
PrivDPI: Privacy-Preserving Encrypted Traffic Inspection with
Reusable Obfuscated Rules

Jianting Ning
∗

Fujian Normal University & National

University of Singapore

jtning88@gmail.com

Geong Sen Poh

Trustwave & NUS-Singtel Cyber

Security Lab

geongsen.poh@trustwave.com

Jia-Ch’ng Loh

NUS-Singtel Cyber Security Lab

dcsljc@nus.edu.sg

Jason Chia

NUS-Singtel Cyber Security Lab

chia_jason96@live.com

Ee-Chien Chang

National University of Singapore

changec@comp.nus.edu.sg

ABSTRACT
Network middleboxes perform deep packet inspection (DPI) to

detect anomalies and suspicious activities in network traffic. How-

ever, increasingly these traffic are encrypted and middleboxes can

no longer make sense of them. A recent proposal by Sherry et al.

(SIGCOMM 2015), named BlindBox, enables the middlebox to per-

form inspection in a privacy-preserving manner. BlindBox deploys

garbled circuit to generate encrypted rules for the purpose of in-

specting the encrypted traffic directly. However, the setup latency

(which could be 97s on a ruleset of 3,000 as reported) and overhead

size incurred by garbled circuit are high. Since communication can

only be commenced after the encrypted rules being generated, such

delay is intolerable in many real-time applications. In this work, we

present PrivDPI, which reduces the setup delay while retaining sim-

ilar privacy guarantee. Compared to BlindBox, for a ruleset of 3,000,

our encrypted rule generation is 288x faster and requires 290,227x

smaller overhead for the first session, and is even 1,036x faster and

requires 3424,505x smaller overhead over 20 consecutive sessions.

The performance gain is based on a new technique for generating

encrypted rules as well as the idea of reusing intermediate results

generated in previous sessions across subsequent sessions. This is

in contrast to Blindbox which performs encrypted rule generation

from scratch for every session. Nevertheless, PrivDPI is 6x slower in

generating the encrypted traffic tokens, yet in our implementation,

the token encryption rate of PrivDPI is more than 17,271 per sec-

ond which is sufficient for many real-time applications. Moreover,

the intermediate values generated in each session can be reused

across subsequent sessions for repeated tokens, which could fur-

ther speedup token encryption. Overall, our experiment shows that

PrivDPI is practical and especially suitable for connections with

short flows.

∗
The work was done while the author was at National University of Singapore.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3354204

CCS CONCEPTS
• Security and privacy → Security protocols; Web protocol
security; Cryptography.

KEYWORDS
Network privacy; Encrypted traffic inspection; Middlebox privacy

ACM Reference Format:
Jianting Ning, Geong Sen Poh, Jia-Ch’ng Loh, Jason Chia, and Ee-Chien

Chang. 2019. PrivDPI: Privacy-Preserving Encrypted Traffic Inspection with

Reusable Obfuscated Rules. In 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’19), November 11–15, 2019, London,
United Kingdom. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3319535.3354204

1 INTRODUCTION
Deep packet inspection (DPI) has been deployed for many func-

tionalities such as intrusion detection, network monitoring, and

preventing data leakage. At the same time, it is expected that 80% of

all network traffic on the web is encrypted (i.e. SSL/TLS) [11]. This

means existing DPI techniques that inspect plain packets would be

of limited usage. In order to inspect encrypted traffic, a technique

widely used by enterprises is split-TLS using man-in-the-middle

(MitM) attack. A middlebox serves as a MitM by establishing a

session with the client and the destination server on behalf of the

client. By doing so the middlebox is able to decrypt, inspect and

re-encrypt the encrypted traffic originated from the client. This

provides a practical solution since modification is not required on

the underlying security protocol (i.e. TLS).

A system based on the above technique is secure as long as the

root certificate required in the MitM approach is securely stored

and the TLS protocol implemented is up-to-date. Unfortunately,

deployments have been shown to be insecure due to weaknesses in

their implementation, such as allowing deprecated cipher suites, as

discussed by Jarmoc [18], Carnavalet and Mannan [12], Durumeric

et al. [14] and Waked et al. [28]. Also, as was discussed by Sherry

et al. [23], a large network with heterogeneous network devices

would require many experienced administrators to administer them.

This poses another privacy concern when MitM approach is used,

since many of these devices may have access to the decrypted data.

In addition, MitM violates end-to-end encryption and data privacy

guarantee of the supposedly secure two-party communications.

The various security issues prompted the US-Cert to issue an alert

(TA17-075A) on interception of encrypted traffic [27].

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1657

https://doi.org/10.1145/3319535.3354204
https://doi.org/10.1145/3319535.3354204
https://doi.org/10.1145/3319535.3354204

New approaches have been proposed in order to address the

issues stated. A recent approach is BlindBox proposed by Sherry

et al. [24]. BlindBox performs deep packet inspection directly on

the encrypted traffic, without the client being able to learn the

rules used by the middlebox, and the middlebox not being able to

gain any information of the underlying content of the encrypted

payloads (except for the content that matches the rules). It intro-

duced a technique called obfuscated rule encryption to achieve this,

which is based on garbled circuit. Specifically, the client and the

server generate a garbled circuit for a function F and perform obliv-

ious transfer (OT) with the middlebox respectively to prepare the

encrypted rules. After that, the client tokenizes its payloads and

encrypts the payloads to obtain the corresponding encrypted to-

kens using the same key as was used in preparing the encrypted

rules. The middlebox then compares the encrypted rules with the

encrypted tokens in the traffic.

However, such garbled circuit approach incurs significant com-

putation and communication overhead, where roughly 97 seconds

are required to prepare 3,000 encrypted rules as reported in [24].

Furthermore, for every new session, this operation must be per-

formed again. As noted in [24], BlindBox is not yet practical for

short, independent flows with many rules.

1.1 Our Contributions
To address the limitations of BlindBox, we present PrivDPI, which

provides a secure, practical solution whereby (a) the encrypted rule

generation is relatively more efficient than BlindBox yet retains the

same security and privacy guarantee, and (b) introducing a reusable

technique so that a client and the middlebox only need to perform

rule preparation (i.e., generation of obfuscated rules) once, which

is during the first session. The obfuscated rules can then be reused

to generate encrypted rules for every new session, thus effectively

reducing the computation and communication overhead in rule

preparation compared to BlindBox.

To realize our objective, we developed the following techniques:

• We present a new obfuscated rule generation technique that does

not use garbled circuit, which achieves a better performance for

encrypted rule generation.

• We introduce a reusable obfuscated rule generation technique, in

which for every Q sessions, the obfuscated rules generated in

the first session can be reused in subsequent sessions, which

minimizes the computation and communication overhead during

encrypted traffic inspection. The capability to reuse the rules

further improves the performance of our proposal.

We demonstrate through extensive experiments the improved

performance due to our proposed techniques as compared to Blind-

Box. For the first session on a ruleset of 3,000, the encrypted rule

generation of PrivDPI is 288x faster, and requires 290,227x less

bandwidth than that of BlindBox. For 20 consecutive sessions on

a ruleset of 3,000, the encrypted rule generation is 1,036x faster

compared to BlindBox, and requires 3424,505x less bandwidth. The

token encryption phase of PrivDPI, however, is roughly 6x slower

than that of BlindBox (with AES-NI hardware support). In order to

reduce the computation overhead, we record the encrypted tokens

generated so far and reuse them in subsequent sessions when the

same tokens appear. It is shown in our experiments that the perfor-

mance of our token encryption phase using this reuse mechanism

is only 3.5x slower when all the tokens of the current session have

already appeared in previous sessions. For a complete TLS connec-

tion on a ruleset of 3,000, our running time is less than BlindBox

providing that the number of tokens in both client and server is

less than around 3.78 million. This demonstrates that PrivDPI is

practical and especially suitable for settings using connections with

short flows.

1.2 Use Cases
The main objective of PrivDPI is to enable a middlebox in an en-

terprise or Internet Service Provider (ISP) to be able to inspect

encrypted traffic, while at the same time preserve privacy of the

underlying payloads. In this setting, a user can deploy PrivDPI

so that he/she is assured that the middlebox has no access to the

encrypted information transmitted except if the session has been

compromised (i.e. encrypted malware traffic). For example, a sub-

scriber to an ISP service may install PrivDPI so that he/she can be

assured that his/her email or Facebook can never be viewed by the

personnel that administers the middlebox.

An enterpise may also provide a guarantee to its employees in

the scenario where personal data privacy becomes increasingly

prevalent (i.e. General Data Protection Regulation (GDPR)). The

inspection on encrypted payloads is performed in such a way that

not even the administrators have the ability to exploit the existing

middlebox setting. We note that an enterprise usually installs or

subscribes to security services in order to secure its enterprise net-

works. Furthermore, the enterprise can deploy PrivDPI to detect

potential data exfiltration through keyword matching yet maintain-

ing privacy of the users.

2 OVERVIEW
PrivDPI has a similar architecture as in BlindBox [24] (Fig. 1). It

consists of four entities: Rule Generator (RG), MiddleBox (MB),
Client (C) and Server (S) described as follows.

• RG: It issues rule tuples that contain network rules. These rule

tuples are used by MB to detect malicious network traffic. In

particular, each rule contains one or more keywords describing

malicious behaviours in the network communication. RG can be

an organization that provides network security services.

• MB: It is a network appliance that monitors the encrypted traffic

and try to find malicious data payload(s) in the traffic that match

the rule issued by RG.
• C: It is the user (e.g. the web browser) that sends and receives

network traffic. In this work, we focus on encrypted network

traffic. In particular, TLS connections.

• S: It is the service provider that provides content to the client.

2.1 Threat Model
There are two types of adversaries in the system. The first type of

adversaries involves either C or S. In this case, we assume either

C or S is malicious but not both. Here, the main objective of an

adversary is to escape detection of malicious behaviour, e.g., by

generating encrypted token that does not correspond to the real

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1658

traffic. This is a similar threat setting of a standard intrusion detec-

tion system (IDS). We do not consider the case when both C and S
are malicious, since they can just agree on a secret key and encrypt

their traffic throughout the entire session. The assumption that

either C or S is malicious is a standard setting for data exfiltration

and parental filtering applications [24].

