
Privacy-preserving Deep Packet Inspection in
Outsourced Middleboxes

Xingliang Yuan∗†, Xinyu Wang∗†, Jianxiong Lin∗, and Cong Wang∗†
∗City University of Hong Kong, Hong Kong, China

†City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
{xinglyuan3-c, jianxilin2-c}@my.cityu.edu.hk, {xinywang, congwang}@cityu.edu.hk.

Abstract—Middleboxes are essential for a wide range of ad-
vanced traffic processing in modern enterprise networks. Recent
trend of deploying middleboxes in cloud as virtualized services
further expands potential benefits of middleboxes while avoiding
local maintenance burdens. Despite promising, designing out-
sourced middleboxes still faces several security challenges. First,
many middlebox processing services, like intrusion detection,
require packet payload inspection, while the ever-increasing
adoption of HTTPS limits the function due to the end-to-
end encryption. Second, many packet inspection rules used by
middleboxes can be proprietary in nature. They may contain
sensitive information of enterprises, and thus need strong pro-
tection when configuring middleboxes in untrusted outsourced
environments. In this paper, we propose a practical system
architecture for outsourced middleboxes to perform deep packet
inspection over encrypted traffic, without revealing either packet
payloads or inspection rules. Our first design is an encrypted
high-performance rule filter that takes randomized tokens from
packet payloads for encrypted inspection. We then elaborate
through carefully tailored techniques how to comprehensively
support open-source real rulesets. We formally analyze the
security strength. Implementations at Amazon Cloud show that
our system introduces roughly 100 millisecond latency in each
connection initialization, with individual processing throughput
over 3500 packets/second for 500 concurrent connections.

I. INTRODUCTION

Middleboxes are ubiquitous in modern enterprise networks
for providing a wide range of specialized network func-
tions [1]–[3], such as intrusion detection, exfiltration preven-
tion, firewall, etc. Yet, maintaining in-house middlebox infras-
tructure is known to incur expensive and complex management
burdens for enterprises [1]. Thus, recent trends have been
calling for moving the middlebox processing to public clouds
as virtualized services [1], [3], while relieving the enterprises
of local maintenance burdens. Such outsourced middleboxes
can further benefit the enterprises with easy management, cost
effectiveness, scalability, fault tolerance, and beyond.

Despite very promising, outsourcing middlebox processing
has also brought several new security challenges that are yet
to be fully addressed. First, redirecting traffic to outsourced
middleboxes would give the cloud provider full access to all
the traffic flows. While adopting off-the-shelf HTTPS ensures
the end-to-end traffic confidentiality [4], [5], the encrypted
packet payload would simultaneously limit the middlebox
processing capabilities, such as intrusion detection and exfil-
tration prevention, which would otherwise require deep packet
inspection (DPI). Second, many packet inspection rules are

customised by enterprises, and can be proprietary in nature [6],
[7], containing potentially sensitive information like trade
secrets, intellectual property, etc. Thus, from the enterprise
perspective, strong protection of these valuable rulesets is also
highly demanded [7], [8], especially when middleboxes are
deployed in the outsourced cloud environment.

Most of existing middleboxes handle HTTPS through a
walk-around but limited approach, simply by intercepting
and decrypting the encrypted traffic [1], [9]. This approach,
besides somewhat undesirably revealing the packet payloads
at middleboxes, would easily constitute possible man-in-the-
middle attacks [10]. A recent design called BlindBox [5] is
the first to enable middleboxes to perform DPI over HTTPS.
But it is still not suitable in the context of middlebox out-
sourcing, since it does not consider protecting the rules against
middleboxes in untrusted environments. We also remark that
BlindBox currently is not ready for practical deployment, due
to its expensive connection setup, involving a secure two-
party computation protocol between each endpoint and the
middlebox.

The above shortcomings of existing approaches motivate us
to investigate a privacy-preserving and practical DPI system.
Our research aims to enable the outsourced middleboxes
to perform packet inspection over encrypted traffic without
revealing the sensitive inspection rules or the packet payloads.
To address the challenges, our first insight is to formulate
the problem as encrypted token matching. Specifically, traffic
packet payloads can be parsed and encrypted into randomized
tokens. The suspicious strings and the responsive actions1 from
packet inspection rules can also be extracted as key-value
pairs, e.g., (“password”, “alert”), based on which an encrypted
rule filter can be built to index those encrypted pairs. By
feeding the encrypted traffic tokens into the encrypted rule
filter, such a blueprint can be immediately instantiated via
existing searchable encryption techniques [12], [13].

However, turning the blueprint into a secure and usable
DPI system still encounters non-trivial obstacles. The first
is how to build an encrypted rule filter with convincingly
high performance. Middleboxes that are capable of inspecting
packet content with low latency, superior throughput, memory
efficiency, high-speed setup, etc., are indispensable for any us-

1In general, the actions in existing instruction detection systems include
alert (i.e., generate an alert to administrators), log (i.e., log the packet), drop
(i.e., block the packet), stop (i.e., reject the connection), etc [11].

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEEAuthorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:44:23 UTC from IEEE Xplore. Restrictions apply.

able DPI systems. Directly applying existing generic primitives
of searchable symmetric encryption (SSE), e.g., [12], [13] into
our specific contexts does not necessarily achieve all of our
design requirements. To that end, we propose to bridge the
security framework of SSE and one recent high-performance
hash table design [14] to derive our encrypted rule filter
from the ground up. The resulting design encompasses all the
aforementioned performance features while can be provably
secure. Only if suspicious strings are matched, the actions
will be recovered, triggered against intrusion and exfiltration.
Throughout the entire process, the middlebox can never learn
the content of packet payloads or the semantic information of
rules except the triggered actions.

The second obstacle is how to provide comprehensive sup-
port of pragmatic inspection via complicated inspection rules.
In general, some rules specify inspection attributes, e.g., packet
fields or payload offsets. Revealing them may compromise
the confidentiality of rules and packet payloads. Others with
multi-conditions need all the conditions are matched before
revealing actions. Therefore, supporting them as well as other
special ones demands more than a simple SSE application.
Consequently, we design carefully tailored techniques in a in-
depth manner to handle each of them respectively, while the
strong protection on rules and payloads is still ensured. Among
others, one of our technique highlights is the adoption of secret
sharing to encrypt the actions embedded in the encrypted filter
design, in case of multi-condition matching. As a result, if and
only if all the suspicious strings in the rule are matched, the
action will be triggered. In addition, we also consider the rules
sharing common strings, i.e., cross-rule inspection, and the
rules inspecting repeated strings across different connections,
i.e., cross-connection inspection.

