}}$ MOD p
- When A sends $\{p, g, v\}$ she intercepts the message and sends to $\mathrm{B}:\left\{p, g, v^{\prime}\right\}$
- When B sends $\{p, g, w\}$ she intercepts the message and sends to $A:\left\{p, g, w^{\prime}\right\}$
- When the supposed "shared secret" is computed we get:
- A computes $s_{1}=w^{\prime} q$ MOD $p=v^{r^{\prime}}$ MOD p the latter computed by E
- B computes $s_{2}=v^{\prime} r$ MOD $p=w^{q^{\prime}}$ MOD p the latter computed by E
- So, in fact A and E have agreed upon a shared secret s_{1} as well as E and B have agreed upon a shared secret s_{2}
- If the "shared secret" is now used by A and B to encrypt messages to be exchanged over the public channel, E can intercept all the messages and decrypt / re-encrypt them before forwarding them between A and B.

Diffie-Hellman Key Exchange (4)

- Two countermeasures against the man-in-the-middle attack:
- The shared secret is "authenticated" after it has been agreed upon
- We will treat this in the section on key management
- A and B use a so-called interlock protocol after agreeing on a shared secret:
- For this they have to exchange messages that E has to relay before she can decrypt / re-encrypt them
- The content of these messages has to be checkable by A and B
- This forces E to invent messages and she can be detected
- One technique to prevent E from decrypting the messages is to split them into two parts and to send the second part before the first one.
- If the encryption algorithm used inhibits certain characteristics E can not encrypt the second part before she receives the first one.
- As A will only send the first part after he received an answer (the second part of it) from B, E is forced to invent two messages, before she can get the first parts.
- Remark: In practice the number g does not necessarily need to be a primitive root of p, it is sufficient if it generates a large subgroup of \mathbb{Z}_{p}^{*}
- The ElGamal algorithm can be used for both, encryption and digital signatures (see also [EIG85a])
- Like the DH exchange it is based on the difficulty of computing discrete logarithms in finite fields
- In order to set up a key pair:
- Choose a large prime p, a generator g of the multiplicative group \mathbb{Z}_{p}^{*} and a random number v such that $1 \leq v \leq p-2$. Calculate: $y=g^{v} \bmod p$
- The public key is (y, g, p)
- The private key is v
- To sign a message m :
- Choose a random number k such that k is relatively prime to $p-1$.
- Compute $r=g^{k} \bmod p$
- With the Extended Euclidean Algorithm compute k^{-1}, the inverse of $k \bmod (p-1)$
- Compute $s=k^{-1} \times(m-v \times r) \bmod (p-1)$
- The signature over the message is (r, s)

The ElGamal Algorithm (2)

- To verify a signature (r, s) over a message m :
- Confirm that $y^{r} \times r^{s}$ MOD $p=g^{m}$ MOD p
- Proof: We need the following
- Lemma 3:

Let p be prime and g be a generator of \mathbb{Z}_{p}^{*}.
Then $i \equiv j \bmod (p-1) \Rightarrow g^{i} \equiv g^{j} \bmod p$
Proof:
$-i \equiv j \bmod (p-1) \Rightarrow$ there exists $\mathrm{k} \in \mathbb{Z}^{+}$such that $(\mathrm{i}-\mathrm{j})=(\mathrm{p}-1) \times \mathrm{k}$

- So, $g^{(i-j)}=g^{(p-1) \times k} \equiv 1^{k} \equiv 1 \bmod p$, because of Theorem 3 (Euler) $\Rightarrow g^{i} \equiv g^{j} \bmod p$
- So as $\quad s \equiv k^{-1} \times(m-v \times r) \quad \bmod (p-1)$
$\Leftrightarrow \mathrm{k} \times s \equiv m-v \times r \quad \bmod (p-1)$
$\Leftrightarrow \quad \mathrm{m} \equiv v \times r+\mathrm{k} \times s \quad \bmod (p-1)$
$\Rightarrow \quad g^{m} \equiv g^{(v \times r+k \times s)} \quad \bmod p \quad$ with Lemma 3
$\Leftrightarrow \quad g^{m} \equiv g^{(v \times r)} \times g^{(k \times s)} \quad \bmod p$
$\Leftrightarrow \quad g^{m} \equiv y^{r} \times r^{s} \quad \bmod p$

The ElGamal Algorithm (3)

- Security of ElGamal signatures:

- As the private key v is needed to be able to compute s, an attacker would have to compute the discrete logarithm of y modulo p to the basis g in order to forge signatures
- It is crucial to the security, that a new random number k is chosen for every message, because an attacker can compute the secret v if he gets two messages together with their signatures based on the same k (see [Men97a], Note 11.66.ii)
- In order to prevent an attacker to be able to create a message M with a matching signature, it is necessary not to sign directly the message M as explained before, but to sign a cryptographic hash value $m=h(M)$ of it (these will be treated soon, see also [Men97a], Note 11.66.iii)

The ElGamal Algorithm (4)

- To encrypt a message m using the public key (y, g, p) :
- Choose a random $k \in \mathbb{Z}^{+}$with $k<p-1$
- Compute $r=g^{k}$ MOD p
- Compute $s=m \times y^{k}$ MOD p

The ciphertext is (r, s), which is twice as long as m

- To decrypt the message (r, s) using v :
- Use the private key v to compute $r^{(p-1-v)}$ MOD $p=r(-v)$ MOD p
- Recover m by computing $m=n-(-v) \times s$ MOD p
- Proof:

$$
r^{(-v)} \times s \equiv \mu^{(-v)} \times m \times y^{k} \equiv g^{(-v k)} \times m \times y^{k} \equiv g^{(-v \times k)} \times m \times g^{(v \times k)} \equiv m \bmod p \ldots
$$

- Security:

- The only known means for an attacker to recover m is to compute the discrete logarithm v of y modulo p to the basis g
- For every message a new random k is needed ([Men97a], Note 8.23.ii)

Elliptic Curve Cryptography (1)

- The algorithms presented so far have been invented for the multiplicative group ($\mathbb{Z}_{p}^{*}, x_{p}$) and the field $\left(\mathbb{Z}_{p},{ }_{p}, x_{p}\right)$, respectively
- It has been found during the 1980's that they can be generalized and be used with other groups and fields as well
- The main motivation for this generalization is:
- A lot of mathematical research in the area of primality testing, factorization and computation of discrete logarithms has led to techniques that allow to solve these problems in a more efficient way, if certain properties are met:
- When the RSA-129 challenge was given in 1977 it was expected that it will take some 40 quadrillion years to factor the 129-digit number ($\approx 428 \mathrm{bit}$)
- In 1994 it took 8 months to factor it by a group of computers networked over the Internet, calculating for about 5000 MIPS-years
- Advances in factoring algorithms allowed 2009 to factor a 232-digit number (768 bit) in about 1500 AMD64-years [KAFL10]
\Rightarrow the key length has to be increased (currently about 2048 bit)

Elliptic Curve Cryptography (2)

- Motivation (continued):
- Some of the more efficient techniques do rely on specific properties of the algebraic structures $\left(\mathbb{Z}_{p}^{*}, \times_{p}\right)$ and $\left(\mathbb{Z}_{p},+_{p}, \times_{p}\right)$
\square Different algebraic structures may therefore provide the same security with shorter key lengths
- A very promising structure for cryptography can be obtained from the group of points on an elliptic curve over a finite field
- The mathematical operations in these groups can be efficiently implemented both in hardware and software
- The discrete logarithm problem is believed to be hard in the general class obtained from the group of points on an elliptic curve over a finite field
- Algebraic group consisting of
- Points on Weierstrass' Equation: $y^{2}=x^{3}+a x+b$
- Additional point O in "infinity"
- May be calculated over \mathbb{R}, but in cryptography \mathbb{Z}_{p} and $G F\left(2^{n}\right)$ are used
- Already in \mathbb{R} arguments influence form significantly:
- $y^{2}=x^{3}-3 x+5$

$y^{2}=x^{3}-40 x+5$

Foundations of ECC - Point Addition

- Addition of elements = Addition of points on the curve
- Geometric interpretation:
- Each point $P:(x, y)$ has an inverse - $P:(x,-y)$
- A line through two points P and Q usually intersects with a third point R
- Generally, sum of two points P and Q equals $-R$

- The additional point O is the neutral element, i.e., $\mathrm{P}+\mathrm{O}=\mathrm{P}$
- P + (-P):
- If the inverse point is added to P, the line and curve intersect in "infinity"
- By definition: $P+(-P)=0$
- $P+P$: The sum of two identical points P is the inverse of the intersecting point with the tangent through P :

