

## **Network Security**

## Chapter 15

# Security of Wireless Local Area Networks

Network Security (WS 14/15): 15 - Wireless LAN Security





#### IEEE 802.11

- □ IEEE 802.11 [IEEE12] standardizes medium access control (MAC) and physical characteristics of a wireless *local area network (LAN)*
- ☐ The standard comprises multiple physical layer units:
  - □ Currently between 1-300 Mbit/s
  - □ 2.4 GHz band and 5GHz band
  - Many different modulation schemes
- □ Transmission in the license-free 2.4 GHz band implies:
  - Medium sharing with un-volunteering 802.11 devices
  - Overlapping of logical separated wireless LANs
  - Overlapping with non-802.11 devices
- □ The medium access control (MAC) supports operation under control of an access point as well as between independent stations
- ☐ In this class we will mainly focus on the standard's (in)security aspects!









- □ Station (STA):
  - Terminal with access mechanisms to the wireless medium and radio contact to the access point
- □ Basic Service Set (BSS):
  - Group of stations using the same radio frequency
- □ Access Point:
  - ☐ Station integrated into the wireless LAN and the distribution system
- □ Portal:
  - □ Bridge to other (wired) networks
- □ Distribution System:
  - □ Interconnection network to form one logical network (extended service set, ESS) based on several BSS

3



## 802.11 - Architecture of an Ad-Hoc Network



- □ Station (STA):
  - ☐ Terminal with access mechanisms to the wireless medium
- □ Basic Service Set (BSS):
  - ☐ Group of stations using the same radio frequency



- Ad-Hoc networks allow direct communication between end systems within a limited range
- As there is no infrastructure, no communication is possible between different BSSs



## Security Services of IEEE 802.11

- □ Security services of IEEE 802.11 was originally realized by:
  - □ Entity authentication service
  - □ Wired Equivalent Privacy (WEP) mechanism
- □ WEP is supposed to provide the following security services:
  - Confidentiality
  - □ Data origin authentication / data integrity
  - Access control in conjunction with layer management
- □ WEP makes use of the following algorithms:
  - ☐ The RC4 stream cipher (please refer to chapter 3)
  - ☐ The Cyclic Redundancy Code (CRC) checksum for detecting errors



Network Security (WS 14/15): 15 – Wireless LAN Security





## The Cyclic Redundancy Code (1)

- ☐ The cyclic redundancy code (CRC) is an error detection code
- Mathematical basis:
  - □ Treat bit strings as representations of polynomials with coefficients 0 and 1  $\Rightarrow$  a bit string representing message M is interpreted as M(x)
  - Polynomial arithmetic is performed modulo 2
    - ⇒ addition and subtraction are identical to XOR
- $\square$  CRC computation for a message M(x):
  - $\Box$  A and B agree upon a polynomial G(x); usually G(x) is standardized
  - $\Box$  Let the *n* be the degree of G(x), that is the length of G(x) is n + 1
  - Then if  $\frac{M(x) \times 2^n}{G(x)} = Q(x) + \frac{R(x)}{G(x)}$  it holds  $\frac{M(x) \times 2^n + R(x)}{G(x)} = Q(x)$  where R(x) is the remainder of M(x) divided by G(x)
  - □ Usually, R(x) is appended to M(x) before transmission and Q(x) is not of interest, as it is only checked if  $\frac{M(x) \times 2^n + R(x)}{G(x)}$  divides with remainder 0





## The Cyclic Redundancy Code (2)

 $\Box$  Consider now two Messages M<sub>1</sub> and M<sub>2</sub> with CRCs R<sub>1</sub> and R<sub>2</sub>:

divides with remainder 0

- $\Rightarrow$  CRC is linear, that is CRC(M<sub>1</sub> + M<sub>2</sub>) = CRC(M<sub>1</sub>) + CRC(M<sub>2</sub>)
- ☐ This property renders CRC weak for cryptographic purposes! (more on this below...)