The second type of the adversaries involves MB. An adversary

of the second type exploits the system in order to learn the content

of the encrypted traffic between C and S. We assume the adversary

to be semi-honest (i.e., honest-but-curious), in that it follows the

protocol as it is, and only tries to learn the content of the encrypted

payload(s). The goal of PrivDPI is to enable MB to perform deep

packet inspection without exposing the content of the traffic to it.

2.2 System Flow
PrivDPI consists of the following phases.

• Setup. In this phase,MB receives a set of rule tuples from RG.
Meanwhile, C and S establish a session key through the TLS

handshake protocol. This session key can be used as a common

randomness source for C and S.
• Preprocessing. In this phase, MB interacts with C and S to

establish a set of reusable obfuscated rules in such a way that

C and S do not learn the rules while MB does not learn the key

used by C and S.
• Session Rule Preparation. In this phase, the reusable obfus-

cated rules generated in the preprocessing phase are used as

“seeds” to establish the session rules for the TLS session. The

session rules can then be used as a key to generate the encrypted

rules for traffic detection (in the following token detection phase).

• Token Encryption. C first tokenizes the data to be transmitted

through the TLS session. Each token is then encrypted, which

will be used for matching during the token detection phase.

• Token Detection.MB first generates encrypted rules using the

session rules generated in the session rule preparation phase. It

then performs token detection based on the encrypted tokens

received from C and the encrypted rules it generated. The main

characteristic here is that MB is able to reuse the obfuscated

rules, which is prepared in the first session, in the subsequent

sessions.

• Token Validation. This phase is required only when either C
or S is malicious in that the data sent through the TLS session

and the tokenization session is different. Since S (resp. C) has the
session key, S (resp. C) may perform the same tokenization and

encryption algorithms on the data that it receives and compares

the generated tokens to the tokens received from C (resp. S).

3 PRIVDPI
In this section, we present a basic version of our PrivDPI. This

version uses bilinear map to ensure C and S use the same key to

generate tokens, in order to guard against a malicious C (or S)
generating tokens that are different from the TLS payloads to evade

detection by MB. It is designed with minimal involvement of S.
This reduces computation and communication requirements on S
during preparation of obfuscated rules. However, use of bilinear

map incurs high computation costs. In Section 4, we will present

a variant of PrivDPI that does not need pairing with much better

efficiency but require more interactions with S. In the following,

we provide preliminaries before we describe PrivDPI.

3.1 Preliminaries
3.1.1 Notation. Let PPT be probabilistic polynomial-time. Let N
be the natural numbers. We denote N ∈ N as the number of rules,

and define [N] to represent the set {1, . . . ,N }, [i, j] to represent the
set {i,i + 1, . . . , j}. Table 1 lists the notation we used in the system.

3.1.2 Bilinear Maps. Let G and GT be two multiplicative cyclic

groups of prime order p, and д be a generator ∈ G. Let e : G ×
G → GT be a bilinear map, which has the following properties:

(1) Bilinearity: for all д ∈ G and a,b ∈ Zp , we have e (дa ,дb) =

e (д,д)ab ; (2) Non-degeneracy: e (д,д) , 1. The group operation in

G and the bilinear map e : G ×G → GT are efficiently computable.

3.1.3 Computational Diffie-Hellman (CDH) Assumption. Given (д,

дa ,дb) ∈ G for any (a,b) ∈ Z∗p , it is hard to compute дab ∈ G.

3.1.4 Decisional Diffie-Hellman (DDH) Assumption. Given (д,дa ,

дb ,Z) ∈ G for any (a,b) ∈ Z∗p , it is hard to decide Z = дab or Z is

a random value.

3.2 Setup
During the setup phase, for a rule set {ri ∈ R}i ∈[N]

(where R is the

rule domain), RG chooses a random secret α ∈ Zp , random si ∈ Zp
for each ri , and sets A = дα , Ri = дαri+si for i ∈ [N]. RG then

signs {Ri }i ∈[N]
with its private key to obtain a set of signatures

{sig(Ri)}i ∈[N]
. Finally, RG sends ({si ,Ri ,sig(Ri)}i ∈[N]

) to MB.
These rule tuples, which contain keywords known to be used to

formulate attacks, will enable MB to perform privacy-preserving

deep packet inspection at the later stage. Note that this is the only

time RG is involved in the protocol (except when there are updates

on the rules). RG can be offline once the above steps are performed.

Independently, C and S install a PrivDPI HTTPS configuration

which includes A, the public key of the signature scheme used by

RG, a hash function H and a value RS. Similar to BlindBox, H is

implemented using AES, and RS is a parameter used to reduce the

ciphertext size to reduce bandwidth overhead.

Let sk be the session key established from the TLS handshake

protocol. As in BlindBox, C and S then derive the following three

keys using sk (via a pseudorandom number generator):

• krand : will be used as a seed for generating randomness. Note

that since C and S share the same seed, the randomnesses they

later generate are the same;

• k : will be used for generating reusable obfuscated rules and ses-

sion rules
1
. Without loss of generality, we assume k ∈ Zp ;

• kT LS : is the regular TLS key, and is used to encrypt the traffic.

3.3 Preprocessing
In this phase, a preprocessing protocol will be executed in the first
TLS session right after the completion of the handshake protocol.

The protocol is described in Fig. 2. The aim of this protocol is

to establish a set of intermediary, reusable obfuscated rules for

MB, which will be reused to generate session rules in subsequent

1
The security requirement of k is that: given k , it is computationally infeasible to

recover sk .

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1659

Client	C Server	SMiddlebox	MB

Reusable	obfuscated	
rules	preparation

Rule	Generator	RG

Tuples	of	
rules	and	signatures

Encrypted	
rules

TLS
Detect

Tokenize Encrypt

Encrypted	traffic

Encrypted	tokens
Validate	
tokens

TLS

Figure 1 PrivDPI System Architecture: There are two data flows, one the TLS session and another the tokenized data. RG prepares rule tuples
and generates signatures for the rule tuples. MB interacts with C and S to prepare the reusable obfuscated rules. MB inspects the tokenized
data and forwards the TLS session to the server. The server is able to verify the two data flows are identical since it has the session key used
to encrypt the TLS traffic and the tokenized data.

Table 1 Notation

Notation Meaning Description

(si ,Ri ,sig(Ri)) Rule tuple Generated by RG for rule ri as the input to MB to generate reusable obfuscated rule

Ii Reusable obfuscated rule Generated by MB for rule ri in the preprocessing phase in the first session, used as a

source to generate session rule for any new session

Si Session rule Generated by MB for rule ri in the session rule preparation phase, used as the “seed”

to generate encrypted rule

Ti Session token Generated by C (or S) for token ti in the token encryption phase, used as the “seed” to

generate encrypted token

Cri Encrypted rule Generated by MB for rule ri in the token detection phase, used for matching

Cti Encrypted token Generated by C (or S) for token ti in the token encryption phase, used for matching

sessions. The reusable obfuscated rule of a rule ri is Ii = д
kαri+k2

,

where k ,α ,ri are as defined in Section 3.2.

We now explain the rationale behind this protocol. In order to

enable MB to detect the encrypted traffic, MB needs to obtain

a function Fk (ri) which is jointly generated from both k and ri .
However, MB should not obtain k and C should not know ri . This
is because ifMB knows k ,MB will be able to arbitrarily generate

encrypted rules to learn the content of the encrypted payloads. Due

to the rules ri being proprietary knowledge that should only be

known toMB andRG,C is not supposed to know ri . To address the
above issue, we introduce a new technique called oblivious reusable
obfuscated rule generation, which is inspired by a recent protocol

for oblivious transfer [10]. Our main intuition is for C to obfuscate

the key k and for the RG andMB to obfuscate the rules such that

an obfuscated rule can be derived without revealing the k or ri . We

did it in a way that enables the obfuscated rules to be reusuable.

In more details, given a groupG and its generator д, C calculates

Kc = дk using her k and sends Kc to MB. Symmetrically, MB
sends a set {Ri = дαri+si }i ∈[N]

to C. The key observation is that

C can derive a value Ki = (Ri · Kc)
k = дkαri+ksi+k

2

for a rule

ri , and thatMB is not able to calculate this value assuming CDH

assumption holds. This ensures that MB can only obtain the set

{Ki }i ∈[N]
corresponding to {Ri }i ∈[N]

. The set {Ki }i ∈[N]
will be

used to generate the reusable obfuscated rules {Ii }i ∈[N]
, which are

the key components for inspecting the encrypted traffic. However,

MB cannot inject additional rules R̂ not provided by RG and forge

K̂i = (R̂i · Kc)
k
for R̂i < {Ri }i ∈[N]

. As a result,MB does not have

the ability to learn more information from the encrypted traffic

except for {Ri }i ∈[N]
. There are further, subtle issues that need to

be addressed. We explain them in the followings:

1. In order to preventMB from gaining more information on the

encrypted traffic by creating R̂i < {Ri }i ∈[N]
to obtain K̂i =

(R̂i · Kc)
k
,MB needs to send the signatures of {Ri }i ∈[N]

along

with {Ri }i ∈[N]
. C will verify the received {Ri }i ∈[N]

using the

signatures received. Since MB cannot forge the signature for R̂i ,

any additional R̂i will be detected by C.
2. In order to ensure k in Kc (sent by C) and k in Ki (generated by

C) for rule ri is identical, S needs to calculate Ks = д
k
using her

k and sends Ks toMB. Since C and S share the same k and one of

them is honest, for the case where C uses a different k ′, MB can

notice this by checking whetherKc equalsKs . For the case where
Ki is computed by C using a different k ′, MB can notice this by

checking whether the equation e (Ki ,д) = e (Ri · Kc ,Kc) holds.
We present a more efficient mechanism to check the correctness

of Kc sent by C without using bilinear map in section 4, which

requires more interactions with S.
3. In order to prevent C from learning the rules, the rule is blinded

by α and si chosen by RG. In particular, for a rule ri , C receives

Ri = дαri+si , where α ,si ∈ Zp . For the case where the rule

domain is small, since ri is blinded by α and si , C cannot obtain

the value of ri even by launching brute-force attack, even if C is

computational unbounded.

