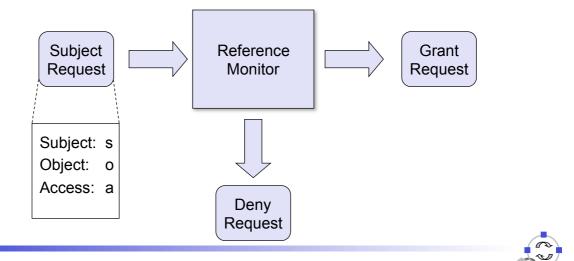


Network Security Chapter 9

Access Control


Network Security (WS 14/15): 08 – Access Control

Recharge tze What is Access Control?

Definition:

Access control comprises those mechanisms that enforce mediation on subject requests for access to objects as defined in some specified security policy.

□ An important conceptual model in this context is the *reference monitor*.

Security Policy (with respect to access control)

- In order to make access control decisions, the reference monitor needs to know the *security policy* of the system
- Definition:

The *security policy* of a system defines the conditions under which subject accesses to objects are mediated by the system reference monitor functionality

- □ Remarks:
 - The above definition is usually given in the context of computer and operating systems security
 - □ The reference monitor is just a conceptual entity, it does not necessarily need to have a physical or logical counterpart in a given system
 - The term security policy is often also used in a wider sense to describe a specification of all security aspects of a system including threats, risks, security objectives, countermeasures, etc.

Network Security (WS 14/15): 08 – Access Control

Classical Computer Subjects, Objects & Types of Access

Definition:

A *subject* is an active entity that can initiate a request for resources and utilize these resources to complete some task

Definition:

An *object* is a passive repository that is used to store information

- □ The above two definitions come from classical computer science:
 - □ Subjects are processes, and files, directories, etc. are objects
- However, it is not always obvious to identify subjects and objects in the context of communications:
 - Imagine an entity sending a message to another entity: is the receiving entity to be viewed as an object?
- □ Furthermore, we need to have some understanding of what is an *access* and what types of access do exist:
 - □ Classical computer science examples for access types: read, write, execute
 - Display Object oriented view: any method of an object defines one type of access

Definition:

A *security level* is defined as a hierarchical attribute with entities of a system in order to denote their degree of sensitivity

- □ Examples:
 - Military: unclassified < confidential < secret < top secret</p>
 - Commercial: public < sensitive < proprietary < restricted</p>

Definition:

A *security category* is defined as a nonhierarchical grouping of entities to help denote their degree of sensitivity

□ Example (commercial): department A, department B, administration, etc.

Definition:

A *security label* is defined as an attribute that is associated with system entities to denote their hierarchical sensitivity level and security categories

□ In terms of mathematical sets: Labels = Levels × Powerset(Categories)

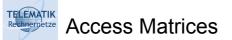
Network Security (WS 14/15): 08 – Access Control

- □ Security labels that denote the security sensitivity of:
 - □ Subjects are called *clearances*
 - □ Objects are called *classifications*
- □ An important concept to the specification of security polices are *binary relations* on the set of labels:
 - \square A binary relation on a set S is a subset of the cross-product S \times S
 - □ Example:
 - Dominates: Labels × Labels Dominates = {(b1,b2) | b1, b2 ∈ Labels ∧ level(b1) ≥ level(b2) ∧ categories(b2) ⊆ categories(b1)}
 - If $(b1, b2) \in Dominates$, we also write b1 dominates b2

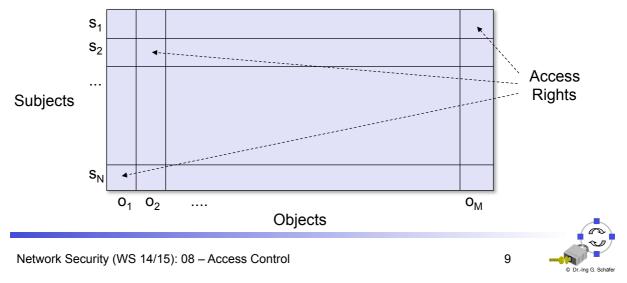
6

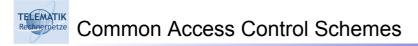
Security Policy Specification

- □ Formal expressions for security policy rules:
 - Consider the following mappings:
 - allow: Subjects × Accesses × Objects → boolean
 - own: Subjects \times Objects \rightarrow boolean
 - admin: Subjects → boolean
 - dominates: Labels × Labels → boolean
 - □ The above mappings can be used to specify well-known security policies:
 - ownership: $\forall s \in Subjects, o \in Objects, a \in Accesses: allow(s, o, a) \Leftrightarrow own(s, o)$
 - own_admin: ∀ s ∈ Subjects, o ∈ Objects, a ∈ Accesses: allow(s, o, a) ⇔ own(s, o) ∨ admin(s)
 - dom: ∀ s ∈ Subjects, o ∈ Objects, a ∈ Accesses: allow(s, o, a) ⇔ dominates(label(s), label(o))
- The dom-policy requires a system to store and process security labels for each entity, but allows for more complex access control schemes than the ownership and own_admin policies


Network Security (WS 14/15): 08 - Access Control

Types of Access Control Mechanisms


- An access control mechanism is an actual realization of the reference monitor concept
- □ There are two main types of access control mechanisms:
 - Discretionary access control comprises those procedures and mechanisms that enforce the specified mediation at the discretion of individual users
 - Example: the Unix operating system allows users to give or withdraw the read/write/execute access rights for files they own
 - Mandatory access control comprises those procedures and mechanisms that enforce the specified mediation at the discretion of a centralized system administration facility
- Both types may be combined, with the mandatory access control decisions most of the times overriding discretionary ones
 - □ Example:
 - Use of discretionary access control on personal computers combined with mandatory access control for communications (→ firewalls)



8

- □ A useful concept in the description of access control mechanisms is the *access matrix:*
 - In an access matrix for two sets of subjects and objects every row corresponds to one subject and every column to one object
 - Each cell of the matrix defines the access rights of the corresponding subject to the corresponding object

□ Access Control Lists (ACL):

- ACLs are the basis for an access control scheme, where for each object a list of valid subjects is stored which might have access to this object (possibly together with the type of access that is allowed)
- ACLs are usually used with discretionary access control, as there are too many ACLs for being maintained by a central administration facility
- Capabilities:
 - □ Capabilities are somehow the opposite concept to ACLs as with capabilities each subject owns a list of access rights to objects
 - The advantage (and danger) of capabilities is, that a subject can give some of it's capabilities to other subjects
- □ Label-based access control:
 - If security labels are stored and processed with the entities of a system, they can be used to perform label-based access control
 - □ This scheme is usually used as a mandatory access control mechanism

Data integrity of access control data structures is critical!