7

Network Security (WS 14/15): 15 – Wireless LAN Security



## IEEE 802.11 Entity Authentication (1)

- □ Originally IEEE 802.11 authentication come in two "flavors":
  - □ Open System Authentication:
    - "Essentially it is a null authentication algorithm." (IEEE 802.11, section 8.1.1)
  - □ Shared Key Authentication:
    - "Shared key authentication supports authentication of STAs as either a member of those who know a shared secret key or a member of those who do not." (IEEE 802.11, section 8.1.2)
    - "The required secret, shared key is presumed to have been delivered to participating STAs via a secure channel that is independent of IEEE 802.11"





## IEEE 802.11 Entity Authentication (2)

- □ IEEE 802.11's *Shared Key Authentication* dialogue:
  - □ Authentication should be performed between stations and access points and could also be performed between arbitrary stations
  - □ When performing authentication, one station is acting as the requestor (A) and the other one as the responder (B)
  - □ The authentication dialogue:
    - 1.) A  $\rightarrow$  B: (Authentication, 1, ID<sub>A</sub>)
    - 2.) B  $\rightarrow$  A: (Authentication, 2,  $r_B$ )
    - 3.) A  $\rightarrow$  B: {Authentication, 3,  $r_B$ }<sub>KA B</sub>
    - 4.) B  $\rightarrow$  A: (Authentication, 4, Successful)

Mutual authentication requires two independent protocol runs, one in each direction

☐ But: an attacker can impersonate after eavesdropping one protocol run, as he can obtain a valid keystream from messages 2 and 3!

Network Security (WS 14/15): 15 - Wireless LAN Security



## IEEE 802.11's Wired Equivalence Privacy (1)

- □ IEEE 802.11's WEP uses RC4 as a pseudo-random-bit-generator (PRNG):
  - ☐ For every message *M* to be protected a 24 bit *initialization vector (IV)* is concatenated with the shared key  $K_{BSS}$  to form the seed of the PRNG
  - ☐ The integrity check value (ICV) of M is computed with CRC and appended ("||") to the message
  - □ The resulting message (M || ICV) is XORed ("⊕") with the keystream generated by  $RC4(IV || K_{BSS})$



WEP Encryption Block Diagram





## IEEE 802.11's Wired Equivalence Privacy (2)

- $\square$  As *IV* is send in clear with every message, every receiver who knows  $K_{BSS}$  can produce the appropriate keystream to decrypt a message
  - □ This assures the important self-synchronization property of WEP
- ☐ The decryption process is basically the inverse of encryption:



WEP Decryption Block Diagram

Network Security (WS 14/15): 15 - Wireless LAN Security



11



## IEEE 802.11's Security Claims

- ☐ The WEP has been designed to ensure the following security properties:
  - □ Confidentiality:
    - Only stations which possess K<sub>BSS</sub> can read messages protected with WEP
  - □ Data origin authentication / data integrity:
    - Malicious modifications of WEP protected messages can be detected
  - Access control in conjunction with layer management:
    - If set so in the layer management, only WEP protected messages will be accepted by receivers
    - Thus stations that do not know  $K_{BSS}$  can not send to such receivers
- □ Unfortunately, none of the above claims holds... :o(



- □ IEEE 802.11 does not specify any key management:
  - ☐ Manual management is error prone and insecure
  - □ Shared use of one key for all stations of a BSS introduces additional security problems
  - ☐ As a consequence of manual key management, keys are rarely changed
  - □ As a another consequence, "security" is often even switched off!
- □ Key Length:
  - ☐ The key length of 40 bit specified in the original standard provides only poor security
  - ☐ The reason for this was exportability
  - □ Wireless LAN cards often also allow keys of length 104 bit, but that does not make the situation better as we will see later