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1660

Preprocessing Protocol
Input:MB has inputs ({si ,Ri ,sig(Ri)}i ∈[N]

) (fromRG), where
Ri = д

αri+si
; C and S have common inputs k .

Protocol:
1. C computes Kc = дk (using her k), and sends Kc to MB.

Similarly, S computes Ks = д
k
(using her k) and sends Ks to

MB.
2. MB checks whether Kc equals Ks . If not, it halts and outputs
⊥. Otherwise, it sends ({Ri ,Sig(Ri)}i ∈[N]

) to C.
3. C does as follows:

(a) For i ∈ [N], check if Sig(Ri) is a valid signature on Ri
using the public key of the signature scheme used by RG.
If not, halt and output ⊥.

(b) Compute Ki = (Ri · Kc)
k = дkαri+ksi+k

2

for i ∈ [N].

Finally, send {Ki }i ∈[N]
to MB.

4. For i ∈ [N], MB verifies whether the equation e (Ki ,д) =
e (Ri · Kc ,Kc) holds. If not, it halts and outputs ⊥. Otherwise,

for i ∈ [N], it calculates the reusable obfuscated rule Ii =

Ki/(Kc)
si = дkαri+k

2

for future use.

Figure 2 Preprocessing Protocol

3.4 Session Rule Preparation
In this phase, a session rule preparation protocol is executed to

generate session rule. The session rule is derived from the reusable

obfuscated rule generated in the preprocessing protocol. The proto-

col is described in Fig. 3. Themain objective is so that for subsequent

sessions, the protocol does not need to re-compute the obfuscated

rule. This improves the computation and communication costs as

compared to BlindBox, which we demonstrate in our experiment.

In the preprocessing protocol discussed in the previous section,

C and S establish a session key sk and derive (krand ,k ,kT LS) in
the first TLS session. For a new session, we denote the session key

that C and S established as sknew . Let (k̂rand ,k̂ ,k̂T LS) be the new
keys derived from sknew .

For the first session, the reusable obfuscated rules {Ii }i ∈[N]
gen-

erated in the preprocessing protocol can be used directly as the

session rules. For any subsequent sessions,Cwill send K̂c = д
k̂
spe-

cific to the current session to MB.MB generates the session rules

specific to the current session by calculating Si = Ii · K̂c using the

reusable obfuscated rules {Ii }i ∈[N]
generated in the preprocessing

protocol. In order to prevent C from sending a different K̂c , S needs
to send K̂s = д

k̂
to MB as well. If a different K̂ ′c is sent by C, MB

will be able to notice this fact by checking whether the messages

received from C and S are the same.

Remark: We note that as the number of session increases, more

and more group elements will be consumed. In order to prevent

brute-force attack, the preprocessing protocol (Fig. 2) will be run

every Q sessions (the value of Q depends on the group we chosen).

The session when the preprocessing is performed is treated as the

new first session.

Session Rule Preparation Protocol
Input: MB has inputs {Ii }i ∈[N]

(from the preprocessing proto-

col). C and S have common inputs k (for the first session) or k̂
(for a subsequent session).

Protocol:
Case 1: For the first session, MB sets {Si = Ii }i ∈[N]

as the

session rules.

Case 2: For a subsequent session, the protocol operates as fol-
lows:

1. C sends K̂c = д
k̂
to MB. Similarly, S sends K̂s = д

k̂
to MB.

2. MB checks whether K̂c equals K̂s . If not, it halts and outputs

⊥. Otherwise, for i ∈ [N], it calculates Si = Ii · K̂c as the

session rule.

Figure 3 Session Rule Preparation Protocol

3.5 Token Encryption
Sliding window-based tokenization was used by Blindbox and we

follow the same approach in our protocol, in which each token

consists of 8 bytes. As an example, given a keyword “confidential”

which consists of 12 bytes of character, we can generate five tokens

in 8 bytes, such that “confiden”, “onfident”, “nfidenti”, “fidentia”, and

“idential”. In order to reduce storage size (as there exists overlay to-

kens), given a keyword that is more than 8 bytes,MB needs only to

generate two tokens, a prefix “confiden” and a suffix “idential”. This

would be sufficient to detect the keyword. We note that an optimiza-

tion was also proposed in Blindbox, namely delimiter-based tok-

enization, which is applicable to the HTTP realm by observing how

the keywords from rules for these protocols are structured. For ex-

ample, suppose that given a payload “submit.php?keyword=secret",

the possible keywords in rules are “submit", “submit.php", “?key-

word=", “keyword=secret", but not “subm" or “submit.p". In practice,

we can generate tokens that match keywords that start and end on

delimiter-based offsets.

After tokenization, for every token t , token encryption is per-

formed based on the algorithm described in Fig. 4. The intuition

is that, since MB holds the session rules ({Si = Ii }i ∈[N]
for the

first session or {Si = Ii · K̂c }i ∈[N]
for other session), to perform

an equality check, the encrypted token should be derived from

дkαt+k
2

for the first session or дkαt+k
2+k̂c

for the other session.

Hence, we require C to compute Tt = Akt · дk
2

= дkαt+k
2

for the

first session or Tt = Akt · дk
2

· K̂c = дkαt+k
2+k̂

for a subsequent

session with key k̂ . We call Tt the session token for token t .
The security requirement here is thatMB should be able tomatch

a token t if t equals a rule r hold byMB, otherwise, no information

is revealed except for the fact that there is no match. To achieve

this with high efficiency, a simple approach is to encrypt Tt using
a deterministic encryption scheme. However, simply encrypting

Tt using a deterministic encryption scheme leaks information that

may lead to frequency analysis attack. This is because identical

tokens in the encrypted packet stream will have the same session

tokens, which will result in identical ciphertexts. Here, we adopt the

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1661

approach in BlindBox. We add a random salt to prevent frequency

analysis attack. However, naively adding a random salt to each

token requires one salt per encrypted token. The salt needs to be

sent to MB in order to perform equality check. In order to avoid

sending an independent salt for each encrypted token, C initializes

a counter table CTc that will record a tuple (t ,Tt ,ctt) for every
token t , where Tt is the session token corresponding to t and ctt is
the times t appeared in the stream per session so far. In addition,

C derives a value salt as the initial salt using krand and sends it

toMB, whichMB will record. For every token t , we consider the
following two cases:

1. For the first session, if there does not exist a tuple corresponding

to t , calculateTt = Akt ·дk
2

, set ctt ← 0, add the tuple (t ,Tt ,ctt)
into CTc , and compute the encrypted token as H (salt + ctt ,Tt).
Otherwise, i.e., there exists a tuple (t ′,Tt ′ ,ctt ′) in CTc such that

t ′ = t , set ctt ′ ← ctt ′ + 1, and compute the encrypted token as

H (salt + ctt ′ ,Tt ′).

2. For other session, first compute Tt = Akt · дk
2

· K̂c . If there
does not exist a tuple corresponding to t in CTc , set ctt ← 0

and add tuple (t ,Tt ,ctt) into CTc , compute the encrypted token

as H (salt + ctt ,Tt). If there exists a tuple (t ′,Tt ′ ,ctt ′) in CTc
such that t ′ = t and Tt ′ , Tt , set Tt ′ ← Tt , ctt ′ ← 0, compute

the encrypted token as H (salt + ctt ′ ,Tt ′). If there exists a tuple
(t ′,Tt ′ ,ctt ′) in CTc such that t

′ = t andTt ′ = Tt , set ctt ′ ← ctt ′+1,
the encrypted token as H (salt + ctt ′ ,Tt ′).

Token Encryption Algorithm
Input:A counter table CTc , a token t , andk (for the first session)

and K̂c (for a subsequent session), A = д
α
.

Algorithm:
Case 1: For the first session, the algorithm operates as follows:

1. For every token t , there are two cases:

– If there does not exist a tuple corresponding to t in CTc :

compute Tt = Akt · дk
2

= дkαt+k
2

, set ctt ← 0, ct ← ctt ,
and insert tuple (t ,Tt ,ctt) into CTc .

– If there exists a tuple (t ′,Tt ′ ,ctt ′) in CTc satisfying t
′ = t :

set Tt ← Tt ′ , ctt ′ ← ctt ′ + 1 and ct ← ctt ′ .
2. Compute the encryption of t as Ct = H (salt + ct ,Tt).

Case 2: For a new session (different from the first session), the

algorithm operates as follows:

1. Compute Tt = Akt · дk
2

· K̂c = д
kαt+k2+k̂

.

2. For every token t , we have the following cases:

– If there does not exists a tuple corresponding to t in CTc :
set ctt ← 0, ct ← ctt and insert tuple (t ,Tt ,ctt) into CTc .

– If there exists a tuple (t ′,Tt ′ ,ctt ′) in CTc satisfying t
′ = t

and Tt ′ , Tt : set Tt ′ ← Tt , ctt ′ ← 0 and ct ← ctt ′ .
– If there exists a tuple (t ′,Tt ′ ,ctt ′) in CTc satisfying t

′ = t
and Tt ′ = Tt : set ctt ′ ← ctt ′ + 1 and ct ← ctt ′ .

3. Compute the encryption of t as Ct = H (salt + ct ,Tt).

Figure 4 Token Encryption algorithm

Similar to BlindBox, in order to prevent CTc from growing too

large, C can reset CTc and sends a new salt salt′ to MB, where
salt′ = salt +maxtctt + 1.