Foundations of ECC - Algebraic Addition

- If one of the summands is O , the sum is the other summand
- If the summands are inverse to each other the sum is O
- For the more general cases the slope of the line is:

$$
\alpha= \begin{cases}\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}} & \text { for } P \neq-Q \wedge P \neq Q \\ \frac{3 x_{P}^{2}+a}{2 y_{P}} & \text { for } P=Q\end{cases}
$$

- Result of point addition, where $\left(x_{r}, y_{r}\right)$ is already the reflected point (-R)

$$
\begin{aligned}
x_{r} & =\alpha^{2}-x_{p}-x_{q} \\
y_{r} & =\alpha\left(x_{p}-x_{r}\right)-y_{p}
\end{aligned}
$$

- Multiplication of natural number n and point P performed by multiple repeated additions
- Numbers are grouped into powers of 2 to achieve logarithmic runtime, e.g. $25 P=P+8 P+16 P$
\square This is possible if and only if the n is known!
- If n is unknown for $\mathrm{nP}=\mathrm{Q}$, a logarithm has to be solved, which is possible if the coordinate values are chosen from \mathbb{R}

For \mathbb{Z}_{p} and $G F\left(2^{n}\right)$ the discrete logarithm problem for elliptic curves has to be solved, which cannot be done efficiently!

- Note: it is not defined how two points are multiplied, but only a natural number n and point P

Foundations of ECC - Curves over \mathbb{Z}_{p}

- Over \mathbb{Z}_{p} the curve degrades to a set of points
- For $y^{2} \equiv x^{3}-3 x+5 \bmod 19$:

x
- Note: There is no y value for each x value!

Foundations of ECC - Calculate the y-values in \mathbb{Z}_{p}

- In general a little bit more problematic: determine the y-values for a given x (as its square value is calculated) by $y^{2} \equiv f(x) \bmod p$
- Hence p is often chosen s.t. $p \equiv 3 \bmod 4$
- Then y is calculated by $y_{1} \equiv f(x)^{\frac{p+1}{4}} \bmod p$ and $y_{2} \equiv-f(x)^{\frac{p+1}{4}} \bmod p$ if and only if a solution exists at all
- Short proof:
- From the Euler Theorem 3 we know that $f(x)^{p-1} \equiv 1 \bmod p$
- Thus the square root must be 1 or $-1 f(x)^{\frac{p-1}{2}} \equiv \pm 1 \bmod p$
- Case 1: $f(x)^{\frac{p-1}{2}} \equiv 1 \bmod p$
- Multiply both sides by $\mathrm{f}(\mathrm{x}): ~ f(x)^{\frac{p+1}{2}} \equiv f(x) \equiv y^{2} \bmod p$
- As $\mathrm{p}+1$ is divisible by 4 we can take the square root so that $f(x)^{\frac{p+1}{4}} \equiv y \bmod p$
- Case 2: In this case no solution exists for the given x value (as shown by Euler)

Foundations of ECC - Addition and Multiplication in \mathbb{Z}_{p}

- Due to the discrete structure point mathematical operations do not have a geometric interpretation any more, but
- Algebraic addition similar to addition over \mathbb{R}
- If the inverse point is added to P, the line and "curve" still intersect in "infinity"
- All x - and y-values are calculated $\bmod p$
- Division is replaced by multiplication with the inverse element of the denominator
- Use the Extended Euclidean Algorithm with w and p to derive the inverse -w
- Algebraic multiplication of a natural number n and a point P is also performed by repeated addition of summands of the power of 2
- The discrete logarithm problem is to determine a natural number n in $n P=Q$ for two known points P and Q

Foundations of ECC - Size of generated groups

- Please note that the order of a group generated by a point on a curve over \mathbb{Z}_{p} is not p -1!
- Determining the exact order is not easy, but can be done in logarithmic time by Schoofs algorithm [Sch85] (requires much more mathematical background than desired here)
- But Hasse's theorem on elliptic curves states that the group size n must lay between:
- $\mathrm{p}+1-2 \sqrt{ } \mathrm{p} \leq \mathrm{n} \leq \mathrm{p}+1+2 \sqrt{ } \mathrm{p}$
\square As mentioned before: Generating rather large groups is sufficient

Foundations of ECC - ECDH

- The Diffie-Hellman-Algorithm can easily be adapted to elliptic curves
- If Alice (A) and Bob (B) want to agree on a shared secret s:
$\square A$ and B agree on a cryptographically secure elliptic curve and a point P on that curve
- A chooses a random number q :
- A computes $Q=q P$ and transmits Q to Bob