Furthermore, we optimize the system implementation for
better security and performance. To hide the equality of in-
coming tokens, which are generated from the same underlying
strings, we trade space for security; that is, every suspicious
string is duplicated in multiple copies, where those copies can
be later matched by different tokens. To protect the token
equality against other connections, a fresh encrypted filter
should be built for a newly established connection. We further
decouple this procedure from the connection initialization
such that multiple filters are pre-built periodically in an asyn-
chronous process. Therefore, the inspection can be initiated
immediately when a connection is established. In summary,
our contributions are listed as follows:
• We design the first secure DPI system that enables the

outsourced middleboxes to perform deep packet inspec-
tion over encrypted traffic while providing the strong
protection on both packet payloads and inspection rules.

• We propose an encrypted high-performance filter with
high throughput, fast setup, and low-memory consump-
tion, and carefully tailor the design for broad support of
inspection rules with detailed protocol illustration. We
formulate the security definition, and prove the proposed
system against adaptive chosen-keyword attacks.

• We implement the system prototype and deploy it on

Middlebox
Services

External
Network

Admin

Enterprise
Network

Encrypted Traffic

Secure Tokens

Encrypted Filter

Encrypted Traffic

Secure Tokens

Fig. 1: System Architecture

Amazon Cloud. Real rulesets are used for evaluation. The
results show that our design can directly detect over 90%
suspicious packets in most of selected intrusion detection
traffic dumps, and the throughput per connection achieves
up to 3, 600 packets per second on an Amazon instance
with 500 concurrent connections.

II. PROBLEM STATEMENT

Fig. 1 illustrates our system architecture. It consists of four
parties: the client inside the enterprise network, the host in
the external network, the admin server (AS) maintained by
enterprise administrators, and the middlebox (MB) deployed
in the outsourced environments as a cloud or network service.
We also use the term “endpoint” to denote the client and the
host, where a HTTPS connection is established.

A. Application Scenarios and Trust Assumptions

We consider a common application scenario before present-
ing our threat model and system architecture. An enterprise
needs to thoroughly inspect the content of incoming and out-
going network packets to defend against malicious activities.
For cost efficiency, fault tolerance, and good scalability, it
subscribes remote middlebox services, e.g., intrusion detec-
tion, exfiltration prevention, etc. Meanwhile, the clients will
establish end-to-end encryption to outside hosts against eaves-
dropping. Here, we assume that the outsourced middleboxes,
for example cloud-based middlexboxes [3], [5], are powerful
with abundant computation resources, where multiple servers
can be launched to handle a huge amount of encrypted traffic
and process a large number of tokens concurrently.

In addition, the enterprise administrator, i.e., the rule creator,
needs to protect the rules [5], [7], because leaving them in
cleartext will compromise the privacy of enterprise. In practice,
the enterprise may subscribe the ruleset from professional
vendors [5], e.g., Symantec or some public rulesets from
open-source DPI systems, e.g., Snort [11]. Then it customizes
the rules to prevent data exfiltration or tunes the rules to
improve the inspection accuracy [6]. Namely, the rules can
be highly related to the sensitive information, e.g., trade

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:44:23 UTC from IEEE Xplore. Restrictions apply.

secrets, intellectual property, etc. Here, we assume that AS
is trustworthy. It will neither expose the ruleset to MB nor
grant the access of rules to the endpoints.
Semi-honest middlebox: In this work, we consider the MB
service provider could be semi-honest [7], [15], such as the
public cloud [1], [3]. It offers MB services faithfully, but
intends to exploit the sensitive information from the traffic
passed by, and tries to infer the proprietary inspection rules. On
the other hand, MB is deployed in an untrusted environment.
It is likely to be hacked and eavesdropped. Thus, both rules
and traffic should be encrypted to achieve defense in depth.
Currently, how to verify outsourced MB services is not our
focus, and remains to be practically addressed as stated in [16].
We will explore the threats of malicious MBs in the near future.
Trust assumption on endpoints: We assume that at least one
endpoint is honest, similar to the threat model in existing DPI
systems [5], [6]. We also note that detecting two malicious
endpoints is orthogonal to our work. For example, covert chan-
nels between malicious endpoints can be detected via traffic
pattern analysis [17] and application-specific detection [18].

B. Overview of System Architecture
The overview of our proposed system is depicted in Fig. 1.

It functions in four stages with four parties introduced before.
Initialization: First of all, two endpoints S and R run the
standard SSL protocol to establish an encrypted connection.
Then they need to register at AS for the request of key
KS and key KR respectively via encrypted channels. In the
meantime, AS builds an encrypted filter that securely indexes
the encrypted string-action pairs extracted from the rules, and
uploads it to MB. After that, MB can perform packet inspection
for this connection through the appropriate encrypted filter.
Preprocessing: Once the initialization is completed, one
endpoint starts to send encrypted traffic. Meanwhile, it will
parse the packet payloads into a set of strings based on pre-
defined principles, and use KS to transform plaintext strings
to randomized tokens, which will be sent to MB as well. We
note that the inspection is bidirectional. The other endpoint
parses the packet payloads in terms of same principles, and
use its own key KR for token generation.
Inspection: As long as the encrypted traffic and the tokens
arrive, MB will hold up the traffic and execute the proposed
secure DPI protocol to process the tokens over the encrypted
filter in a streaming fashion. If a token correctly recovers an
entry of the filter, MB will take the resulting action, e.g.,
alerting AS, dropping packets, etc. After all the tokens in a
packet are checked without a match, the packet is considered
legitimate and allowed through. If verification is required, MB
continuously computes a cryptographic digest from a batch of
the processed tokens, and send it to the other endpoint.
Verification: Similar to [5], to detect dishonest/malicious
misbehaviors of the other endpoint, the receiving endpoint will
use the SSL session key to decrypt the payloads, and then
reconstructs the digest for token verification.
Remark: Following prior studies that call for middlebox
outsourcing as a service [1], [3], [15], we assume the existence

Algorithm 1 Build the encrypted filter

Input: {(str1, act1), · · · , (strn, actn)}: the string-action pairs ex-
tracted from the rulesetR; K1,K2: private keys; F1, F2, P1, P2:
PRFs; τ : the load factor; d: the number of entries in each bucket;
β: the cuckoo threshold.