3.6 Token Detection
To perform equality check, MB only needs to compute the en-

crypted rule Cri = H (salt + ctri ,Si) and check whether Ct equals
Cri . This is possible because as shown in Step 2 of Fig. 4, the en-

crypted token for token t generated by C isCt = H (salt+ ctt ,Tt),

where Tt = дkαt+k
2

for the first session and Tt = дkαt+k
2+k̂

for

other session with k̂ .MB, as shown in Fig. 3, holds the session rule

set {Si = Ii }i ∈[N]
for the first session and {Si = Ii · K̂c }i ∈[N]

for the

other session. To reduce the bandwidth and detection overhead, we

use a counter table and search tree as used in BlindBox. Specifically,

for each session, MB initializes a count table CTmb that contains a

tuple (ctri ,Cri) for every rule ri , where ctri is the count of ri and is
set to be 0, and Cri = H (salt + ctri ,Si).MB also initializes a fast

search tree that contains {Cri }i ∈[N]
. The token detection algorithm

is described in Fig. 5.

Token Detection Algorithm
Input: A counter table CTmb and a fast search tree.

Scheme: For each encrypted token Ct in the traffic stream, if

there exists a Cri equals Ct for some i ∈ [N], do

1. Take the corresponding action dictated by the security policy.

2. Delete the node in tree corresponding to ri and insert Cri =
H (salt + ctri + 1,Si).

3. Set ctri ← ctri + 1.

Figure 5 Token Detection Algorithm

3.7 Token Validation
S runs the same tokenization and token encryption algorithm on

the decrypted traffic from TLS asC does. S then checks the resulting
encrypted tokens are the same as the encrypted tokens received

from MB. If not, it concludes that C is malicious.

4 VARIANT OF PRIVDPI
In order to improve the efficiency of PrivDPI, we introduce the

following methods by modifying the token encryption algorithm

and the preprocessing protocol, respectively.

4.1 Enhanced Token Encryption Algorithm
We introduce two approaches to reduce the computational overhead

of the token encryption algorithm in Section 3.5, which are based

on the following observations:

1. For a token t , the main task in this algorithm is to compute

Tt = Akt ·дk
2

for the first session orTt = Akt ·дk
2

· K̂c for other
subsequent session. Our first observation is described as follows.

For the first session,Tt = Akt ·дk
2

can be written asTt = Akt ·V ,

whereV = дk
2

. For any subsequent token t ′ in the stream within

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1662

the same session (i.e., in the first session), the detection token

Tt ′ can be computed as Akt
′

·V ′, where V ′ = V . That is, we can

reuse V for any subsequent tokens, the main computation cost

is reduced to one exponentiation in G per token. Similarly, for

any new token t ′ within the same session or in any subsequent

session, we can reuse V to compute Tt , which only takes one

exponentiation in G per token.

2. Our second observation is that in addition to the fact where one

token may appear for many times within one session, the same

token may appear in subsequent sessions. Hence, we can reuse

the session token generated in previous session(s) to reduce the

computation overhead of token encryption algorithm.

Based on the first observation, we modify the token encryption

algorithm in Section 3.5 as follows. We add one more step prior to

any operation, where V = дk
2

(for the first session) is computed.

The value V is then reused for generating all tokens within the

same session or any subsequent session.

Based on the second observation, we modify the token encryp-

tion algorithm in Section 3.5 as follows. Before encryption of a to-

ken, C initializes a counter table CT′c that records a tuple (t ,Tt ,Tt,0,
ctt ,cts) for each token t , where Tt is the session token correspond-

ing to t , Tt,0 is the session token generated using key k (where k is

the key in the first session), ctt is the number of times t appeared in
the stream so far per session and cts is the index of the latest session
where t appears. In addition, C derives a value salt as the initial
salt using krand and sends it to MB, which MB will record. For

each token t , the modified token encryption algorithm is described

in Fig. 6.

Remark: Note that as the table CT′c grows, the search time will

increase accordingly. Hence, CT′c will be reset for every Q sessions.

The value of Q will depend on the number of tokens.

4.2 Enhanced Preprocessing protocol
Note that the fourth step of the preprocessing protocol in Section

3.3 requires the pairing operation. In general, the elliptic curve

supporting pairing is less efficient than other normal elliptic curves.

Hence, if we can remove the need of pairing, we can use a more effi-

cient elliptic curve to reduce the computation overhead. In addition,

for i ∈ [N], Ki = (Ri ·Kc)
k
can be written as Ki = (Ri)

k ·K , where
K = (Kc)

k
. Hence, we can (pre-)computeK for once, and reuseK to

compute Ki = (Ri)
k ·K for i ∈ [2,N]. Thus, the computational cost

is reduced to one exponentiation inG per token for i ∈ [2,N]. Based

on the above observations, the modified preprocessing protocol is

shown in Fig. 7.

5 SECURITY
We first introduce the syntax for our protocol, and then provide the

security definition. Finally we prove our protocol is secure based

on the defined security definition.

5.1 Syntax
We first introduce the syntax for the class of encryption schemes

called middlebox searchable encryption scheme (MBSE for short),

as introduced in BlindBox. We then define the syntax for the pre-

processing protocol.

Enhanced Token Encryption Algorithm
Input:A counter table CT′c , a token t , andk (for the first session)

or k̂ (for a new session), A = дα .

Algorithm:
Case 1: For the first session, the algorithm operates as follows:

1. First compute V = дk
2

and store it.

2. For every token t , there are two cases:

– If there does not exist a tuple corresponding to t in CT′c :

compute Tt = Akt · V = дkαt+k
2

, set Tt,0 ← Tt , ctt ← 0,

ct ← ctt , cts ← 1, and insert tuple (t ,Tt ,Tt,0,ctt ,cts) into
CT′c .

– If there exists a tuple (t ′,Tt ′ ,Tt ′,0,ctt ′ ,cts) in CT
′
c : setTt ←

Tt ′ , ctt ′ ← ctt ′ + 1 and ct ← ctt ′ .
3. Compute the encryption of t as Ct = H (salt + ct ,Tt).

Case 2: For the i-th session where i > 1, the algorithm operates

as follows:

1. For every token t , there are three cases:
– If there does not exists a tuple corresponding to t in CT′c :

compute Tt,0 = Akt · V = дkαt+k
2

, Tt = Tt,0 · K̂c =

дkαt+k
2+k̂

, set ctt ← 0, ct ← ctt , cts ← i , and insert tuple

(t ,Tt ,Tt,0,ctt ,cts) into CT′c .
– If there exists a tuple (t ′,Tt ′ ,Tt ′,0,ctt ′ ,cts) in CT′c such that

t ′ = t and cts < i: compute Tt = Tt ′,0 · K̂c , set Tt ′ ← Tt ,
ctt ′ ← 0, ct ← ctt ′ , cts ← i .

– If there exists a tuple (t ′,Tt ′ ,Tt ′,0,ctt ′ ,cts) in CT′c such that

t ′ = t and cts = i: setTt ← Tt ′ , ctt ′ = ctt ′+1 and ct ← ctt ′ .
2. Compute the encryption of t as Ct = H (salt + ct ,Tt).

Figure 6 Enhanced Token Encryption algorithm

5.1.1 Definition of MBSE. The syntax of MBSE is defined as fol-

lows.

Definition 5.1. AnMBSE scheme with message spaceM consists

of four PPT algorithms (Setup,TEnc,REnc,Match) as follows:
• Setup(1λ): The setup algorithm takes as input the security pa-

rameter 1
λ
, outputs a key k and the public parameter pk .

• TEnc((t1, ...,tn),k ,pk): The token encryption algorithm takes

as input a set of n tokens (t1, ..., tn) ∈ M
n
, a key k and the

public parameter pk , outputs a salt salt and a set of ciphertexts

(ct1, ...,ctn).
• REnc(r ,k ,pk): The rule encryption algorithm takes as input a

rule r ∈ M, a key k and the public parameter pk , and outputs an

encrypted rule ctr .
• Match(salt, (ct1, ...,ctn),ctr): The match algorithm takes as in-

put a salt salt, a set of ciphertexts (ct1, ...,ctn) and an encrypted

rule ctr corresponding to a rule r , and outputs a set of indexes

I = {id1, ...,idm }, where idi ∈ [n] for i ∈ [m].

Correctness. An MBSE scheme ensures that: (1) for every token

thatmatches a given rule, the probability of amatch is 1; (2) for every

token that does not match a given rule, a match is detected with

only negligibly small probability. Specifically, for any sufficiently

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1663

Enhanced Preprocessing Protocol
Input:MB has inputs ({si ,Ri ,sig(Ri)}i ∈[N]

) (fromRG);C and

S have common inputs k .

Protocol:
1. C computes Kc = дk (using her k), and sends Kc to MB.

Similarly, S computes Ks = д
k
(using her k) and sends Ks to

MB.
2. MB checks whether Kc equals Ks . If not, it halts and outputs
⊥. Otherwise, it sends ({Ri ,Sig(Ri)}i ∈[N]

) to C and S.
3. C and S do as follows respectively:

(a) For i ∈ [N], check if Sig(Ri) is a valid signature on Ri
using the public key of the signature scheme used by RG.
If not, halt and output ⊥.

(b) Compute K = (Kc)
k
(resp. K = (Ks)

k
for S), which will be

reused in the next step.

(c) ComputeKi = (Ri)
k ·K = дkαri+ksi+k

2

for i ∈ [N]. Finally,

send {Ki }i ∈[N]
to MB.

4. For i ∈ [N], MB verifies whether the Ki from C and S are

the same. If not, it halts and outputs ⊥. Otherwise, for i ∈
[N], it calculates reusable obfuscated rule Ii = Ki/(Kc)

si =

дkαri+k
2

for future use.

Figure 7 Enhanced Preprocessing Protocol

large security parameter λ, for any polynomial n(·), if n = n(λ), for
all (t1, ...,tn) ∈ M

n
, for every rule r ∈ M, for every index id1 such

that r = tid1 and for every id2 such that r , tid2 , we have:

Pr



k ,pk ← Setup(1λ);
salt, (ct1, ...,ctn) ← TEnc((t1, ...,tn),k ,pk);
ctr ← REnc(r ,k ,pk);
I ← Match(salt, (ct1, ...,ctn),ctr) :
id1 ∈ I



= 1.

and

Pr



k ,pk ← Setup(1λ);
salt, (ct1, ...,ctn) ← TEnc((t1, ...,tn),k ,pk);
ctr ← REnc(r ,k ,pk);
I ← Match(salt, (ct1, ...,ctn),ctr) :
id2 ∈ I



= negl(λ).

