
1
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Network Security
Chapter 6

Random Number Generation

2
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Tasks of Key Management (1)

!  Generation:
!  It is crucial to security, that keys are generated with a truly random or at

least a pseudo-random generation process (see below)
!  Otherwise, an attacker might reproduce the key generation process and

easily find the key used to secure a specific communication
!  Distribution:

!  Distribution of some initial keys usually has to be performed manually / out
of band

!  Session key distribution is generally performed during an authentication
exchange

!  Examples: Diffie-Hellman, Otway-Rees, Kerberos, X.509
!  Storage:

!  Keys, especially authentication keys, should be securely stored:
■  either encrypted with a hard-to-guess pass-phrase, or better
■  in a secure device like a smart-card

3
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Tasks of Key Management (2)

!  Revocation:
!  If a key has been compromised, it should be possible to revoke that key,

so that it can no longer be misused (cf. X.509)
!  Destruction:

!  Keys that are no longer used (e.g. old session keys) should be safely
destroyed (cf. media security in lecture 1)

!  Recovery:
!  If a key has been lost (e.g. defect smart-card, floppy, accidentally erased)

it should be possible to recover it, in order to to avoid loss of data
!  Key recovery is not to be mixed up with key escrow (see below):

!  Escrow:
!  Mechanisms and architectures that shall allow government agencies (and

only them) to obtain session keys in order to be able to eavesdrop on
communications / to read stored data for law enforcement purposes
■  �If I can get my key back it�s key recovery,

 if you can get my key back it�s key escrow...� :o)

4
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Random and Pseudo-Random Number Generation (1)

!  Definition:
 A random bit generator is a device or algorithm, which outputs a
sequence of statistically independent and unbiased binary digits.

!  Remark:
!  A random bit generator can be used to generate uniformly distributed

random numbers, e.g. a random integer in the interval [0, n] can be
obtained by generating a random bit sequence of length !lg n" + 1 and
converting it into a number. If the resulting integer exceeds n it can be
discarded and the process is repeated until an integer in the desired range
has been generated.

!  Definition:
 A pseudo-random bit generator (PRBG) is a deterministic algorithm
which, given a truly random binary sequence of length k, outputs a
binary sequence of length m >> k which �appears� to be random.
 The input to the PRBG is called the seed and the output is called a
pseudo-random bit sequence.

5
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Random and Pseudo-Random Number Generation (2)

!  Remarks:
!  The output of a PRBG is not random, in fact the number of possible output

sequences of length m is at most all small fraction 2k / 2m, as the PRBG
produces always the same output sequence for one (fixed) seed

!  The motivation for using a PRBG is that it might be too expensive to
produce true random numbers of length m, e.g. by coin flipping, so just a
smaller amount of random bits is produced and then a pseudo-random bit
sequence is produced out of the k truly random bits

!  In order to gain confidence in the �randomness� of a pseudo-random
sequence, statistical tests are conducted on the produced sequences

!  Example:
!  A linear congruential generator produces a pseudo-random sequence of

numbers y1, y2, ... According to the linear recurrence
yi = a × yi-1 + b mod q

 with a, b, q being parameters characterizing the PRBG
!  Unfortunately, this generator is predictable even when a, b and q are

unknown, and should, therefore, not be used for cryptographic purposes

6
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Random and Pseudo-Random Number Generation (3)

!  Security requirements of PRBGs for use in cryptography:
!  As a minimum security requirement the length k of the seed to a PRBG

should be large enough to make brute-force search over all seeds
infeasible for an attacker

!  The output of a PRBG should be statistically indistinguishable from truly
random sequences

!  The output bits should be unpredictable for an attacker with limited
resources, if he does not know the seed

!  Definition:
 A PRBG is said to pass all polynomial-time statistical tests, if no
deterministic polynomial-time algorithm can distinguish between an
output sequence of the generator and a truly random sequence of the
same length with probability significantly greater than 0.5
!  Polynomial-time algorithm means, that the running time of the algorithm is

bound by a polynomial in the length m of the sequence

7
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Random and Pseudo-Random Number Generation (4)