Output: F : the encrypted filter.
1: Initial hash table T1 and T2 with capacity d n

2dτ
e;

2: ∀stri ∈ {str1, · · · , strn}, compute t = F1(K1, stri), t1 =
P1(t, 1), and t2 = P2(t, 2), and place ai to 1 of d entries in
T1[t1] or T2[t2] if there exists an empty entry.

3: If no empty entry exists, randomly select 1 entry from T1[t1] or
T2[t2], replace the inside act′i with acti, and re-insert act′i as
shown in Step 2 within β recursive trials.

4: After all actions are inserted, encrypt each of them via acti⊕ s,
where the mask s = F2(K2, stri), and fill the empty entries
with random strings.

of AS, which can be a readily available gateway server and
controlled by the trustworthy enterprise administrator to build
the encrypted filter and redirect enterprise traffic to the cloud.
Only the AS needs to be cloud-aware. In this outsourcing
setting, we also note that cloud with wide geographic footprint
could help reduce the extra traffic detour latency signifi-
cantly [1]. Techniques for redirecting traffic to outsourced
middleboxes are well-discussed before [1], [3], and we do
not go into detail here. Our major focus is on designing an
encrypted filter with carefully tailored techniques to cover a
wide range of inspecting rules. As we mention below, even
this is a non-trivial task that requires thoughts from achieving
security, performance, and functionality simultaneously.

III. THE PROPOSED SYSTEM

In this section, we will present the proposed system, and
explain the design intuition regarding security, performance,
and functionalities. We first propose an encrypted rule filter,
i.e., the core building block of our system. The filter enables
MB to perform private and efficient DPI over encrypted
traffic without seeing packet payloads or inspection rules.
Furthermore, we tailor the designs for a wide range of rule
support, and present the inspection in an in-depth manner.

A. Encrypted Filter

In order to enable DPI over encrypted traffic, one straight-
forward approach is to encrypt the suspicious strings indicated
in the rules into randomized tokens for MB so that it can
later perform token matching with the ones coming from the
packet payloads of the endpoints. But such approach requires
a linear scan over all the rule tokens for the inspection of
each incoming token [5]. It is not scalable since the time
complexity increases as the number of rules grows, which
could become the performance bottleneck for bandwidth-
insensitive applications.

To improve efficiency and scalability, we propose a high-
performance encrypted filter, which is built upon the security
framework of searchable symmetric encryption [12], [13] and
one of the latest efficient hash table designs [14]. Based on the
security techniques used in [12], [13], we transform a memory

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:44:23 UTC from IEEE Xplore. Restrictions apply.

efficient, high throughput hash table into an encrypted index
while preserving its original performant features.

Unlike prior encrypted index designs [12], [13], which need
to store both encrypted strings and actions in a dictionary, our
proposed filter shrinks the size by only storing the encrypted
action while still preserving the correctness. Explicitly, we first
use the token generated from a string to seek the available
space for its action, and then securely embed the string into
a random mask to encrypt the action. As a result, only if
the mask and the token are derived from the same suspicious
string, the action will be recovered. In addition, cuckoo
hashing is applied to make the filter extremely compact [19].
The actions are allowed to be relocated among different spaces
so that the filter achieves high load factors, e.g., 95% [14].
Construction: As mentioned, a pair of a suspicious string and
its responsive action can be extracted from the inspection rule.
Then all the string-action pairs are inserted to the proposed
filter in a random fashion, and all buckets inside are encrypted.

The steps of building the encrypted filter are presented in
Algorithm 1, and an illustrative example is depicted in Fig. 2.
Initially, two hash tables T1 and T2 are created. For each of
total n string-action pairs, the first step is to insert the action
acti into one of the two buckets T1[t1] and T2[t2], where t1
and t2 are transformed by pseudo-random functions from the
suspicious string stri, i.e., t = F1(K1, stri), t1 = P1(t, 1),
and t2 = P2(t, 2). To handle hash collisions from different
strings, each bucket contains d entries, so every insertion will
have 2d choices to place the action.

If there is no empty entry in two buckets, the data relocation
in cuckoo hashing is trigged. Explicitly, one of the entries
will be randomly selected, and the action act′i inside will be
replaced by acti. After that, act′i is re-inserted in a recursive
way starting from the first step. As all actions are inserted,
they are encrypted via XORing random masks, i.e., acti ⊕ s,
where s = F2(K2, stri). Based on this design, stri does not
need to be stored, while the action acti can still be recovered
if a token is matched. The detailed protocol will be shown
later in Section III-B. Lastly, the rest of few empty entries are
filled with random strings.
Consideration on security and usability: Based on the
proposed encrypted filter, only when the tokens are generated
from suspicious strings, MB is given a capability to recover
the action. But directly deploying this filter does not provide
strong security strength. First, current construction leaks the
equality of incoming tokens no matter they are matched or
not, since they are all generated from a deterministic one-way
function. Second, the same private keys are used to generate
tokens and the encrypted filter. Thus, anyone who gets the keys
may output tokens for malicious purposes, e.g., DoS attacks.

Regarding the wide range of rule support, current design
for single string matching, only works for a small percentage
of inspection rules. In reality, many other advanced rules are
defined to improve the detection accuracy and capture complex
malicious activities [11]. Specifically, those rules may contain
specific attributes or inspection ranges, or need multi-condition
inspection. Yet, it is not clear how to support them by simply

act1 act3
act5 act2

act5: T1[P1(F1(K1, str5), 1)], T2[P2(F1(K1, str5), 2)]

1
2
3
4
5

act4: T1[P1(F1(K1, str4), 1)]

act4

Fig. 2: An example of insertion to the encrypted filter. Here,
each bucket has 2 entries, and the buckets for act5 are full.
Then act4 is randomly selected and relocated, and act5 is
placed in the entry where act4 is previously placed.

using the proposed single token matching algorithm. Next, we
will propose a secure protocol for single token matching which
addresses the security concerns, and then present four tailored
designs for comprehensive DPI support.