13



## Weakness #2: WEP Confidentiality is Insecure

- □ Even with well distributed and long keys WEP is insecure
- ☐ The reason for this is reuse of keystream:
  - $\square$  Recall that encryption is re-synchronized with every message by prepending an *IV* of length 24 bit to  $K_{BSS}$  and re-initializing the PRNG
  - $\Box$  Consider two plaintexts M<sub>1</sub> and M<sub>2</sub> encrypted using the same IV<sub>1</sub>:
    - $\blacksquare$   $C_1 = P_1 \oplus RC4(IV_1, K_{BSS})$
    - $\blacksquare$  C<sub>2</sub> = P<sub>2</sub>  $\oplus$  RC4(IV<sub>1</sub>, K<sub>BSS</sub>)

then

- $\blacksquare C_1 \oplus C_2 = (P_1 \oplus RC4(IV_1, K_{BSS})) \oplus (P_2 \oplus RC4(IV_1, K_{BSS})) = P_1 \oplus P_2$
- □ Thus, if an attacker knows, for example,  $P_1$  and  $C_1$  he can recover  $P_2$  from  $C_2$  without knowledge of the key  $K_{BSS}$ 
  - Cryptographers call this an attack with known-plaintext
- ☐ How often does reuse of keystream occur?
  - □ In practice quite often, as many implementations choose /V poorly
  - □ Even with optimum choice, as IV's length is 24 bit, a busy base station of a 11 Mbit/s WLAN will exhaust the available space in half a day



## Weakness #3: WEP Data Integrity is Insecure

- □ Recall that CRC is a linear function and RC4 is linear as well
- □ Consider A sending an encrypted message to B which is intercepted by an attacker E:
  - $\Box$  A  $\rightarrow$  B: (IV, C) with C = RC4(IV, K<sub>BSS</sub>)  $\oplus$  (M, CRC(M))
- ☐ The attacker E can construct a new ciphertext C' that will decrypt to a message M' with a valid checksum CRC(M'):
  - $\ \square$  E chooses an arbitrary message  $\Delta$  of the same length
  - $\Box$  C' = C  $\oplus$  ( $\Delta$ , CRC( $\Delta$ )) = RC4(IV, K<sub>BSS</sub>)  $\oplus$  (M, CRC(M))  $\oplus$  ( $\Delta$ , CRC( $\Delta$ ))
    - = RC4(IV,  $K_{BSS}$ )  $\oplus$  (M  $\oplus$   $\Delta$ , CRC(M)  $\oplus$  CRC( $\Delta$ ))
    - = RC4(IV,  $K_{BSS}$ )  $\oplus$  (M  $\oplus$   $\Delta$ , CRC(M  $\oplus$   $\Delta$ ))
    - = RC4(IV,  $K_{BSS}$ )  $\oplus$  (M', CRC(M'))
  - □ Note, that E does not know M' as it does not know M
  - $\square$  Nevertheless, a "1" at position n in  $\Delta$  results in a flipped bit at position n in M', so E can make controlled changes to M
    - ⇒ Data origin authentication / data integrity of WEP is insecure!



Network Security (WS 14/15): 15 – Wireless LAN Security

15



#### Weakness #4: WEP Access Control is Insecure

- □ Recall that the integrity function is computed without any key
- □ Consider an attacker who learns a plaintext-ciphertext pair:
  - $\square$  As the attacker knows M and C = RC4(IV, K<sub>BSS</sub>)  $\oplus$  (M, CRC(M)), he can compute the keystream used to produce C
  - □ If E later on wants to send a message M' he can compute  $C' = RC4(IV, K_{BSS}) \oplus (M', CRC(M'))$  and send the message (IV, C')
  - ☐ As the reuse of old IV values is possible without triggering any alarms at the receiver, this constitutes a valid message
  - ☐ An "application" for this attack is unauthorized use of network resources:
    - The attacker sends IP packets destined for the Internet to the access point which routes them accordingly, giving free Internet access to the attacker
    - ⇒ WEP Access Control can be circumvented with known plaintext





## Weakness #5: Weakness in RC4 Key Scheduling

- ☐ In early August 2001 another attack to WEP was discovered:
  - ☐ The shared key can be retrieved in less than 15 minutes provided that about 4 to 6 million packets have been recovered
  - □ The attack is a related-key attack, exploiting WEP's usage of RC4:
    - RC4 is vulnerable to deducing bits of a key if:
      - many messages are encrypted with key stream generated from a variable initialization vector and a fixed key, and
      - the initialization vectors and the plaintext of the first two octets are known for the encrypted messages
    - The IV for the key stream is transmitted in clear with every packet
    - The first two octets of an encrypted data packet can be guessed
  - □ The attack is described in [SMF01a] and [SIR01a] and was later refined to work even faster [TWP07]
  - □ R. Rivest comments on this [Riv01a]:

"Those who are using the RC4-based WEP or WEP2 protocols to provide confidentiality of their 802.11 communications should consider these protocols to be broken [...]"