!  Definition:
 A PRBG is said to pass the next-bit test, if there is no deterministic
polynomial-time algorithm which, on input of the first m bits of an
output sequence s, can predict the (m + 1)st bit sm+1 of the output
sequence with probability significantly greater than 0.5

!  Theorem (universality of the next-bit test):
 A PRBG passes the next-bit test

⇔
it passes all polynomial-time statistical tests

!  For the proof, please see section 12.2 in [Sti95a]

!  Definition:
 A PRBG that passes the next-bit test – possibly under some plausible
but unproved mathematical assumption such as the intractability of the
factoring problem for large integers – is called a cryptographically
secure pseudo-random bit generator (CSPRBG)

8
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Random Number Generation (1)

!  Hardware-based random bit generators are based on physical
phenomena, as:
!  elapsed time between emission of particles during radioactive decay,
!  thermal noise from a semiconductor diode or resistor,
!  frequency instability of a free running oscillator,
!  the amount a metal insulator semiconductor capacitor is charged during a

fixed period of time,
!  air turbulence within a sealed disk drive which causes random fluctuations

in disk drive sector read latencies, and
!  sound from a microphone or video input from a camera
!  the state of an odd number of circular connected NOT gates

!  A hardware-based random bit generator should ideally be enclosed in
some tamper-resistant device and thus shielded from possible
attackers

9
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Random Number Generation (2)

!  Software-based random bit generators, may be based upon processes
as:
!  the system clock,
!  elapsed time between keystrokes or mouse movement,
!  content of input- / output buffers
!  user input, and
!  operating system values such as system load and network statistics

!  Ideally, multiple sources of randomness should be �mixed�, e.g. by
concatenating their values and computing a cryptographic hash value
for the combined value, in order to avoid that an attacker might guess
the random value
!  If, for example, only the system clock is used as a random source, than an

attacker might guess random-numbers obtained from that source of
randomness if he knows about when they were generated

10
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Random Number Generation (3)

!  De-skewing:
!  Consider a random generator that produces biased but uncorrelated bits,

e.g. it produces 1�s with probability p ≠ 0.5 and 0�s with probability 1 - p,
where p is unknown but fixed

!  The following technique can be used to obtain a random sequence that is
uncorrelated and unbiased:
■  The output sequence of the generator is grouped into pairs of bits
■  All pairs 00 and 11 are discarded
■  For each pair 10 the unbiased generator produces a 1 and for each

pair 01 it produces a 0
!  Another practical (although not provable) de-skewing technique is to pass

sequences whose bits are correlated or biased through a cryptographic
hash function such as MD5 or SHA-1

11
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Statistical Tests for Random Numbers

!  The following tests allow to check, if a generated random or pseudo-
random sequence inhibits certain statistical properties:
!  Monobit Test: Are there equally many 1�s like 0�s?
!  Serial Test (Two-Bit Test): Are there equally many 00-, 01-, 10-, 11-pairs?
!  Poker Test: Are there equally many sequences ni of length q having the

same value with q such that !m / q" ≥ 5 × (2q)
!  Runs Test: Are the numbers of runs (sequences containing only either 0�s

or 1�s) of various lengths as expected for random numbers?
!  Autocorrelation Test: Are there correlations between the sequence and

(non-cyclic) shifted versions of it?
!  Maurer�s Universal Test: Can the sequence be compressed?
!  NIST SP 800-22: Standardized test suite, includes above & more

advanced tests

!  The above descriptions just give the basic ideas of the tests. For a
more detailed and mathematical treatment, please refer to sections
5.4.4 and 5.4.5 in [Men97a]

12
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Secure Pseudo-Random Number Generation (1)