B. Secure Single Token Inspection

This protocol enables single token inspection as shown in
the following rule from an open-source ruleset [11]. Two afore-
mentioned security concerns should be addressed. The equality
of streaming tokens needs to be hidden, and authorized token
generation needs to be enforced against DoS attacks.

Snort rule #2: alert tcp $EXTERNAL NET$ any -> $HOME NET$
7597 (flow:to server, established;content:“qazwsx.hsq”;)

For the former concern, we propose to trade space for secu-
rity. On the one hand, inspecting each individual connection
requires an encrypted filter with fresh keys, so the same strings
in different connections will no longer be the same. On the
other hand, each rule string is duplicated and securely indexed
in the filter, so even the same suspicious strings are matched by
randomized tokens. Particularly, we introduce an incremental
counter c bounded by a pre-defined security threshold C,
which is concatenated with the duplicate string as follows:

{str||0, · · · , str||C − 1}

Accordingly, t is equal to F1(K1, str||c), and s is equal to
F2(K2, str||c), while t1 and t2 are computed in the same way
for action insertion and encryption. If C is sufficiently large,
the repeated strings in one connection will map to different
tokens. Otherwise, the counter c will be reset to 0. Even in
that case, the security strength is still improved, since the
distribution of appeared strings in the payloads is obfuscated.

At the same time, we enforce an access control mechanism
to the endpoints via broadcast encryption [20], which is in-
spired from the multi-client support in a searchable symmetric
encryption scheme [12]. Only the authorized endpoint will be
given the ability to generate valid tokens. And if a malicious
endpoint is detected, it will be revoked efficiently.
Detailed protocol: Given a key generation function KGen(1k),
a broadcast encryption scheme BE(Enc,Dec,Add), a ruleset
R, the proposed algorithm Build, the protocol of single token
matching for an individual connection is presented as follows:
• INITIALIZATION:

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:44:23 UTC from IEEE Xplore. Restrictions apply.

1) AS generates {K1,K2,K3} ← KGen(1k), where k is the
security parameter, and builds F ← Build(K1,K2,R, C).

2) For two registered endpoints S and R, AS computes
state information st ← BE.Enc(K3,P, r), where P =
{S,R,MB}, and r is a k-bit random string. Then it gener-
ates KS ← BE.Add(K3, S) and KR ← BE.Add(K3, R).

3) {F , r, st} are sent to MB, and {K1,K2,KS , st, C} and
{K1,K2,KR, st, C} are sent to S and R respectively.

4) S and R run the standard SSL key exchange protocol.
• PRE-PROCESSING:
1) S parses the packet payloads, and transforms the strings

into tokens, (t, s) for each, where t = F1(K1, str||c), s =
F2(K2, str||c), c is cached for every distinct string, and
incremented when another repeated string appears.

2) S computes r ← BE.Dec(KS , st), and σ ← G(r, t||s),
where G is a pseudo-random permutation keyed by r. After
that, S sends σ to MB.

3) S encrypts the traffic with the SSL key and send it to MB.
• INSPECTION:
1) MB holds up the encrypted traffic, and computes t||s =

G−1(r, σ) for each received σ. Then it generates t1 =
P1(t, 1), t2 = P2(t, 2), and performs e⊕ s for every entry
e in T1[t1] and T2[t2].

2) Only if a token related to a suspicious string is matched,
the action act will be recovered via the XOR operation,
or the token is marked legitimate. When all tokens in a
packet are legitimate, this packet is allowed to pass by.

• VERIFICATION:
1) MB continuously generates secure digests for a batch of

passed tokens via a cryptographic hash function, e.g.,
SHA256, and sends them with the encrypted traffic to R.

2) R decrypts the traffic, generates tokens based on the same
principle as S, and computes the digests for verification.

3) If the digest is not the same, S is considered malicious. MB
is notified and revokes S: st′ ← BE.Enc(K3,P, r

′), where
P = {R, MB}, and r′ is a fresh k-bit random string.

Remark: Existing principles for parsing the payloads like
delimiter-based segmentation [5] and window-based n-gram
analysis [11] can be applied at the endpoints during the
preprocessing so as to facilitate effective inspection on binary
and text data. In this paper, we implement those two principles
for our experiments, and more detailed discussion can be found
in [5]. We also remark that the above listed protocol is just
a basic operational outline. Further protocol-level variations
could be possible in practice, depending on different choices
actually adopted for traffic redirection to outsourced middle-
box, such as simple traffic bouncing, IP or DNS redirection [1].

C. Secure Inspection with Attributes

In practice, the inspection rules usually include specified
attributes for a given suspicious string. They can be catego-
rized as a packet field or a range of positions in the packet
payload. For these rules, single token matching can no longer
work. One straightforward approach is to reveal the attributes

to MB, as adopted by BlindBox [5], so that MB can perform
post-inspection after the token is matched.

However, we observe that exposing them to MB will violate
the secrecy of rules and the confidentiality of traffic payloads.
For example, revealing “http stat code” in the rule below will
tell MB that the rule is checking the statues code of HTTP.
Since the corresponding message space is limited, the rule
string and the matched payload could be compromised.

Snort rule #746: alert tcp $HTTP SERVERS$ $HTTP PORTS -
> $EXTERNAL NET$ any (flow:to client, established; content:“403”;
http stat code;)

Besides, revealing the inspection positions indicated in the
rule below also threatens the privacy of enterprises, because
such kind of inspection always checks the vulnerability of
specific network protocols and applications [11]. If a token
is matched, MB would tell exactly which applications or
protocols the endpoint runs.

Snort rule #3235: alert tcp $EXTERNAL NET$ any ->
$SMTP SERVERS$ 25 (flow:to server, established;content:“EMF”;
depth:4; offset:40;)

To ensure strong protection on the rules, we tailor the token
generation, where the inspection attributes are concatenated to
the rule strings. Because the attribute is now transformed with
the string together via pseudo-random functions, it is protected
while the inspection can still function correctly. Explicitly, the
token is generated as below:

(t, s) = (F1(K1, str||c||field), F2(K2, str||c||field))

The value of field is “http stat code” for the former example
rule. Regarding a range of positions in the payload for the latter
example, all possible positions should be specified in the value
of field, i.e., {tbeg||sbeg, · · · , tend||send}, where

(ti, si) = (F1(K1, str||c||i), F2(K2, str||c||i)), i ∈ [beg, end]

beg is equal to offset, and end is equal to beg + depth −
sizeof(str). Consequently, total depth − sizeof(str) du-
plicate acts should be stored in the filter. Meanwhile, the
endpoints are required to generate the tokens with the same
treatment, the corresponding suspicious string can be detected.