व B chooses a random number r :

- B computes $R=r P$ and transmits P to Alice
a Both sides compute the common secret:
- A computes $S=q R$
- B computes $S^{\prime}=r Q$
- As $q r P=r q P$ the secret point $S=S^{\prime}$
a Attackers listening to the public channel can only compute S, if able to compute either q or r which are the discrete logarithms of Q and R for the point P

Foundations of ECC - EC version of ElGamal Algorithm (I)

- Adapting ElGamal for elliptic curves is rather straight forward for the encryption routine
- To set up a key pair:
- Choose an elliptic curve over a finite field, a point G that generates a large group, and a random number v such that $1<v<n$, where n denotes to the size of the induced group, Calculate: $Y=v G$
- The public key is (Y, G, curve)
- The private key is V

Foundations of ECC - EC version of ElGamal Algorithm (II)

- To encrypt a message:
- Choose a random $k \in \mathbb{Z}^{+}$with $k<n-1$, compute $R=k G$
- Compute $S=M+k Y$, where M is a point derived by the message
- Problem: Interpreting the message m as a x coordinate of M is not sufficient, as the y value does not have to exist
- Solution from [Ko87]: Choose a constant c (e.g. 100) check if $c m$ is the x coordinate of a valid point, if not try $c m+1$, then $c m+2$ and so on
- To decode m : take the x value of M and do an integer division by c (receiver has to know c too)
- The ciphertext are the points (R, S)
- Twice as long as m, if stored in so-called compressed form, i.e. only x coordinates are stored and a single bit, indicating whether the larger or smaller corresponding y-coordinate shall be used
- To decrypt a message:
- Derive M by calculating $S-v R$
- Proof: $S-v R=M+k Y-v R=M+k v G-v k G=M+O=M$

Foundations of ECC - EC version of ElGamal Algorithm (II)

- To sign a message:
- Choose a random $k \in \mathbb{Z}^{+}$with $k<n-1$, compute $R=k G$
- Compute $s=\mathrm{k}^{-1}(m+r v) \bmod n$, where r is the x -value of R
- The signature are (r, s), again about as twice as long as n
- To verify a signed message:
- Check if the point $P=m s^{-1} G+r s^{-1} Y$ has the x-coordinate r
- Note: s^{-1} is calculated by the Extended Euclidian Algorithm with the input s and n (the order of the group)
- Proof: $m s^{-1} G+r s^{-1} Y=m s^{-1} G+r s^{-1} v G=(m+r v)\left(s^{-1}\right) G=(k s)\left(s^{-1}\right) G=k G=R$
- Security discussion:
- As in the original version of ElGamal it is crucial to not use k twice
- Messages should not be signed directly
- Further checks may be required, i.e., G must not be O, a valid point on the curve etc. (see [NIST09] for further details)

Foundations of ECC - Security (I)

- The security heavily depends on the chosen curve and point:
- The discriminant of the curve must not be zero, i.e., $4 a^{3}+27 b^{2} \not \equiv 0 \bmod p$ otherwise the curve is degraded (a so called singular curve)
- Menezes et. al. have found a sub-exponential algorithm for so-called supersingular elliptic curves but this does not work in the general case [Men93a]
- The constructed algebraic groups should have as many elements a possible
- This class will not go into more details of elliptic curve cryptography as this requires way more mathematics than desired for this course... :o)
- For non-cryptographers it is best to depend on predefined curves, e.g., [LM10] or [NIST99] and standards such as ECDSA
- Many publications choose parameters a and b such that they are provably chosen by a random process (e.g. publish x for $h(x)=a$ and y for $h(y)=b$); Shall ensure that the curves do not contain a cryptographic weakness that only the authors knows about
- The security depends on the length of p
- Key lengths with comparable strengths according to [NIST12]:

Symmetric Algorithms	RSA	ECC
112	2048	$224-255$
128	3072	$256-383$
192	7680	$384-511$
256	15360	>512

Foundations of ECC - Security (III)