5.1.2 Definition of the preprocessing protocol. The preprocessing
protocol is a two-party computation that maps pairs of inputs to

pairs of outputs. We refer to the process of the computation as a

functionality f : {0,1}∗ × {0,1}∗ → {0,1}∗ × {0,1}∗, where for every

pair inputs x1,x2, the output pair is (f1 (x1,x2), f2 (x1,x2)). For our
preprocessing protocol, the two parties are C with input k (the first

party) and MB with input r (the second party) (the actual protocol

is a form of r), and the output is only given to MB.

5.2 Security Definition
5.2.1 MBSE Security. The security definition follows that of Blind-

Box, which is also similar to the security definition of Song et al. [25].

As with BlindBox, our security definition is indistinguishability-

based. Specifically, given two sets of tokens, no PPT adversary can

distinguish an encryption of one of these two sets of tokens with

chance better than half. In addition, for an MBSE scheme, given an

encrypted rule, the middlebox is able to tell which encrypted token

this rule matches. Hence, in the security definition, we allow the

adversary to choose any number of rules and any two sets of tokens

of the same length, with the restriction that the two sets of tokens

match the set of rules at the same tokens. For an MBSE scheme

defined in Section 5.1, its security is defined by the following games

between a challenger C and an adversary A:

• Setup: C calls the Setup(1λ) algorithm and sends the public

parameter pk to A.

• Challenge: In this phase, A chooses two set of tokens T0 =
(t0
1
, ...,t0n), T1 = (t1

1
, ...,t1n) and forwards them to C. C flips a

random coin b ∈ {0,1} and calls the TEnc algorithm with Tb
as input to obtain a salt salt and a set of ciphertexts (c1, ...,cn).
Finally, C sends salt and (c1, ...,cn) to A.

• Query Phase: A randomly chooses a set of rules (r1, ...,rl) and
sends them to C. For i ∈ [l], C calls theREnc algorithm to obtain

the encrypted rule ctri . Finally, C sends (ctr1 , ...,ctrl) to A.

• Guess: A outputs his guess b ′ ∈ {0,1} for b.

Let I0, I1 be the sets of indexes that match any rule ri ∈ (r1, ...,rl),
respectively. We say that the adversary wins the above game if

I0 = I1 and b
′ = b for all i ∈ [l].

Definition 5.2. The MBSE scheme is secure if all PPT adversaries

have at most a negligible advantage in λ in the above security game,

where the advantage of an adversary A is defined as AdvA =
Pr[(b ′ = b)] − 1

2
.

5.2.2 Preprocessing Security. PrivDPI employs a preprocessing pro-

tocol, whereMB obtains a set of reusable obfuscated rules that will

be used in subsequent sessions. There are two security requirements

for the preprocessing protocol: (1) MB should not be able to com-

pute the reusable obfuscated rule of any new rule that is different

from the rules being processed in the preprocessing protocol; (2) C
cannot obtain what the rules are. Intuitively, after the execution of

the protocol, if MB cannot obtain any information about k , we can
conclude that the first security requirement is satisfied. Similarly, if

C cannot obtain any information about r , then the second security

requirement is satisfied. In the threat model described in Section

2.1,MB is semi-honest in the sense that it will follows the protocol.

In the preprocessing protocol described in Section 3.3, all malicious

behaviors of Cwill be detected byMB using the messages received

from S. Hence, we can treat C as semi-honest in the two-party

computation with MB. We here use the definition of security in

present of static semi-honest adversaries in [9, 16]. Let π be a two-

party protocol for computing the functionality f defined in Section

5.1. Let viewπi be the view of the ith party (i ∈ {1,2}) during an

execution of a protocol π on input (x1,x2) and security parameter

λ, which consists of its input xi , its internal random coins ci and
the messages that it received. Let Outputπ be the joint output of

the two parties from an execution of π .

Definition 5.3. Let f : {0,1}∗ × {0,1}∗ → {0,1}∗ × {0,1}∗ be a

functionality. We say that π securely computes f in the presence

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1664

of static semi-honest adversaries if there exist PPT algorithms S1

and S2 such that

{S1 (x1, f1 (x1,x2)), f (x1,x2)}
c
≡ {viewπ

1
(x1,x2),output

π (x1,x2)},

{S2 (x2, f2 (x1,x2)), f (x1,x2)}
c
≡ {viewπ

2
(x1,x2),output

π (x1,x2)}.

where x1,x2 ∈ {0,1}
∗
such that |x1 | = |x2 |.

Note that the above definition considers the joint distribution of

the output of S1, S2 and the parties, it works for the general case

of probabilities functionalities. For the deterministic functionalities,

we separate the correctness and privacy requirements. The security

definition for deterministic functionalities is shown below.

Definition 5.4. Let f : {0,1}∗ × {0,1}∗ → {0,1}∗ × {0,1}∗ be a de-

terministic functionality. We say that π securely computes f in the

presence of static semi-honest adversaries if (1) Outputπ (x1,x2) =
f (x1,x2); (2) there exist PPT algorithms S1 and S2 such that

{S1 (x1, f1 (x1,x2))}
c
≡ {viewπ

1
(x1,x2)},

{S2 (x2, f2 (x1,x2))}
c
≡ {viewπ

2
(x1,x2)}.

where x1,x2 ∈ {0,1}
∗
such that |x1 | = |x2 |.

5.3 Construction
5.3.1 Construction of MBSE scheme. We provide a construction

that outlines the main structure below from the security context, in

a similar way as BlindBox. In this treatment, we do not include the

underlying data structure since it does not affect security. We also

do not include the preprocessing protocol that generates the set of

reusable obfuscated rules and the session rule preparation phase.

The security of preprocessing protocol will be provided indepen-

dently. In addition, since session reuse does not affect security, we

only consider the scenario of the first session.

• Setup(1λ): Generate k ,α ∈ Zp , compute A = дα , and set k as

the key and A as pk .
• TEnc((t1, ...,tn),k ,pk):
1. Let salt be a random salt and set ct = 0.

2. For each i ∈ [n], do:
(1) Set ct be the number of times ti appeared in the sequence

t1, ...,ti−1.

(2) Compute Tti = Akt · дk
2

, Cti = H (salt + ct ,Tti).
3. Output salt, {Cti }i ∈[n].

• REnc(r ,k ,pk): Output Tr = дkαr+k
2

.

5.3.2 The preprocessing protocol. Any malicious behaviors of C
can be verified by the messages sent from S, hence, in this simplified

version of preprocessing protocol, we remove the messages sent for

the aim of verification and assume C is semi-honest. As introduced

in Section 2.1,MB is semi-honest, the only malicious act within the

semi-honest model is to send additional R∗i < {Ri }i ∈[N]
, however,

this can be detected and verified using the signatures sent from

MB trivially. Hence, we do not include the signatures here. The

simplified preprocessing protocol is two-party computation in the

presence of static semi-honest adversaries. The protocol is described

in Fig. 8.

5.4 Security Proof
5.4.1 Security of MBSE Scheme.

Simplified preprocessing protocol
Inputs: C has k ∈ Zp , MB has {si ,Ri , }i ∈[N]

, where Ri =
дαri+si , si ∈ Zp , {ri ∈ R}i ∈[N]

, R is the domain of rules.

Protocol:
1. C computes Kc = д

k
and sends Kc to MB.

2. MB sends {Ri }i ∈[N]
to C.

3. C computes Ki = (Ri · Kc)
k = дkαri+ksi+k

2

for i ∈ [N], and

sends {Ki }i ∈[N]
to MB.

4. For i ∈ [N],MB calculates the reusable obfuscated rule Ii =

Ki/(Kc)
si = дkαri+k

2

for future use.

Figure 8 Simplified preprocessing protocol

Theorem 5.5. Assuming thatH is a programmable random oracle,
the construction of MBSE scheme in Section 5.3 is a secure MBSE
scheme.

The proof of this theorem is given in Appendix A.1.

5.4.2 Security of Preprocessing Protocol.

Lemma 5.6. No computationally unbounded algorithm A, engag-
ing in the role of C in the execution of the simplified preprocessing
protocol, can guess ri with probability greater than 1/|R | with input
Ri .

The proof of this lemma is given in Appendix A.2.

Theorem 5.7. Assume that DDH problem is hard. Then, the prepro-
cessing protocol securely computes the functionality f in the presence
of static semi-honest adversaries.

The proof of this theorem is given in Appendix A.3.

6 EXTENSIONS OF PRIVDPI
The protocol proposed in Section 3 supports single keyword inspec-

tion, which is the simplest case. In this section, we discuss briefly

how our protocol can be extended, just as in BlindBox, to support (1)

a limited form of IDS, (2) a full IDS based on retrieval of the session

key from a matched suspicious keyword (known as probable cause

privacy in BlindBox). This reflects the flexibility of our protocol, in

that PrivDPI does not sacrifice the practical and useful features in

order to achieve marked improvement in efficiency and reusability.

We refer readers who are interested in the details to BlindBox [24,

Section 4].

6.1 Supporting limited form of IDS
PrivDPI can be extended to support matching of multiple keywords

as well as absolute and relative offset information within the en-

crypted packet. For example, consider a rule with three keywords,

then it is a match if all three keywords appeared in the flow. In-

dustrial rules also contain offset information (e.g. between 10 and

13) and, for example, a rule can be triggered if the content con-

tains certain keywords at the offset of 10-13. The window-based

tokenization approach that we deployed generates token at each

offset and hence can be used to support the above feature.

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1665

6.2 Supporting full IDS
This extension enables full IDS functionality by allowing MB to

decrypt the TLS traffic when a token matches a keyword in the

rule. This allows inspection such as regular expression, that cannot

be achieved based solely on token matching. The basic idea is as

follow.

Insight. For token t , replace the encrypted token Ct = H (salt +
ct ,Tt) in PrivDPI withCt = H (salt+ct ,Tt)⊕kT LS . In this manner,

it is possible to retrieve the session simply by XORing the matched

encrypted token with the encrypted rule. However, in this case, one

cannot use the rule tree to do the simple tree lookup. In contrast,

it will need a linear scan of the rules in order to perform the XOR

operation.