D. Secure Multi-condition Inspection

Some of the rules check multiple strings simultaneously
to achieve less false positives [11]. The reason is that many
vulnerabilities or malicious behaviors take place under multi-
ple conditions. Thus, our system should also support multiple
token inspection as the rule shown below.

Snort rule #127: alert tcp $EXTERNAL NET$ any -> $HOME NET$
21 (flow:to server, established; content:“RETR”; content:“passwd”;)

One trivial approach is to attach the rule id to its action, i.e.,
id||act. The recovered id will tell whether the matched tokens
are related to the same rule or not. Here, we assume that id
is a pseudonym, which does not give any information about
the content of the rule. However, simply encrypting id||act
does not meet the security guarantee. If any one of the tokens

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:44:23 UTC from IEEE Xplore. Restrictions apply.

is matched, MB will know the action, which unnecessarily
reveals more information. Here, we target on the same security
strength as previous designs. Namely, only if all related tokens
in a rule are matched, the responsive action will be recovered.
Otherwise, nothing is revealed.
Encryption through secret sharing: To overcome the above
security problem, we adopt an efficient (n, n) secret sharing
scheme [21]. Specifically, given a rule with n strings, its
action act is treated as a secret. Then n − 1 random strings
{p1, · · · , pn−1} are generated with the same bit length of act,
and pn = p1⊕, · · · ,⊕pn−1 ⊕ act, where each pi is a share
of act. Accordingly, each share is placed based on the token
t generated from one of the suspicious strings. Only when all
the n shares are obtained, act is recovered in the follow way:

act = p1⊕, · · · ,⊕pn
As a result, any strict subset of n shares cannot decrypt act.

This design guarantees that if and only if all the suspicious
strings are matched, the shares will be recovered, and the rule
action will be revealed. Otherwise, the rule is kept secret.
Meanwhile, the adopted secret sharing is compatible to the
rules of single string inspection. In that case, the share will
be the action itself. We emphasize that each share p is still
protected via the random mask s.
Inspection: To adapt the secret sharing based encryption,
the inspection at MB should be updated accordingly. The
implementation is stated in Algorithm 2. Given an incoming
token (t, s), MB computes t1 and t2, and attempts to recover
the share if the token is matched by XORing s with each entry
e in buckets T1[t1] and T2[t2]. At the same time, MB leverages
an in-memory associative map M to perform the decryption.
In particular, the result after the XOR operation is parsed as
x||y, where x has the same length of id, and y has the same
length of each share p. Then the pair (x, y) is inserted to M.
If x exists in M, it indicates that x could be a valid id and y
could be one of the shares. In that case, MB performs y⊕ y′,
where y′ is the previous share. When all the necessary shares
are XORed, the action act will be recovered and executed.

E. Secure Inspection for Other Rule Support

Cross-rule inspection: Normally, some rules may contain
same suspicious strings, because some sensitive keywords
appear in different contexts or activities. For example, “pass-
word” belongs to over ten different rules from Snort com-
munity rules [11]. To support cross-rule inspection for same
suspicious strings, we propose a novel construction based
on the design of encrypted filter. The high-level idea is to
introduce another counter to differentiate different rules for a
given string, and use a flag to indicate the last matching rule.

Recall that P1(t, 1) and P2(t, 2) are previously computed
from a token t to seek available entries in the filter. Instead,
P1(t, 1||cr) and P2(t, 2||cr) are computed, where cr is a
counter associated with each distinct suspicious string to
differentiate the related rules. Besides, a new mask P3(s, cr)
is generated for encryption, where P3 is PRF. By giving (t, s),
MB can increment cr for inspection, but it does not know when

Algorithm 2 Inspect for encryption through secret sharing

Input: {t||s}: the streaming tokens; M: an associative map.
Output: {act}: the triggered actions.

1: For each incoming token (t, s), compute t1 = P1(t, 1) and t2 =
P2(t, 2);

2: Perform e ⊕ s, ∀e in T1[t1] and T2[t2], and parse the result as
x||y, where |x| = |id| and |y| = |p|;

3: Insert (x, y) to M. If x exists, perform y ⊕ y′, where y′ is the
previous value associated with x.

4: Once a valid action act is recovered via the XOR operation, the
act is executed.

to stop. Accordingly, we introduce a flag and attach it to the
share of action as well as the id. Therefore, when the flag
in an entry is correctly recovered, MB will know whether it
should continue or not. Each entry is constructed as follows:

P3(s, cr)⊕ (id||p||flag), f lag ∈ {valid, null}

The flag is assigned as either valid or null, where valid means
that more rules matching the token need to be checked, and
null means that this is the last rule that matches the token.
For the rule with the unique string, the flag is set to null.
Cross-connection inspection: Cross-connection inspection is
another common way for intrusion detection, e.g., detecting
brute-force login shown as follows.

Snort rule #1633: alert tcp $EXTERNAL NET$ any ->
$HOME NET$ 110 (flow:to server, established; content:“USER”;
count 30, seconds 30;)

This rule will count the occurrences of “USER”, and trigger
an alert on the activity of suspicious login when “USER”
appears over 30 times within 30 seconds. To enable the
inspection across different connections, we further introduce a
universal message authentication code mac attached with the
action for equality checking, i.e., mac = P4(rc, str)||time,
where P4 is PRF, rc is a randomness agreed by all the
connections, and time is the time interval. Because rc is
the same for all the connections, P4(rc, str) will be matched
for the same string str. When a mac is recovered, MB will
start a timer, and record the occurrences of P4(rc, str). Here,
we assume that the throughput of token processing that MB
handles can be comparable to the throughput of network traffic
due to the unlimited power of cloud. Otherwise, time should
be adjusted to tolerate the delay introduced by inspection.
Discussion: Currently, our design does not cover the support
of sophisticated inspection, i.e., regular expression and scripts.
Similar to the treatment in BlindBox [5], such operations
need post processing after the traffic is decrypted. But unlike
BlindBox, which allows MB to decrypt the traffic, our design
choice is to send the warning and the suspicious packets back
to AS for the security consideration, who will enforce the
endpoints to hand over the SSL key for decryption, or it will
stop the connection. In particular, we define a new action
called “pcre”, and replace the previous action by it in the rules
with regular expression. As long as “pcre” is recovered, the
packet will be sent back. We do acknowledge that this is the
limitation of our system, but we argue that only a very small

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:44:23 UTC from IEEE Xplore. Restrictions apply.

portion of packets are matched which require sophisticated
inspection, e.g., less than 1% in instruction detection traffic
dumps with over 30 million packets shown in our experiment.