Network Security (WS 14/15): 15 - Wireless LAN Security

17





#### Conclusions on IEEE 802.11's Deficiencies

- □ Original IEEE 802.11 does not provide sufficient security:
  - ☐ Missing key management makes use of the security mechanisms tedious and leads to rarely changed keys or even security switched off
  - □ Entity authentication as well as encryption rely on a key shared by all stations of a basic service set
  - □ Insecure entity authentication protocol
  - ☐ Reuse of key stream makes known-plaintext attacks possible
  - □ Linear integrity function allows to forge ICVs
  - ☐ Unkeyed integrity function allows to circumvent access control by creating valid messages from a known plaintext-ciphertext pair
  - Weakness in RC4 key scheduling allows to cryptanalyze keys
- □ Even with IEEE 802.1X and individual keys the protocol remains weak
- □ Some proposed countermeasures:
  - □ Place your IEEE 802.11 network outside your Internet firewall
  - □ Do not trust any host connected via IEEE 802.11
  - □ Additionally, use other security protocols, e.g. PPTP, L2TP, IPSec, SSH, ...





#### Interlude: Security in Public WLAN Hotspots

What security can you expect in a public WLAN hotspot?

- □ For most hotspots: Unfortunately almost none!
- ☐ If you do not have to configure any security parameters besides typing in a username and password in a web page, expect the following:
  - The hotspot operator checks your authenticity at logon time (often protected with SSL to protect against eavesdropping on your password)
  - Only authenticated clients will receive service as packet filtering is deployed to only allow accessing the logon page until successful authentication
  - Once logon authentication has been checked: no further security measures
  - No protection for your user data:
    - Everything can be intercepted and manipulated
    - However, you can deploy your own measures, e.g. VPN or SSL, but configuration is
      often tedious or not even supported by communication partner and performance is
      affected because of additional (per-packet-) overhead
  - Plus: your session can be stolen by using your MAC & IP addresses!
- Consequence: better WLAN security is urgently required

19



Network Security (WS 14/15): 15 - Wireless LAN Security



## Fixing WLAN Security: IEEE 802.11i, WPA & WPA2

- □ Scope: Defining the interaction between 802.1X and 802.11 standards
- ☐ TGi defines two classes of security algorithms for 802.11:
  - □ Pre-RSN security Network (→ WEP)
  - □ Robust Security Network (RSN)
- □ RSN security consists of two basic subsystems:
  - □ Data privacy mechanisms:
    - TKIP rapid re-keying to patch WEP for minimum privacy (marketing name WPA)
    - AES encryption robust data privacy for long term (marketing name WPA2)
  - □ Security association management:
    - Enterprise mode based on 802.1X
    - Personal mode based on pre-shared keys

© Dr.-Ing G. Schäfer



## WPA Key Management (I)

- □ In contrast to original 802.11: pair-wise keys between STA and BS, additional group keys for multi- and broadcast packets, as well as station-to-station link (STSL) keys
- ☐ The first secret: the 256 bit *Pairwise Master Key (PMK)* 
  - □ Enterprise mode: Uses 802.1X authentication and installs a new key known to BS and client, e.g., by EAP-TTLS
  - □ Personal mode: Uses pre-shared key (*PSK*) known to BS and many STAs
    - Explicitly given by 64 random hex characters or implicitly by password
    - If password: PMK = PBKDF2(password, SSID, 4096, 256)
    - Where PBKDF2 is the Password-Based Key Derivation Function 2 from [RFC2898] with a *salt* SSID and 256 bit output length
    - Implies 2 \* 4096 calculations of HMAC-SHA1 to slow down brute-force
- □ PMK is trust anchor to run authentication by EAPOL (EAP over LAN) handshake, but will never be used directly...