Construction. To maintain efficiency during detection, we use

a similar method as BlindBox. In particular, for a token whose

encrypted token isCt = H (salt+ct ,Tt), we generate an additional

parameter as C ′t = H (salt + ct + 1,Tt) ⊕ kT LS . Now one can use

the rule tree to do the tree lookup for matching. If a match is found,

one can compute C ′′t = H (salt + ct + 1,Tt) and compute C ′′t ⊕ C
′
t

to obtain kT LS .

7 PERFORMANCE EVALUATION
Our experiments were performed by implementing the variant of

PrivDPI (Section 4) on a Intel(R) Core(TM) i7-8750H CPU with 6

cores running at 2.20GHz under 64-bit Linux OS. The CPU supports

AES-NI instructions. PrivDPI is built on Charm-crypto, a python

library that was used to prototype cryptosystems. We also utilize

pyOpenSSL library for establishing TLS connection between C
and S. Our system was constructed based on prime256v1 curve

(known as NIST Curve P-256), which is widely adopted in most of

real-world applications nowadays. We use the rule sets from Snort

Emerging Threats with around 3,000 rules. Each rule is tokenized

to a size of 8 bytes in our evaluation. We measure the time taken

by repeating each instance 10,000 times and eventually take the

average of the results. In order to compare the performance of

PrivDPI and BlindBox, we reconstruct BlindBox with JustGable [6]

and OTExtention [1] to simulate C (and S) andMB in performing

the preprocessing protocol for the preparation of encrypted rules.

7.1 Middlebox
The main computation and communication overhead for the mid-

dlebox is in the execution of the pre-processing protocol and token

detection, which we discuss in the followings.

7.1.1 Performance (first session). Here we consider the time and

bandwidth costs for the first session established between the client,

the middlebox and the server.

Time. Table 2 shows the total time in the pre-processing phase

for the preparation of encrypted rules. PrivDPI is more efficient

computation-wise than BlindBox. In particular, PrivDPI takes 0.64

seconds with 3,000 rules compared to BlindBox 183.83 seconds. In

other words, for 3,000 rules, PrivDPI is 288x more efficient. The

reason behind this is that BlindBox requires one garbled circuit per

rule while PrivDPI only requires one exponentiation in G per rule.

Bandwidth. As shown in Table 2, BlindBox requires 50.16GB for

generating 3,000 encrypted rules. PrivDPI achieves better result

Table 2 MB: Time and bandwidth (first session)

No. of Rules
(8 bytes)

Time Bandwidth
BlindBox PrivDPI BlindBox PrivDPI

1 0.595 s 0.1392 s 16.72 MB 57.61 B

3000 183.832 s 0.6371 s 50.16 GB 172.83 KB

Table 3 MB: Time required in token detection

Detection over No. of Rules BlindBox PrivDPI
1 rule, 1 token 7.9 µs

3000 rules, 1 token 30.2 µs

Table 4 MB: Time and bandwidth (subsequent session)

No. of
Sessions

Time Bandwidth
BlindBox PrivDPI BlindBox PrivDPI

1 183.832 s 0.1586 s 50.16 GB 49 B

5 918.14 s 1.271 s 250.845 GB 0.291 MB

10 1838.33 s 2.074 s 501.69 GB 0.292 MB

20 3674.39 s 3.547 s 1003.38 GB 0.293 MB

with 172.83KB. This is because Blindbox sends the messages of

garbled circuit per rule, while PrivDPI only need to send a few

group elements per rule, which only incurs very low bandwidth.

Token detection. The time for token detection is shown in Table

3. The mechanisms deployed are identical between BlindBox and

PrivDPI, hence, the running time are the same.

7.1.2 Performance (subsequent session). We now consider the time

and bandwidth for the subsequent session.

Time. Table 4 shows the running time for 5, 10, 20 consecutive

sessions with the generation of 3,000 rules for comparison. For

20 consecutive sessions, PrivDPI takes only 3.547 seconds, while

BlindBox requires 3674.39 seconds. Hence, PrivDPI is 1,035x faster

than BlindBox. This is due to the fact that BlindBox needs to eval-

uate a garbled circuit for each rule in each session. In contrast,

PrivDPI can reuse the reusable obfuscated rules generated during

the preprocessing protocol in the first session, eliminating the need

to re-generate the session rules from scratch.

Bandwidth. Table 4 shows the bandwidth for 5, 10, 20 consecutive

sessions in the similar settings as before. For 20 consecutive sessions,

the bandwidth of PrivDPI is 0.293 MB, while the bandwidth of

BlindBox is 1003.38 GB, meaning PrivDPI requires 3424,500x less

bandwidth than BlindBox. As in the previous case, this is because

BlindBox sends the garbled tables for each garbled circuit for each

rule in each session. In contrast, PrivDPI can reuse the reusable

obfuscated rules stored after the preprocessing protocol in the first

session. For each subsequent session, PrivDPI only has to send one

group element per session.

Token detection. As before, the time taken for token detection is

comparable with BlindBox due to the use of similar mechanism.

7.2 Client (or Server)
The main computation and communication overhead is in the exe-

cution of the token encryption protocol.

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1666

Table 5 C (or S): Time and Bandwidth

No. of Rules
(8 bytes)

Time
BlindBox PrivDPI

1 0.05110 s 0.00110 s

3000 143.547 s 0.19909 s

7.2.1 Performance (first session). Here we consider time and band-

width for token encryption in the first session.

Time. The client and server in Blindbox performs garbling of the

AES circuit as in the case of the middlebox described above. How-

ever, the time required to perform this operation is lesser than the

time required to perform the operation in middlebox (cf. Table 2)

as the sender do not have to wait for the middlebox to evaluate the

garbled circuit. For PrivDPI, although it seems that the workload is

the same, the fact that without the need to perform circuit garbling

significantly improves the performance for C (or S). Table 5 shows
a comparison between Blindbox and PrivDPI. We observe that more

load is on the middlebox as compared to C (or S) on PrivDPI as

the performance is faster by 721x compared to the previous score

of 288x during the full setup. As network operators are more in-

centivized to invest in middleboxes with powerful hardware than

client computers, shifting the load from C to the middleboxes is

highly desirable.

Bandwidth. There is no discernible difference between the band-

width usage of the middlebox (cf. Table 2) and C (or S) between
both protocols, they have equal bandwith requirements as whatever

sent by C (or S) needs to be received by the middlebox.

Token Encryption. Table 6 shows the running time we measured

for 1,000 token in the first session. The running time on the C
(or S) side of PrivDPI is around 6x slower than BlindBox. This is

mainly due to the mechanism in BlindBox requiring two AES en-

cryptions, while PrivDPI requires one exponentiation in G, one
multiplication in G, and one AES encryption. But we note that in

actual client-server communication, repeating tokens are likely to

occur, especially for S2 (e.g., S having similar content each time it

is accessed by the C). The repeating tokens are key to increase the

encryption performance of PrivDPI, by storing some parts of the

computation in a lookup table. The exponentiation in G and multi-

plication in G can be eliminated by storing them for future lookup.

This means that for every repeating token, only one AES encryption

is required. Fig 9 shows the improved performances as the number

of tokens repeating increases. Likewise, for any token that repeats

itself a number of times, PrivDPI also shows an improvement by

storing the result of the corresponding exponentiation and multipli-

cation computation. As shown in Fig 10, as the number of times a

token repeating itself increases, the time taken to encrypt the token

drops proportionally. This is also a likely real world scenario given

that keywords in articles or documents tend to have a high number

of ocurrences or the high frequency of common english words like

’something’, ’between’, ’different’, ’together’ and ’important’.

7.2.2 Performance (subsequent session). Building on the same phi-

losophy in the previous section, subsequent session(s) between C
and S must also consist some degree of similarity, and we ask the

2
This is the case when the traffic is sent from S to C.

Number of repeated token (for two times)
0 100 200 300 400 500

 T
im

e
 (

S
e
c
o
n
d
s
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

BlindBox
PrivDPI

Figure 9 Token encryption time

Percentage of one token repeating
0 5 10 15 20 25 30

 T
im

e
 (

S
e
c
o
n
d
s
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

BlindBox
PrivDPI

Figure 10 Token encryption time

Table 6 Running time in token encryption

No. of Tokens BlindBox PrivBox
1 0.0096 ms 0.0579 ms

500 4.9026 ms 29.0646 ms

1000 10.1182 ms 58.5263 ms

question whether if the same technique will work. We evaluated the

token encryption time against the percentage of repeating token.

We argue that the scenario is also applicable in the real world as C
may use S as a source of information, while the content of S remain

the same over multiple sessions (i.e looking up recipes, tutorial or

specifications online). The results of our evaluation are shown in

Fig 11. One can observe that for a high percentage of tokens being

repeated from the previous session, the performance is comparable

to that of blindbox despite being relatively slow initially. The speed

up is due to the fact that the tokens found in the re-used table only

require one multiplication in G and one AES encryption.

7.3 Performance of a complete TLS session
We also perform a full experiment to evaluate the trade off between

pre-processing and token encryption. For this setup, we consider

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1667

Percentage of repeated token
0 20 40 60 80 100

 T
im

e
 (

S
e
c
o
n
d
s
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

BlindBox
PrivDPI

Figure 11 Token encryption time

that no tokens will repeat and only one session (no reuse) occurs

between a client C and a server S. We recorded the time it takes to

perform the pre-processing protocol and send a 8 bytes (or 1 token)

from C to S and have S reply with a message of the same length.

The whole process includes the pre-processing, token encryption

and detection from a rule set of 3000 rules. In other words, a round

trip of sending 80 bytes (or 10 token) requires 1 setup, 20 token

encryptions and 20 token detections to realize. Bearing in mind

that usually the client-server request to response bandwidth ratio is

generally heavier for the server for general use cases, we chose this

setup to reflect on the most extreme of a client-server architecture,

namely an echo server to show in what scenario will PrivDPI be

advantageous compared to Blindbox.