F. Initialization Optimization

As mentioned, the initialization for each connection needs
fresh private keys to build the encrypted filter so that the
equality of tokens among different connections is hidden.
Although it takes a short time, e.g., around 100 milliseconds
for a ruleset with over 3000 rules, it is still an additional
cost for endpoints to establish an encrypted connection. To
eliminate the overhead during the initialization, we leverage
AS to pre-build a set of encrypted filters for multiple incoming
connections. Explicitly, the function Build is decoupled from
the initialization, and the filters are built for MB in an
asynchronous process periodically. For implementation, AS
records the number of established connections, and prepares
another set of new filters before the number of connections
reach the number of engaged filters. As a result, the inspection
on the incoming connections becomes seamless. After the
connections are expired, MB will evict the outdated filters.

IV. SECURITY ANALYSIS

In this section, we will present rigorous security analysis
to demonstrate that MB cannot learn the traffic payloads and
the rule content when performing DPI over multiple different
connections. Specifically, we will prove that the single string
inspection protocol P as depicted in Section III-B is secure
against adaptive adversaries, then show that the rest of designs
can still guarantee the confidentiality of rules and payloads.

First, we formulate the simulation-based security definition
verbatim from [12], [13]. Given the well-defined view of
MB, i.e., a stateful function L, we prove that P is L-secure
against adaptive chosen-keyword attacks; that is, P does not
yield any semantic information about the payloads and the
rules beyond the actions to the suspicious tokens, which are
“naturally revealed” by the inspection. The security definition
in Definition 1 is given in such a way that any probabilistic
polynomial time adversary A cannot distinguish between the
real encrypted filter and the simulated filter, the real ran-
domized tokens and the simulated tokens in the real game
RealA(k) and a simulation game IdealA,S(k) respectively.

Definition 1. RealA(k): a challenger calls KGen(1k) to
output private keys {K1,K2}. The adversary A chooses a
ruleset R for the challenger to create an encrypted filter F
via Build(K1,K2,R), and A adaptively sends a polynomial
number of strings extracted from a set of packets. After that,
the challenger responds to A with corresponding tokens, and
A processes the tokens over F . Finally, A outputs a bit.
IdealA,S(k): A chooses R, and a simulator S generates

F̃ based on L(R). Then A adaptively sends a polynomial
number of strings extracted from a set of packets. After that,
S responds to A with simulated tokens, and A processes the
tokens over F̃ . Finally, A outputs a bit.

Before presenting the proof, we formalize the view of MB:
L(R) = (|F|, |e|, d, {t||s}q, {act}m), where |F| is the size of
the encrypted filter, |e| is the bit length of the filter entry, d is
the number of entries in a bucket, {t||s}q are q tokens which
are adaptively generated, and {act}m are m actions recovered
within q tokens. Then we have the following theorem.

Theorem 1. P is L-secure against adaptive chosen-keyword
attacks if F1, F2, P1, and P2 are PRF.

Proof. First of all, S simulates a filter F̃ with the same size of
real F except that each entry in the filter stores a |e|-bit random
string. In F̃ , each bucket also contains d entries. Recall that
each entry in F is either encrypted with a random mask or
filled with random padding. Due to the pseudo-randomness of
F1, F2, P1, and P2, S cannot differentiate F from F̃ . Then S
simulates the tokens and the inspection results, i.e., the actions.
For the first token t||s, if there is no action recovered from
the accessed 2 buckets from 2 hash tables, and the results are
still the random strings, S will generate random strings t̃||s̃,
and operate a random oracle H that replaces PRFs to find two
buckets in F̃ . s̃ unmasks the entries in the buckets and no
action reveals as well. Thus, A cannot differentiate the real
tokens and results from the simulated ones. If an action act is
recovered, S operates H to generate s̃, which unmasks one of
the randomly selected entries: act = s̃⊕ ẽ. For the subsequent
tokens, if the token appeared before, S uses the identical one
simulated previously, or follows the same way of simulating
the first token. Therefore, A cannot differentiate the simulated
tokens and results from the real ones. After all, the outputs of
RealA(k) and IdealA,S(k) are indistinguishable.

Applying symmetric-key based searchable encryption will
let MB know the repeated tokens, because they are generated
via deterministic one-way functions. As proposed, our design
improves the security by trading the space. Each rule string is
duplicated for C copies associated with an counter. Then MB
will see different tokens generated within C repeated strings
appeared in the connection. We note that if the rule requires
cross-rule inspection, the recovered universal mac to some
suspicious string will reveal the equality even for different
tokens. Yet, it is necessarily required for the functionality, e.g.,
counting the repeated suspicious strings across connections.
And the equality of unmatched tokens is still under protection.

V. EXPERIMENTAL EVALUATION

Experiment setup: For evaluation, we select two open-source
rules, i.e., Snort default ruleset2 and ETOpen ruleset3, and
two intrusion detection traffic dumps, i.e., DARPA994, and
iCTF085 with total over 3 × 107 packets. We implement the
middlebox module and the endpoint module in C++, and a
rule parser with UI in C#. Then we deploy the middlebox
module at different models of instances on Amazon Cloud,
i.e., “c4.2xlarge”, “c4.4xlarge”, and “c4.8xlarge”, and install

2Snort stable release: online at https://www.snort.org/downloads.
3ETOpen ruleset: online at https://www.snort.org/downloads.
4DARPA datasets: online at http://www.ll.mit.edu/ideval/data/.
5iCTF traffic: online at http://ictf.cs.ucsb.edu/pages/the-2008-ictf.html.

