Network Security

Chapter 6

 Random Number Generation- Generation:
- It is crucial to security, that keys are generated with a truly random or at least a pseudo-random generation process (see below)
- Otherwise, an attacker might reproduce the key generation process and easily find the key used to secure a specific communication
- Distribution:
- Distribution of some initial keys usually has to be performed manually / out of band
- Session key distribution is generally performed during an authentication exchange
- Examples: Diffie-Hellman, Otway-Rees, Kerberos, X. 509
- Storage:
- Keys, especially authentication keys, should be securely stored:
- either encrypted with a hard-to-guess pass-phrase, or better
- in a secure device like a smart-card

Tasks of Key Management (2)

- Revocation:

- If a key has been compromised, it should be possible to revoke that key, so that it can no longer be misused (cf. X.509)
- Destruction:
- Keys that are no longer used (e.g. old session keys) should be safely destroyed (cf. media security in lecture 1)
- Recovery:
- If a key has been lost (e.g. defect smart-card, floppy, accidentally erased) it should be possible to recover it, in order to to avoid loss of data
- Key recovery is not to be mixed up with key escrow (see below):
- Escrow:
- Mechanisms and architectures that shall allow government agencies (and only them) to obtain session keys in order to be able to eavesdrop on communications / to read stored data for law enforcement purposes
- "If I can get my key back it's key recovery, if you can get my key back it's key escrow..." :o)

Random and Pseudo-Random Number Generation (1)

- Definition:

A random bit generator is a device or algorithm, which outputs a sequence of statistically independent and unbiased binary digits.

- Remark:
- A random bit generator can be used to generate uniformly distributed random numbers, e.g. a random integer in the interval [$0, \mathrm{n}$] can be obtained by generating a random bit sequence of length $\lfloor\lg n\rfloor+1$ and converting it into a number. If the resulting integer exceeds n it can be discarded and the process is repeated until an integer in the desired range has been generated.
- Definition:

A pseudo-random bit generator ($P R B G$) is a deterministic algorithm which, given a truly random binary sequence of length k, outputs a binary sequence of length $m \gg k$ which "appears" to be random.
The input to the PRBG is called the seed and the output is called a pseudo-random bit sequence.

Random and Pseudo-Random Number Generation (2)

- Remarks:
- The output of a PRBG is not random, in fact the number of possible output sequences of length m is at most all small fraction $2^{k} / 2^{m}$, as the PRBG produces always the same output sequence for one (fixed) seed
- The motivation for using a PRBG is that it might be too expensive to produce true random numbers of length m, e.g. by coin flipping, so just a smaller amount of random bits is produced and then a pseudo-random bit sequence is produced out of the k truly random bits
- In order to gain confidence in the "randomness" of a pseudo-random sequence, statistical tests are conducted on the produced sequences
- Example:
- A linear congruential generator produces a pseudo-random sequence of numbers y_{1}, y_{2}, \ldots According to the linear recurrence

$$
y_{i}=a \times y_{i-1}+b \bmod q
$$

with a, b, q being parameters characterizing the PRBG

- Unfortunately, this generator is predictable even when a, b and q are unknown, and should, therefore, not be used for cryptographic purposes

Random and Pseudo-Random Number Generation (3)

- Security requirements of PRBGs for use in cryptography:
- As a minimum security requirement the length k of the seed to a PRBG should be large enough to make brute-force search over all seeds infeasible for an attacker
- The output of a PRBG should be statistically indistinguishable from truly random sequences
- The output bits should be unpredictable for an attacker with limited resources, if he does not know the seed
- Definition:

A PRBG is said to pass all polynomial-time statistical tests, if no deterministic polynomial-time algorithm can distinguish between an output sequence of the generator and a truly random sequence of the same length with probability significantly greater than 0.5

- Polynomial-time algorithm means, that the running time of the algorithm is bound by a polynomial in the length m of the sequence

Random and Pseudo-Random Number Generation (4)

- Definition:

A PRBG is said to pass the next-bit test, if there is no deterministic polynomial-time algorithm which, on input of the first m bits of an output sequence s, can predict the $(m+1)^{\text {st }}$ bit s_{m+1} of the output sequence with probability significantly greater than 0.5

- Theorem (universality of the next-bit test):

A PRBG passes the next-bit test \Leftrightarrow
it passes all polynomial-time statistical tests

- For the proof, please see section 12.2 in [Sti95a]
- Definition:

A PRBG that passes the next-bit test - possibly under some plausible but unproved mathematical assumption such as the intractability of the factoring problem for large integers - is called a cryptographically secure pseudo-random bit generator (CSPRBG)

Random Number Generation (1)

- Hardware-based random bit generators are based on physical phenomena, as:
- elapsed time between emission of particles during radioactive decay,
- thermal noise from a semiconductor diode or resistor,
- frequency instability of a free running oscillator,
- the amount a metal insulator semiconductor capacitor is charged during a fixed period of time,
- air turbulence within a sealed disk drive which causes random fluctuations in disk drive sector read latencies, and
- sound from a microphone or video input from a camera
- the state of an odd number of circular connected NOT gates
- A hardware-based random bit generator should ideally be enclosed in some tamper-resistant device and thus shielded from possible attackers
- Software-based random bit generators, may be based upon processes as:
- the system clock,
- elapsed time between keystrokes or mouse movement,
- content of input- / output buffers
- user input, and
- operating system values such as system load and network statistics
- Ideally, multiple sources of randomness should be "mixed", e.g. by concatenating their values and computing a cryptographic hash value for the combined value, in order to avoid that an attacker might guess the random value
- If, for example, only the system clock is used as a random source, than an attacker might guess random-numbers obtained from that source of randomness if he knows about when they were generated