7.3.1 Analysis. From our experiment, we found that Blindbox will

surpass PrivDPI after transmission of 1.89 million tokens from both

C and S that is graphed on Fig 12. That’s a total of roughly 3.78

million tokens. To put that into perspective, the required transfer

bandwidth for a google search is roughly 0.6-0.8 KB based on differ-

ent browser tools. Visiting a heavy weight page like youtube.com

requires roughly 2 MB per session of transfer bandwidth. This is

to say that visiting or performing short-lived queries and lookups

to these pages that requires loading only once or twice can be

better with PrivDPI. We note that even with a large number of

inbound/outbound rules, PrivDPI does not jeopardize the perfor-

mance of the network traffic and is able to allow a client to quickly

establish a session with the middlebox and a server.

8 RELATEDWORK
Aswas stated in our discussion in the introduction, Sherry et al. [24]
introduced BlindBox, one of the early privacy-preserving deep

packet inspection scheme that inspects encrypted traffic directly.

The client establishes an encrypted session with the server. A sep-

arate session is also established for token matching. Both the ses-

sions route through MB. The idea is for MB to host encrypted

rulesets derived from the session key of the TLS session. For the

second session, the client tokenizes and encrypts its payloads using

identical key. The tokenized traffic is route through this second

session toMB.MB then tries to match the tokenized traffic with

Number of token ×106
0 0.5 1 1.5 2

0

50

100

150

200

250

300

350

 T
im

e
 (

S
e
c
o
n
d
s
)

BlindBox
PrivDPI

Figure 12 Round Trip Total Time

the encrypted rulesets. If matched, the traffic is considered mali-

cious. BlindBox preserves privacy of rules (from C) and the secret

key derived from session key (from MB) through garbled circuit

and oblivious transfer for every session, which is computationally

expensive.

The tokenization mechanism in BlindBox is extended by Lan et
al. [19]. The scheme is termed Embark, which is focused on the set-

ting of outsourced MB. It proposes new token matching technique

that include prefix matching, and caters for different middlebox

services such as IP firewall, NAT, HTTP Proxy, data exfiltration and

intrusion detection. In order to address the performance bottleneck

of BlindBox, Canard et al. [8] proposed BlindIDS. It proposes a

token-matching protocol based on pairing-based public key opera-

tion, and is not compatible with existing TLS protocol.

Another scheme that uses public key operation is SPABox by

Fan et al. [15]. The scheme uses oblivious pseudo-random function

for encrypted rule preparation. For regular expression matching,

the scheme deploys a variant of garbled circuit. Yuan et al. [29]
proposed a scheme that is more efficient than BlindBox but requires

the server to first register with the administration service of the en-

terprise hosting the client. Another scheme, with the cloud setting

is SplitBox proposed by Asghar et al. [5]. It is based on a two cloud

system, in which every rule is XOR with a random string and then

split into many blocks to the various MBs resided in one of the

cloud systems. Both cloud systems then collaboratively compute

the blocks to perform traffic inspection.

There are also proposals based on client-server accountable

model, where both client and server are aware of and can authen-

ticate all the MBs deployed between the two of them. Naylor et
al. [21] introduced a scheme of this type, termed mcTLS. It modifies

existing TLS protocol to allow the client, theMBs and the server

to establish authenticated and secure channel, and exchange read

and write secret keys in addition to the session key. The main issue

with mcTLS is that it is a new protocol. For adoptions, existing

TLS protocol that is widely used must all be replaced with mcTLS.

Acknowledging this issue, Naylor et al. [20] further proposed an-

other scheme, termed mbTLS. It does not change the underlying

TLS protocol, except in introducing extensions that can be readily

adopted using existing protocol. More recently, Bhargavan et al. [7]

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1668

demonstrated attacks on mcTLS, and proposed a formal model on

analyzing the protocol.

Other related work include proposal to analyse encrypted traffic

based on machine learning, without inspecting the encrypted pay-

loads. Anderson et al. [2–4] proposed techniques for malware detec-

tion that uses various header information ormetadata. Trusted hard-

ware has also been deployed for privacy-preserving deep packet

inspection. Most of the proposal utilizes the secure enclave of In-

tel SGX. The main idea is to give the trusted hardware, resided

in the MB, the session key. The decryption, inspection and re-

encryption is performed in the enclave. Han et al. [17] proposed a

scheme, SGX-Box, using this technique. There are also proposals

for secure Network Function Virtualization (NFV) systems that use

trusted hardware to provide deep packet inspection. These includes

SafeBricks by Poddar et al. [22], ShieldBox by Trach et al. [26] and
LightBox by Duan et al. [13].

9 CONCLUSION
In this work we proposed a privacy-preserving deep packet inspec-

tion system, PrivDPI, which directly inspects encrypted traffic using

a similar detection mechanism as in BlindBox. BlindBox incurs high

performance overhead for the preparation of encrypted rules due

to the use of garbled circuit. Our first key contribution is in mini-

mizing such computation and communication overhead while at

the same time preserves the security and privacy requirements as

in BlindBox. We demonstrated that our encrypted rule generation

on a ruleset of 3,000 is 288x times faster. We further introduce the

notion of reusable obfuscated rules, which enables a client and the

middlebox to reuse them in subsequent sessions. Such reusable ob-

fuscated rules only need to be generated in the first session, which

greatly reduce the performance overhead. We demonstrated that

our encrypted rule generation over 20 consecutive sessions on a

ruleset of 3,000 is 1036x faster. We note that, the limitation of our

system is that the token encryption of payloads is 6x slower than

BlindBox. By reusing of encrypted token generated previously, the

token encryption is only 3.5x slower in the ideal case that all the

tokens of the current session have appeared before. Overall, the

computation time for a full session is faster than BlindBox on a rule-

set of 3,000 providing that there are less than roughly 3.78 million

tokens.

ACKNOWLEDGMENTS
We thank anonymous reviewers for helpful comments. We would

like to thank Fuchun Guo for useful discussion on the security proof.

Research supported in part by the National Research Foundation,

Prime Minister’s Office, Singapore, under its Corporate Labora-

tory@University Scheme, National University of Singapore, and

Singapore Telecommunications Ltd., and in part by NSFC 61972094,

61822202, 61872089, 61632012, 61672239.

REFERENCES
[1] OT Extension library. https://github.com/encryptogroup/OTExtension.

[2] Blake Anderson and David A. McGrew. 2016. Identifying Encrypted Malware

Traffic with Contextual Flow Data. In Proceedings of the 2016 ACM Workshop on
Artificial Intelligence and Security, AISec@CCS 2016, Vienna, Austria, October 28,
2016, David Mandell Freeman, Aikaterini Mitrokotsa, and Arunesh Sinha (Eds.).

ACM, 35–46. https://doi.org/10.1145/2996758.2996768

[3] Blake Anderson and David A. McGrew. 2017. Machine Learning for Encrypted

Malware Traffic Classification: Accounting for Noisy Labels and Non-Stationarity.

In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM,

1723–1732. https://doi.org/10.1145/3097983.3098163

[4] Blake Anderson, Subharthi Paul, and David A. McGrew. 2018. Deciphering

malware’s use of TLS (without decryption). J. Computer Virology and Hacking
Techniques 14, 3 (2018), 195–211. https://doi.org/10.1007/s11416-017-0306-6

[5] Hassan Jameel Asghar, Luca Melis, Cyril Soldani, Emiliano De Cristofaro, Mo-

hamed Ali Kâafar, and Laurent Mathy. 2016. SplitBox: Toward Efficient Private

Network Function Virtualization. In Proceedings of the ACM SIGCOMMWorkshop
on Hot topics in Middleboxes and Network Function Virtualization, HotMiddle-
box@SIGCOMM 2016, Florianopolis, Brazil, August, 2016, Dongsu Han and Danny

Raz (Eds.). ACM, 7–13. https://doi.org/10.1145/2940147.2940150

[6] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. 2013.

Efficient garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on
Security and Privacy. IEEE, 478–492.

[7] Karthikeyan Bhargavan, Ioana Boureanu, Antoine Delignat-Lavaud, Pierre-Alain

Fouque, and Cristina Onete. 2018. A Formal Treatment of Accountable Proxying

over TLS. In 2018 IEEE Symposium on Security and Privacy, SP 2018, San Francisco,
CA, USA, May 21-23, 2018. IEEE Computer Society, 339–356.

[8] Sébastien Canard, Aïda Diop, Nizar Kheir, Marie Paindavoine, and Mohamed Sabt.

2017. BlindIDS: Market-Compliant and Privacy-Friendly Intrusion Detection

System over Encrypted Traffic. In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab
Emirates, April 2-6, 2017, Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi,

and Xun Yi (Eds.). ACM, 561–574. https://doi.org/10.1145/3052973.3053013

[9] Ran Canetti. 2000. Security and composition of multiparty cryptographic proto-

cols. Journal of CRYPTOLOGY 13, 1 (2000), 143–202.

[10] Tung Chou and Claudio Orlandi. 2015. The simplest protocol for oblivious

transfer. In International Conference on Cryptology and Information Security in
Latin America. Springer, 40–58.

[11] Cisco. 2018. Encrypted Traffic Analytics. (2018). https://www.cisco.com/

c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-

security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf.

[12] Xavier de Carné de Carnavalet and Mohammad Mannan. 2016. Killed

by Proxy: Analyzing Client-end TLS Interception Software. In 23rd An-
nual Network and Distributed System Security Symposium, NDSS 2016,
San Diego, California, USA, February 21-24, 2016. The Internet Soci-

ety. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/

killed-proxy-analyzing-client-end-tls-interception-software.pdf

[13] Huayi Duan, Xingliang Yuan, and Cong Wang. 2017. LightBox: SGX-assisted

Secure Network Functions at Near-native Speed. CoRR abs/1706.06261 (2017).

arXiv:1706.06261 http://arxiv.org/abs/1706.06261

[14] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie

Bursztein, Michael Bailey, J. Alex Halderman, and Vern Paxson. 2017. The Security

Impact of HTTPS Interception. In 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California, USA, February 26 - March
1, 2017. The Internet Society. https://www.ndss-symposium.org/ndss2017/ndss-

2017-programme/security-impact-https-interception/

[15] Jingyuan Fan, Chaowen Guan, Kui Ren, Yong Cui, and Chunming Qiao. 2017.