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:44:23 UTC from IEEE Xplore. Restrictions apply.

0 25 50 75 1000

1

2

3

4

5

Connection

Bu
ild

 ti
m

e
fo

r a
n

en
cr

yp
te

d
fil

te
r (

s)

Snort
Snort*
ETOpen
ETOpen*

(a) Initialization time

500 1000 1500 2000 2500 30000

1000

2000

3000

4000

Number of connections

Pa
ck

et
s/s

 p
er

 c
on

ne
ct

io
n

c4.2xlarge
c4.4xlarge
c4.8xlarge

(b) Inspection throughput
0 2 4 6 80

0.2

0.4

0.6

0.8

1

Bandwidth overhead ratio

CD
F

Empirical CDF

iCTF08:delimiter
DARPA99:delimiter
iCTF08:window
DARPA99:window

(c) Token overhead

0 100 200 300 400 5000

0.2

0.4

0.6

0.8

1

Overall latency per packet (ms)

CD
F

Empirical CDF

iCTF08:20Mbps
DARPA99:20Mbps
iCTF08:1Mbps
DARPA99:1Mbps

(d) Introduced latency

Fig. 3: The performance evaluation of our proposed system

Traffic ETOpen Snort
match support pcre match support pcre

iCTF08 0.7% 93.8% 6.2% 0.2% 96.4% 3.6%
DARPA99 0.2% 15.3% 84.7% 0.3% 97.6% 2.4%

TABLE I: Statistics on the support of matched suspicious
packets. “match”: the percentage of matched packets in the
traffic dump; “support”: the percentage of packets in total
matched packets directly supported by our designs; “pcre”:
the percentage of packets that needs regular expression.

the endpoint module on a Macbook Pro with Intel Core i7
CPU and 16GB RAM.
Effectiveness evaluation: The percentages of the rules di-
rectly supported by our designs are 69% and 52% for Snort
and ETOpen respectively, excluding “pcre” rules. As shown in
Table I, our designs can handle over 90% matched packets in
most cases, where the rest are matched with the “pcre” rules
which need to be decrypted for post processing. Yet, the total
suspicious matched packets are less than 1% in selected traffic
dumps. Even if some packets need to be decrypted at AS, they
are only a small portion of the overall traffic. Note that the
inspection accuracy depends on how DPI systems parse the
packet payloads, which is studied intensively in the plaintext
domain. Similar to BlindBox [5], we adopt the delimiter-based
and window-based string segmentation.
Performance evaluation: First, we evaluate the cost intro-
duced by the encrypted filter. In Table II, the total numbers
of string-action pairs extracted from the rulesets are shown.
To hide the inspection positions, multiple string-action pairs
are generated for each suspicious string with several possible
positions, so the number of pairs is much larger than the
number of rules. Recall that each encrypted entry stores
id||act||flag||mac, where each segment in our design is 4-
byte long, and the entry is masked by a 16-byte random
mask, so each entry is 16-byte long. For the load factor 95%,
the encrypted filter for ETOpen with nearly 20K rules costs
1.9MB, while the one for Snort with around 3K rules only
costs 129KB. It is also the bandwidth consumption from AS
to MB to establish a connection. Figure 3-(a) shows that the
initialization time for each connection, which is dominated by
the build time of encrypted filter. Here, we report the cost
in terms of different rulesets, i.e., around 0.1s for Snort and
less than 2s for ETOpen. As mentioned, this procedure can be
decoupled from the connection initialization since a number
of filters can be pre-built. Therefore, MB can perform the

Ruleset #rules #pairs filter size
Snort 3240 7678 129 KB

ETOpen 19528 115503 1945 KB

TABLE II: The space and bandwidth consumption of an
encrypted filter per connection. The load factor is set as 95%.

inspection immediately after the connection is established.
Recall that we propose to index duplicated string-action

pairs to hide the repeated tokens. To understand the overhead,
we analyze the packets from two traffic dumps with textual
content, i.e., counting the maximum occurrences for distinct
strings in individual packets. The result shows that 91% of
total 10, 268 distinct strings appear no greater than 3 times
in a packet. Then we set the number of duplicates for each
suspicious string as 3, i.e., the threshold for the counter c
defined in Sec. III-B. Accordingly, the size of filter becomes 2
time larger. In future, we will explore to minimize the overhead
while protecting the token distribution as much as possible.

The throughput of packet processing is illustrated in Fig-
ure 3-(b). We measure the throughput at three models of AWS
instances. As our encrypted filter achieves fast and concurrent
lookup, the latency to process one token is less than 10µs, and
the throughput reaches up to 63×106 tokens per second. In the
traffic dumps, the average number of tokens per HTTP packet
is 35. For a “c4.8xlarge” instance holding 500 connections,
the throughput for one connection can reach up to 3, 600
packets per second. For 3, 000 connections, the throughput per
connection still achieves 600 packets per second. And using
multiple instances will further improve the throughput.

To enable MB to perform DPI over encrypted traffic, the
endpoints are required to parse the packet content and generate
tokens for inspection. Producing and transmitting those tokens
indeed introduce computation and bandwidth overheads. Here,
we implement delimiter-based and window-based string seg-
mentation, and set the sliding window size as 6 bytes. We also
truncate the outputs of HMAC-SHA1 as 10 bytes and 16 bytes
for token t and mask s respectively. We also observe that the
rules with attributes are usually used to inspect the headers of
network protocols [11], so our client needs to generate three
tokens for each string in the header for correctness, i.e., the
token with the packet field, the token with the offset, and the
token with the string only. For other strings, e.g., the strings in
the HTTP body, one token with the string only is generated.

As shown in Figure 3-(c), the introduced bandwidth over-
head for over 90% packets varies from 3 times to 6 times in

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:44:23 UTC from IEEE Xplore. Restrictions apply.

terms of original packet sizes. Figure 3-(d) reports the network
latency, including the token generation time, transmission
time, and processing time for a given packet. We evaluate the
introduced latency per packet under two bandwidth settings,
i.e., 20Mbps and 1Mbps with 100ms delay. For a high-speed
network, the introduced latency for nearly all of packets is less
than 100ms. Under a poor network condition, the latency for
over 85% of packets is still less than 200ms, because a large
portion of HTTP packets have a small payload size, outputting
only dozens of tokens per packet. In a word, our system can
perform secure DPI with practical performance.