Random Number Generation (3)

- De-skewing:
- Consider a random generator that produces biased but uncorrelated bits, e.g. it produces 1 's with probability $p \neq 0.5$ and 0 's with probability $1-p$, where p is unknown but fixed
- The following technique can be used to obtain a random sequence that is uncorrelated and unbiased:
- The output sequence of the generator is grouped into pairs of bits
- All pairs 00 and 11 are discarded
- For each pair 10 the unbiased generator produces a 1 and for each pair 01 it produces a 0
- Another practical (although not provable) de-skewing technique is to pass sequences whose bits are correlated or biased through a cryptographic hash function such as MD5 or SHA-1
- The following tests allow to check, if a generated random or pseudorandom sequence inhibits certain statistical properties:
- Monobit Test: Are there equally many 1's like 0' s?
- Serial Test (Two-Bit Test): Are there equally many 00-, 01-, 10-, 11-pairs?
- Poker Test: Are there equally many sequences n_{i} of length q having the same value with q such that $\lfloor m / q\rfloor \geq 5 \times\left(2^{q}\right)$
- Runs Test: Are the numbers of runs (sequences containing only either 0's or 1's) of various lengths as expected for random numbers?
- Autocorrelation Test: Are there correlations between the sequence and (non-cyclic) shifted versions of it?
- Maurer's Universal Test: Can the sequence be compressed?
- NIST SP 800-22: Standardized test suite, includes above \& more advanced tests
- The above descriptions just give the basic ideas of the tests. For a more detailed and mathematical treatment, please refer to sections 5.4.4 and 5.4.5 in [Men97a]

Secure Pseudo-Random Number Generation (1)

- There are a number of algorithms, that use cryptographic hash functions or encryption algorithms for generation of cryptographically secure pseudo random numbers
- Although these schemes can not be proven to be secure, they seem sufficient for most practical situations
- One such approach is the ANSI X9.17 generator:
- Input: a random and secret 64-bit seed s, integer m, and 3 -DES key K
- Output: m pseudo-random 64-bit strings $y_{1}, y_{2}, \ldots Y_{m}$
1.) $q=E(K$, Date_Time $)$
2.) For i from 1 to m do
2.1) $\quad x_{i}=E(K,(q \oplus s)$
2.2) $s=E\left(K,\left(x_{i} \oplus q\right)\right.$
3.) Return $\left(x_{1}, x_{2}, \ldots x_{m}\right)$
- This method is a U.S. Federal Information Processing Standard (FIPS) approved method for pseudo-randomly generating keys and initialization vectors for use with DES
- The RSA-PRBG is a CSPRBG under the assumption that the RSA problem is intractable:
a Output: a pseudo-random bit sequence $z_{1}, z_{2}, \ldots, z_{k}$ of length k
1.) Setup procedure:

Generate two secret primes p, q suitable for use with RSA
Compute $\mathrm{n}=p \times q$ and $\Phi=(p-1) \times(q-1)$
Select a random integer e such that $1<e<\Phi$ and $\operatorname{gcd}(e, \Phi)=1$
2.) Select a random integer y_{0} (the seed) such that $y_{0} \in[1, n]$
3.) For i from 1 to k do
3.1) $y_{i}=\left(y_{i-1}\right)^{e} \bmod n$
3.2) $\quad z_{i}=$ the least significant bit of y_{i}

- The efficiency of the generator can be slightly improved by taking the last j bits of every y_{j}, with $j=c \times \lg (\lg (n))$ and c is a constant
- However, for a given bit-length m of n, a range of values for the constant c such that the algorithm still yields a CSPRBG has not yet been determined

Secure Pseudo-Random Number Generation (3)

- The Blum-Blum-Shub-PRBG is a CSPRBG under the assumption that the integer factorization problem is intractable:
- Output: a pseudo-random bit sequence $z_{1}, z_{2}, \ldots, z_{k}$ of length k
1.) Setup procedure:

Generate two large secret and distinct primes p, q such that p, q are each congruent 3 modulo 4 and let $n=p \times q$
2.) Select a random integer s (the seed) such that $s \in[1, n-1]$ such that $\operatorname{gcd}(s, n)=1$ and let $y_{0}=s^{2} \bmod n$
3.) For i from 1 to k do
3.1) $\quad y_{i}=\left(y_{i-1}\right)^{2} \bmod n$
3.2) $\quad z_{i}=$ the least significant bit of y_{i}

- The efficiency of the generator can be improved using the same method as for the RSA generator with similar constraints on the constant c
- Dual Elliptic Curve Deterministic Random Bit Generator:
- Based on the intractability of the elliptic curve discrete logarithm problem
- Simplified version:

- State t is multiplied with a generator P, the x-value of the new point becomes t'
a Multiplied with a different point $\mathrm{Q} r$ bits of output can be generated, number of bits depend on curve (ranging between 240 and 504 bits)
- Part of NIST 800-90A standard
- Security:
- It has been shown that if P is chosen to be $e Q$ for a constant e then attackers can derive the state t

■ We do not know how the predefined points P and Q in NIST 800-90A are derived, so be careful ©

CSPRNG security is a big thing!

- In September 2006 Debian was accidentally modified that only the process ID was used to feed the OpenSSL CSPRNG
- Only 32,768 possible values!
- Was not discovered until May 2008
- A scan of about 23 million TLS and SSH hosts showed that
- At least 0.34% of the hosts shared keys because of faulty RNGs
- 0.50% of the scanned TLS could be compromised because of low randomness
- and 1.06% of the SSH hosts...
- Supervise your CSPRNG!
- Do not generate random numbers right after booting your system
- Use blocking RNGs, i.e. those that do not continue until having enough entropy