!  There are a number of algorithms, that use cryptographic hash
functions or encryption algorithms for generation of cryptographically
secure pseudo random numbers
!  Although these schemes can not be proven to be secure, they seem

sufficient for most practical situations
!  One such approach is the ANSI X9.17 generator:

!  Input: a random and secret 64-bit seed s, integer m, and 3-DES key K
!  Output: m pseudo-random 64-bit strings y1, y2, ... Ym

 1.) q = E(K, Date_Time)
 2.) For i from 1 to m do
 2.1) xi = E(K, (q ⊕ s)
 2.2) s = E(K, (xi ⊕ q)
 3.) Return(x1, x2, ... xm)

!  This method is a U.S. Federal Information Processing Standard (FIPS)
approved method for pseudo-randomly generating keys and initialization
vectors for use with DES

13
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Secure Pseudo-Random Number Generation (2)

!  The RSA-PRBG is a CSPRBG under the assumption that the RSA
problem is intractable:
!  Output: a pseudo-random bit sequence z1, z2, ..., zk of length k

 1.) Setup procedure:
 Generate two secret primes p, q suitable for use with RSA

 Compute n = p × q and Φ = (p - 1) × (q - 1)
 Select a random integer e such that 1 < e < Φ and gcd(e, Φ) = 1

 2.) Select a random integer y0 (the seed) such that y0 ∈ [1, n]

 3.) For i from 1 to k do
 3.1) yi = (yi-1)e mod n
 3.2) zi = the least significant bit of yi

!  The efficiency of the generator can be slightly improved by taking the last j
bits of every yi, with j = c × lg(lg(n)) and c is a constant

!  However, for a given bit-length m of n, a range of values for the constant c
such that the algorithm still yields a CSPRBG has not yet been determined

14
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Secure Pseudo-Random Number Generation (3)

!  The Blum-Blum-Shub-PRBG is a CSPRBG under the assumption that
the integer factorization problem is intractable:
!  Output: a pseudo-random bit sequence z1, z2, ..., zk of length k

 1.) Setup procedure:
 Generate two large secret and distinct primes p, q

 such that p, q are each congruent 3 modulo 4 and let n = p × q
 2.) Select a random integer s (the seed) such that s ∈ [1, n - 1]

 such that gcd(s, n) = 1 and let y0 = s2 mod n
 3.) For i from 1 to k do
 3.1) yi = (yi-1)2 mod n
 3.2) zi = the least significant bit of yi

!  The efficiency of the generator can be improved using the same method
as for the RSA generator with similar constraints on the constant c

15
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

Secure Pseudo-Random Number Generation (4)

!  Dual Elliptic Curve Deterministic Random Bit Generator:
!  Based on the intractability of the elliptic curve discrete logarithm problem
!  Simplified version:

!  State t is multiplied with a generator P, the x-value of the new point
becomes t’

!  Multiplied with a different point Q r bits of output can be generated,
number of bits depend on curve (ranging between 240 and 504 bits)

!  Part of NIST 800-90A standard
!  Security:

■  It has been shown that if P is chosen to be eQ for a constant e then
attackers can derive the state t

■  We do not know how the predefined points P and Q in NIST 800-90A
are derived, so be careful "

t ●P ●Q x-value x-value r bits

16
© Dr.-Ing G. Schäfer

Network Security (WS 14/15): 06 – Random Number Generation

CSPRNG security is a big thing!

!  In September 2006 Debian was accidentally modified that only the
process ID was used to feed the OpenSSL CSPRNG
!  Only 32,768 possible values!
!  Was not discovered until May 2008

!  A scan of about 23 million TLS and SSH hosts showed that
!  At least 0.34% of the hosts shared keys because of faulty RNGs
!  0.50% of the scanned TLS could be compromised because of low

randomness
!  and 1.06% of the SSH hosts…

!  Supervise your CSPRNG!

!  Do not generate random numbers right after booting your system
!  Use blocking RNGs, i.e. those that do not continue until having enough

entropy