VI. RELATED WORK

Most of existing intrusion detection systems are unable to
conduct full analysis over encrypted traffic [6]. Prior middle-
boxes decrypt the traffic in the middle of the paths [1], [22],
which compromises the confidentiality of payloads, and may
constitute man-in-the-middle attacks [10]. Another work [17]
performs statistic analysis on encrypted traffic to extract the
characteristics and the features of endpoint activities, but those
mechanisms cannot detect sophisticated semantic attacks, and
thus limit the ability of intrusion detection systems.

Very recently, a middlebox design named BlindBox [5]
enables DPI services over HTTPS traffic. An improved de-
sign [23] extends BlindBox to support wider middlebox func-
tionalities, and also considers to protect the privacy of enter-
prises that use cloud-based middlebox services. Different from
these designs, our design ensures more delicate protection on
the rule sets by handling different types of rules in a tailored
manner. Auxiliary information like the inspection positions,
fields and so on is also protected, which might be exploited to
compromise the confidentiality of rules and payloads. On the
other hand, a newly proposed firewall design [7] obfuscates
the firewall rules when filtering non-encrypted traffic. And
another secure middlebox design [15] also aims to protect both
traffic and rules from the middlebox service provider. But the
above designs use heavy cryptographic tools like multilinear
map [7] and homomorphic encryption [15]. Therefore, it is
not clear whether they can achieve the same level of practical
performance as our design does.

Our proposed designs are also related to a large number of
searchable encryption schemes (to list a few) [12], [13]. They
study the problem on how to enable private keyword search
over encrypted documents. But as mentioned, directly applying
them does not provide comprehensive support of inspection
rules or result in a secure design with high throughput and
memory efficiency.

VII. CONCLUSION

In this paper, we design a system that enables outsourced
middleboxes to conduct packet inspection while protecting the
content of packets and inspection rules. We first formulate
the problem as encrypted string matching, and then propose
an encrypted filter that securely stores the encrypted string-
action pairs extracted from rules. After that, the endpoints
parse the packet content and generate randomized tokens so

that the middleboxes can process them over the filter for
inspection. Our designs support wide range of inspection rules,
and the evaluation on real rulesets and traffic demonstrates that
our system can efficiently detect most of suspicious packets.
In future, we will study the way of handling the regular
expression rules over encrypted traffic, and also investigate
efficient mechanisms to verify the behavior of middlexboxes.

ACKNOWLEDGMENT

This work was supported in part by the Research Grants
Council of Hong Kong (Project No. CityU 138513), the
Natural Science Foundation of China (Project No. 61572412),
and an AWS in Education Research Grant award.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” in Proc. of ACM SIGCOMM, 2012.

[2] A. Gember, R. Grandl, J. Khalid, and A. Akella, “Design and imple-
mentation of a framework for software-defined middlebox networking,”
in Proc. of ACM SIGCOMM, 2013.

[3] H. Jamjoom, D. Williams, and U. Sharma, “Don’t call them middle-
boxes, call them middlepipes,” in Proc. of ACM HotSDN, 2014.

[4] Google, “HTTPS as a ranking signal,” http://googlewebmastercentral.
blogspot.hk/2014/08/https-as-ranking-signal.html, 2014.

[5] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep packet
inspection for encrypted traffic,” in Proc. of ACM SIGCOMM, 2015.

[6] K. Skarfone and P. Mell, “Guide to intrusion detection and prevention
systems,” National Institute of Standards and Technology, available at:
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf , 2007.

[7] J. Shi, Y. Zhang, and S. Zhong, “Privacy-preserving network function-
ality outsourcing,” arXiv preprint arXiv:1502.00389, 2015.

[8] A. R. Khakpour and A. X. Liu, “First step toward cloud-based fire-
walling,” in Proc. of IEEE SRDS, 2012.

[9] Z. Zhou and T. Benson, “Towards a safe playground for HTTPS and
middleBoxes with QoS2,” in Proc. of ACM HotMiddlebox, 2015.

[10] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson, “Analyzing forged
SSL certificates in the wild,” in Proc. of IEEE S&P, 2014.

[11] Snort, “An open source intrusion prevention system,” https://www.snort.
org/, 2015.

[12] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895–934, 2011.

[13] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner, “Dynamic searchable encryption in very large databases:
Data structures and implementation,” in Proc. of NDSS, 2014.

[14] B. Fan, D. Andersen, M. Kaminsky, and M. Mitzenmacher, “Cuckoo
filter: Practically better than bloom,” in Proc. of ACM CoNEXT, 2014.

[15] L. Melis, H. J. Asghar, E. D. Cristofaro, and M. A. Kaafar, “Private pro-
cessing of outsourced network functions: Feasibility and constructions,”
Cryptology ePrint Archive, Report 2015/949, 2015.

[16] S. K. Fayazbakhsh, M. K. Reiter, and V. Sekar, “Verifiable network
function outsourcing: requirements, challenges, and roadmap,” in Proc.
of ACM HotMiddlebox, 2013.

[17] A. Yamada, Y. Miyake, K. Takemori, A. Studer, and A. Perrig, “Intrusion
detection for encrypted web accesses,” in Proc. of IEEE Advanced
Information Networking and Applications Workshops, 2007.

[18] E. Bertino and G. Ghinita, “Towards mechanisms for detection and
prevention of data exfiltration by insiders: keynote talk paper,” in Proc.
of ASIACCS, 2011.

[19] R. Pagh and F. Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51, no. 2,
pp. 122–144, 2004.

[20] A. Fiat and M. Naor, “Broadcast encryption,” in Proc. of CRYPTO, 1994.
[21] B. Schneier, Applied cryptography: protocols, algorithms, and source

code in C. John Wiley & Sons, 2007.
[22] Squid, “Squid-cache feature: HTTPS (HTTP Secure or HTTP over

SSL/TLS),” http://wiki.squid-cache.org/Features/HTTPS, 2015.
[23] C. Lan, J. Sherry, R. A. Popa, and S. Ratnasamy, “Mbark: Securely

outsourcing middleboxes to the cloud,” in Proc. of USENIX NSDI, 2016.

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:44:23 UTC from IEEE Xplore. Restrictions apply.