OF IN C. SANGE

Network Security (WS 14/15): 15 - Wireless LAN Security

21



## WPA Key Management (II)

- □ For actual cryptographic protocols a short-term 512 bit *Pairwise Transient Key (PTK)* is generated by
  - $\square \ PTK = PRF(PMK, "Pairwise key expansion", min(Addr_{BS}, Addr_{STA}) \mid\mid max(Addr_{BS}, Addr_{STA}) \mid\mid min(r_{BS}, r_{STA}) \mid\mid max(r_{BS}, r_{STA}))$
  - □ Where PRF(K, A, B) is the concatenated output of *HMAC-SHA1(K, A* || '0' || *B* || *i*) over a running index *i*
- ☐ The PTK is split into:
  - □ EAPOL Key Confirmation Key (KCK, first 128 bits),
    - Used to integrity protect EAPOL messages
    - By HMAC-MD5 (deprecated), HMAC-SHA1-128, AES-128-CMAC
  - □ EAPOL Key Encryption Key (KEK, second 128 bits),
    - Used to encrypt new keys in EAPOL messages
    - By RC4 (deprecated), AES in Key Wrap Mode [RFC3394]
  - □ A Temporal Key (TK) to protect data traffic (starting from bit 256)!



# WPA Key Management (III)

- □ Initial dialog with BS:
  - □ EAPOL (EAP over LAN) 4-way handshake is used to
    - Verify mutual knowledge of PMK
    - Initiated by BS to install keys (group and new pairwise)
  - □ Simplified handshake works as follows:
    - 1. BS $\rightarrow$  STA: (1,  $r_{BS}$ , PMKID, install new PTK)
    - 2. STA $\rightarrow$  BS: (2,  $r_{STA}$ , MAC<sub>KCK</sub>)
    - 3. BS  $\rightarrow$  STA: (3,  $r_{BS}$ , MAC<sub>KCK</sub>, {TK}<sub>KEK</sub>)
    - 4. STA $\rightarrow$  BS: (4,  $r_{STA}$  MAC<sub>KCK</sub>)
    - Where PMKID identifies the PMK: Upper 128 bit of HMAC-SHA-256(PMK, "PMK Name" || Addr<sub>BS</sub> || Addr<sub>STA</sub>)



Network Security (WS 14/15): 15 - Wireless LAN Security

23



## An Intermediate Solution: Temporal Key Integrity Protocol

- Design Goals:
  - □ Quick fix to the existing WEP problem, runs WEP as a sub- component
  - □ Can be implemented in software, reuses existing WEP hardware
  - □ Requirements on existing AP hardware:
    - 33 or 25 MHz ARM7 or i486 already running at 90% CPU utilization before TKIP
    - Intended to be a software/firmware upgrade only
    - Do not unduly degrade performance
- Main concepts:
  - Message Integrity Code (MIC)
  - □ Countermeasures in case of MIC failures
  - □ Sequence counter
  - □ Dynamic key management (re-keying)
  - Key mixing
- ☐ TKIP meets criteria for a good standard: everyone is unhappy with it.







25



## TKIP Design: Message Integrity Code Function Michael

- □ Protect against forgeries:
  - ☐ Must be cheap: CPU budget 5 instructions / byte
  - □ Unfortunately is weak: a 2<sup>29</sup> message attack exists
  - □ Computed over MSDUs, while WEP is over MPDUs
  - ☐ Uses two 64-bit keys, one in each link direction
  - □ Requires countermeasures:
    - Rekey on active attack (only few false alarms as CRC is checked first)
    - Rate limit rekeying to one per minute







## TKIP Design: Replay Protection and RC4 Key Scheduling

- □ Replay protection:
  - □ Reset packet sequence # to 0 on rekey
  - □ Increment sequence # by 1 on each packet
  - □ Drop any packet received out of sequence
- □ Circumvent WEP's encryption weaknesses:
  - □ Build a better per-packet encryption key by preventing weak-key attacks and decorrelating WEP IV and per-packet key
  - must be efficient on existing hardware