SPABox: Safeguarding Privacy During Deep Packet Inspection at a MiddleBox.

IEEE/ACM Trans. Netw. 25, 6 (2017), 3753–3766. https://doi.org/10.1109/TNET.
2017.2753044

[16] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.
Cambridge university press.

[17] Juhyeng Han, Seong Min Kim, Jaehyeong Ha, and Dongsu Han. 2017. SGX-Box:

Enabling Visibility on Encrypted Traffic using a Secure Middlebox Module. In

Proceedings of the First Asia-Pacific Workshop on Networking, APNet 2017, Hong
Kong, China, August 3-4, 2017, Kai Chen and Jitendra Padhye (Eds.). ACM, 99–105.

https://doi.org/10.1145/3106989.3106994

[18] Jeff Jarmoc. 2012. Transitive Trust: SSL/TLS Interception Proxies. (March 2012).

https://www.secureworks.com/research/transitive-trust.

[19] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, and Zhi Liu.

2016. Embark: Securely Outsourcing Middleboxes to the Cloud. In 13th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2016, Santa
Clara, CA, USA, March 16-18, 2016, Katerina J. Argyraki and Rebecca Isaacs

(Eds.). USENIX Association, 255–273. https://www.usenix.org/conference/nsdi16/

technical-sessions/presentation/lan

[20] David Naylor, Richard Li, Christos Gkantsidis, Thomas Karagiannis, and Peter

Steenkiste. 2017. And Then There Were More: Secure Communication for More

Than Two Parties. In Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies, CoNEXT 2017, Incheon, Republic of
Korea, December 12 - 15, 2017. ACM, 88–100. https://doi.org/10.1145/3143361.

3143383

[21] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn,

Diego R. López, Konstantina Papagiannaki, Pablo Rodríguez Rodríguez, and

Peter Steenkiste. 2015. Multi-Context TLS (mcTLS): Enabling Secure In-Network

Functionality in TLS. In Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM 2015, London, United Kingdom, August

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1669

https://github.com/encryptogroup/OTExtension.
https://doi.org/10.1145/2996758.2996768
https://doi.org/10.1145/3097983.3098163
https://doi.org/10.1007/s11416-017-0306-6
https://doi.org/10.1145/2940147.2940150
https://doi.org/10.1145/3052973.3053013
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/killed-proxy-analyzing-client-end-tls-interception-software.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/killed-proxy-analyzing-client-end-tls-interception-software.pdf
http://arxiv.org/abs/1706.06261
http://arxiv.org/abs/1706.06261
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/security-impact-https-interception/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/security-impact-https-interception/
https://doi.org/10.1109/TNET.2017.2753044
https://doi.org/10.1109/TNET.2017.2753044
https://doi.org/10.1145/3106989.3106994
https://www.secureworks.com/research/transitive-trust
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/lan
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/lan
https://doi.org/10.1145/3143361.3143383
https://doi.org/10.1145/3143361.3143383

17-21, 2015, Steve Uhlig, Olaf Maennel, Brad Karp, and Jitendra Padhye (Eds.).

ACM, 199–212. https://doi.org/10.1145/2785956.2787482

[22] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2018.

SafeBricks: Shielding Network Functions in the Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2018, Renton, WA, USA,
April 9-11, 2018, Sujata Banerjee and Srinivasan Seshan (Eds.). USENIX Associa-

tion, 201–216. https://www.usenix.org/conference/nsdi18/presentation/poddar

[23] Justine Sherry. 2016. Middleboxes as a Cloud Service. Ph.D. Dissertation. Electrical
Engineering and Computer Sciences, University of California at Berkeley.

[24] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2015. Blind-

Box: Deep Packet Inspection over Encrypted Traffic. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, SIGCOMM
2015, London, United Kingdom, August 17-21, 2015. 213–226.

[25] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000. Practical tech-

niques for searches on encrypted data. In Proceeding 2000 IEEE Symposium on
Security and Privacy. S&P 2000. IEEE, 44–55.

[26] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhatotia,

and Christof Fetzer. 2018. ShieldBox: Secure Middleboxes using Shielded Execu-

tion. In Proceedings of the Symposium on SDN Research, SOSR 2018, Los Angeles, CA,
USA, March 28-29, 2018. ACM, 2:1–2:14. https://doi.org/10.1145/3185467.3185469

[27] US-CERT. 2017. HTTPS Interception Weakens TLS Security (Alert TA17-075A).

(2017). https://www.us-cert.gov/ncas/alerts/TA17-075A.

[28] Louis Waked, Mohammad Mannan, and Amr M. Youssef. 2018. The Sorry State of

TLS Security in Enterprise Interception Appliances. CoRR abs/1809.08729 (2018).

arXiv:1809.08729 http://arxiv.org/abs/1809.08729

[29] Xingliang Yuan, Xinyu Wang, Jianxiong Lin, and Cong Wang. 2016. Privacy-

preserving deep packet inspection in outsourced middleboxes. In 35th Annual
IEEE International Conference on Computer Communications, INFOCOM 2016, San
Francisco, CA, USA, April 10-14, 2016. IEEE, 1–9.

A PROOF SKETCH
A.1 Proof of Theorem 5.5
We prove security through one hybrid. In particular, the hybrid re-

places the random oracle with deterministic random values, which

is based on the property of random oracle. The TEnc algorithm
is modified to replace H with deterministic random values in the

hybrid, which is shown as follows.

Hybrid .TEnc((t1, ...,tn),k ,pk):
1. Let salt be a random salt and set ct = 0.

2. For each i ∈ [n], chooses a random value Ui in the ciphertext

space and set Ci = Ui .
3. Output salt, {Ci }i ∈[n].

Also, the TEnc algorithm is modified to output a random value

U for each rule r with the restriction that: for any r ′ such that

r ′ = r , the algorithm always output U .

In addition, the random oracle H is programmed as follows. For

any hash query with input salt∗, Hybrid .TEnc(r ,k ,pk) for rule r

satisfying salt∗ = salt + cti and r = ti for some i ,Ui is returned
as the response.

Clearly, all ciphertexts output by theTEnc algorithm are random

given that the pattern of matching between tokens and rules are

preserved. For the two sets T0 and T1 submitted by the adversary,

their patterns are the same.We can conclude that any PPT adversary

can only distinguish these two sets by exactly half.

A.2 Proof of Lemma 5.6
Fix any R0 = дr0 for r0 ∈ Zp , the probability that R0 = Ri is the
probability that si = r0 − αri . Therefore, ∀R0 ∈ G, Pr[R0 = Ri] =
1/p.

A.3 Proof of Theorem 5.7
Since the functionality is deterministic, we use Definition 5.4. We

construct a separate simulator for each party (S1 for C’s view and

S2 forMB’s view).
We first consider the case that C is corrupted. In the protocol,

C receives no output. S1 merely needs to generate the view of the

incoming messages received by C. In the protocol, for a rule ri , the
message that C received is Ri . S1 works as follows: S1 chooses a

random r ′i ∈ Zp , compute R′i = д
r ′i , and outputs (k ;R′i), where R

′
i

simulates the incoming message from MB to C in the protocol. By

Lemma 5.6, we have that the distribution of Ri (i.e., R
′
i) sent by S1

is indistinguishable from a real execution of the protocol.

We next proceed to the case that MB is corrupted. In the pro-

tocol, for a rule ri , MB’s input is (si ,Ri = дαri+si) and receives

output Ii = Ki/(Kc)
si = дkαri+k

2

. The first and the third messages

in the protocol are the messages that MB received. For the first

message in the protocol, S2 chooses a random k ′ ∈ Zp , computes

K ′c = дk
′

and set K ′c as the first message. For the third message

in the protocol, for a rule ri , S2 chooses a random k ′′ ∈ Zp , com-

putes K ′i = дk
′′

and set K ′i as the third message. For a rule ri , S2
outputs (si ,Ri ;K

′
c ,K

′
i), where K

′
c ,K

′
i simulate the incoming mes-

sage from C to MB in the protocol. The real view of MB in an

execution can be written as (si ,Ri ;Kc ,Ki). The two distributions

are (si ,д
αri+si

;дk ,дkαri+ksi+k
2

) and (si ,д
αri+si

;дk
′

,дk
′′

). Clearly,
if a PPT algorithmA can distinguish these two distributions, it can

breaks DDH assumption.

Session 7E: Privacy-Preserving Techniques CCS ’19, November 11–15, 2019, London, United Kingdom

1670

https://doi.org/10.1145/2785956.2787482
https://www.usenix.org/conference/nsdi18/presentation/poddar
https://doi.org/10.1145/3185467.3185469
https://www.us-cert.gov/ncas/alerts/TA17-075A
http://arxiv.org/abs/1809.08729
http://arxiv.org/abs/1809.08729

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Use Cases

	2 Overview
	2.1 Threat Model
	2.2 System Flow

	3 PrivDPI
	3.1 Preliminaries
	3.2 Setup
	3.3 Preprocessing
	3.4 Session Rule Preparation
	3.5 Token Encryption
	3.6 Token Detection
	3.7 Token Validation

	4 Variant of PrivDPI
	4.1 Enhanced Token Encryption Algorithm
	4.2 Enhanced Preprocessing protocol

	5 Security
	5.1 Syntax
	5.2 Security Definition
	5.3 Construction
	5.4 Security Proof

	6 Extensions of PrivDPI
	6.1 Supporting limited form of IDS
	6.2 Supporting full IDS

	7 Performance Evaluation
	7.1 Middlebox
	7.2 Client (or Server)
	7.3 Performance of a complete TLS session

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Proof sketch
	A.1 Proof of Theorem 5.5
	A.2 Proof of Lemma 5.6
	A.3 Proof of Theorem 5.7