- The security also heavily depends on the implementation!
- The different cases (e.g. with O) in ECC calculation may be observable, i.e., power consumption and timing differences
- Attackers might deduct side-channel attacks, as in OpenSSL 0.9.8o [BT11]
- Attacker may deduce the bit length of a value k in kP by measuring the time required for the square and multiply algorithm
- Algorithm was aborted early in OpenSSL when no further bits where set to " 1 "
- Attackers might try to generate invalid points to derive facts about the used key as in OpenSSL 0.9 .8 g , leading to a recovery of a full 256 -bit ECC key after only 633 queries [BBP12]
- Lesson learned: Do not do it on your own, unless you have to and know what you are doing!
- As mentioned earlier it is possible to construct cryptographic elliptic curves over $\mathrm{G}\left(2^{\text {n }}\right)$, which may be faster in hardware implementations
\square We refrained from details as this would not have brought many different insights!
- Elliptic curves and similar algebraic groups are an active field of research and allow other advanced applications e.g.:
- So-called Edwards Curves are currently discussed, as they seem more robust against side-channel attacks (e.g. [BLR08])
- Bilinear pairings allow
- Programs to verify that they belong to the same group, without revealing their identity (Secret handshakes, e.g. [SM09])
- Public keys to be structured, e.g. use "Alice" as public key for Alice (Identity based encryption, foundations in [BF03])
- Before deploying elliptic curve cryptography in a product, make sure to not violate patents, as there are still many valid ones in this field!

Conclusion

- Asymmetric cryptography allows to use two different keys for:
- Encryption / Decryption
- Signing / Verifying
- The most practical algorithms that are still considered to be secure are:
- RSA, based on the difficulty of factoring and solving discrete logarithms
- Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
- EIGamal, like DH based on the difficulty of computing discrete logarithms
- As their security is entirely based on the difficulty of certain mathematical problems, algorithmic advances constitute their biggest threat
- Practical considerations:
- Asymmetric cryptographic operations are about magnitudes slower than symmetric ones
- Therefore, they are often not used for encrypting / signing bulk data
- Symmetric techniques are used to encrypt / compute a cryptographic hash value and asymmetric cryptography is just used to encrypt a key / hash value

Additional References

[Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.
[Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. The MIT Press, 1990.
[DH76] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory, IT-22, pp. 644-654, 1976.
[EIG85a] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4, pp. 469-472, July 1985.
[Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.
[Men93a] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, 1993.
[Niv80a] I. Niven, H. Zuckerman. An Introduction to the Theory of Numbers. John Wiley \& Sons, $4^{\text {th }}$ edition, 1980
[RSA78] R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital Signatures and Public Key Cryptosystems. Communications of the ACM, February 1978.

Additional References

[KAFL10] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos, P. Gaudry, A. Kruppa, P. Montgomery, D. Osvik, H. Te Riele, A.Timofeev, P. Zimmermann. Factorization of a 768-bit RSA modulus. In Proceedings of the 30th annual conference on Advances in cryptology (CRYPTO'10), 2010.
[LM10] M. Lochter, J. Merkle. Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation, IETF Request for Comments: 5639, 2010.
[NIST99] NIST. Recommended Elliptic Curves for Federal Government Use. 1999.
[NIST12] NIST. Recommendation for Key Management: Part 1: General (Revision 3). NIST Special Publication 800-57. 2012.
[Ko87] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, Vol. 48, No. 177 (Jan., 1987), pp. 203-209. 1987.
[BBP12] B.B. Brumley, M. Barbosa, D. Page, F. Vercauteren. Practical realisation and elimination of an ECC-related software bug attack. Cryptology ePrint Archive: Report 2011/633 and CT-RSA Pages 171-186. 2012.
[BT11] B.B. Brumley, N. Tuveri. Remote timing attacks are still practical. Proceedings of the 16th European conference on Research in computer security (ESORICS'11). Pages 355-371. 2011.

Additional References

[BLR08] D. Bernstein, T. Lange, R. Rezaeian Farashahi. Binary Edwards Curves. Cryptographic Hardware and Embedded Systems (CHES). Pages 244-265. 2008.
[NIST09] NIST. Digital Signature Standard (DSS). FIPS PUB 186-3. 2009.
[SM09] A. Sorniotti, R. Molva. A provably secure secret handshake with dynamic controlled matching. Computers \& Security, 2009.
[BF03] D. Boneh, M. Franklin. Identity-Based Encryption from the Weil Pairing. SIAM J. of Computing, Vol. 32, No. 3, Pages 586-615, 2003.
[Sch85] R. Schoof. Elliptic Curves over Finite Fields and the Computation of Square Roots $\bmod p$. Math. Comp., 44(170). Pages 483-494. 1985.