Network Security (WS 14/15): 15 - Wireless LAN Security

27





## TKIP Processing at the Sender



(source: IEEE 802.11 Tgi draft)





## TKIP Processing at the Receiver



(source: IEEE 802.11 Tgi draft)

Network Security (WS 14/15): 15 - Wireless LAN Security





## The Long Term Solution: AES based WLAN Protection

- □ Counter mode with CBC-MAC (CCMP):
  - Mandatory to implement: the long-term solution
  - ☐ An all new protocol with few concessions to WEP
  - □ Provides: data confidentiality, data origin authentication, replay protection
  - ☐ Based on AES in Counter Mode Encryption with CBC-MAC (CCM)
    - Use CBC-MAC to compute a MIC on the plaintext header, length of the plaintext header, and the payload
    - Use CTR mode to encrypt the payload with counter values 1, 2, 3, ...
    - Use CTR mode to encrypt the MIC with counter value 0
  - □ AES overhead requires new AP hardware
  - □ AES overhead may require new STA hardware for hand-held devices, but in theory not PCs (however, this will increase CPU load and energy consumption), practically due to missing drivers for both











## Comparison of WEP, TKIP, and CCMP

|            | WEP             | TKIP        | CCMP                           |
|------------|-----------------|-------------|--------------------------------|
| Cipher     | RC4             | RC4         | AES                            |
| Key Size   | 40 or 104 bits  | 104 bits    | 128 bits encrypt, 64 bit auth. |
| Key Life   | 24-bit IV, wrap | 48-bit IV   | 48-bit IV                      |
| Packet Key | Concat.         | Mixing Fnc. | Not Needed                     |
| Integrity  |                 |             |                                |
| Data       | CRC-32          | Michael     | CCM                            |
| Header     | None            | Michael     | CCM                            |
| Replay     | None            | Use IV      | Use IV                         |
| Key Mgmt.  | None            | EAP-based   | EAP-based                      |







#### Additional References

- [BGW01a] N. Borisov, I. Goldberg, D. Wagner. *Intercepting Mobile Communications: The Insecurity of 802.11.* 7th ACM SIGMOBILE Annual International Conference on Mobile Computing and Networking (MOBICOM), Rome, Italy, July 2001.
- [FMS01a] S. Fluhrer, I. Mantin, A. Shamir. Weaknesses in the Key Scheduling Algorithm of RC4. Eighth Annual Workshop on Selected Areas in Cryptography, August 2001.
- [IEEE12] IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std 802.11-2012, The Institute of Electrical and Electronics Engineers (IEEE), 2012.
- [Riv01a] R. Rivest. RSA Security Response to Weaknesses in Key Scheduling Algorithm of RC4. http://www.rsa.com/rsalabs/technotes/wep.html, 2001.
- [SIR01a] A. Stubblefield, J. Ioannidis, A. D. Rubin. *Using the Fluhrer, Mantin, and Shamir Attack to Break WEP.* AT&T Labs Technical Report TD-4ZCPZZ, August 2001.
- [TWP07] E. Tews, R. P. Weinmann, A. Pyshkin. *Breaking 104 bit WEP in less than 60 seconds*. Information Security Applications, 188-202, 2007.
- [WM02a] N. C. Winget, T. Moore, D. Stanley, J. Walker. IEEE 802.11i Overview. NIST 802.11 Wireless LAN Security Workshop, Falls Church, Virginia, December 4-5, 2002.

© Dr.-Ing G, Schäfer

Network Security (WS 14/15): 15 - Wireless LAN Security

33



#### Additional References

- [RFC2898] B. Kaliski. *PKCS #5: Password-Based Cryptography Specification Version 2.0.* IETF Request for Comments 2898, 2000.
- [RFC3394] J. Schaad, R. Housley. *Advanced Encryption Standard (AES) Key Wrap Algorithm.* IETF Request for Comments 3394, 2002.

