
2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

1

Privacy-preserving Efficient Verifiable Deep
Packet Inspection for Cloud-assisted Middlebox

Hao Ren, Student Member, IEEE, Hongwei Li (Corresponding author), Senior Member, IEEE,
Dongxiao Liu, Student Member, IEEE, Guowen Xu, Student Member, IEEE, Nan Cheng, Member, IEEE,

and Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—With the increasing traffic volume, enterprises choose to outsource their middlebox services, such as deep packet
inspection, to the cloud to acquire rich computational and communication resources. However, since the traffic is redirected to the
public cloud, information leakages, such as packet payload and inspection rules, arouse privacy concerns of both middlebox owner and
packet senders. To address the concerns, we propose an efficient verifiable deep packet inspection (EV-DPI) scheme with strong
privacy guarantees. Specifically, a two-layer architecture is designed and deployed over two non-collusion cloud servers. The first layer
fast filters out most of legitimate packets and the second layer supports exact rule matching. During the inspection, the privacy of
packet payload and the confidentiality of inspection rules are well preserved. To improve the efficiency, only fast symmetric
crypto-systems, such as hash functions, are used. Moreover, the proposed scheme allows the network administrator to verify the
execution results, which offers a strong control of outsourced services. To validate the performance of the proposed EV-DPI scheme,
we conduct extensive experiments on the Amazon Cloud. Large-scale dataset (millions of packets) is tested to obtain the key
performance metrics. The experimental results demonstrate that EV-DPI not only preserves the packet privacy, but also achieves high
packet inspection efficiency.

Index Terms—Cloud computing, Middlebox, Network function outsourcing, Privacy-preserving.

F

1 INTRODUCTION

M IDDLEBOX [1] is a network equipment that supports
a wide spectrum of network functions for enterprise

networks. For instance, a middlebox can provide firewall,
load balancer and deep packet inspection (DPI) services
[2]. Nowadays, some of the modern middlebox services are
delay sensitive. Moreover, it is also challenging to offer high
efficiency facing with the explosion of traffic volume. For
instance, DPI is a typical delay sensitive network function.
One of its key performance metrics is the packet throughput
within a certain period of time. Thus, to achieve high
efficiency, the most appealing solution is outsourcing the
DPI service to the cloud platform [3], [4]. Various benefits
can be acquired with the assistance of the cloud servers. First,
powerful computation and communication capabilities [5]
are provided, which makes it feasible to support efficient
DPI over large-scale traffic volume. Second, for the owner
of middlebox, diverse DPI functions can be customized to

• Hao Ren and Hongwei Li are with the school of Computer Science
and Engineering, University of Electronic Science and Technology of
China, Chengdu 611731, China, and also with the Cyberspace Security
Research Center, Peng Cheng Laboratory, Shenzhen, China (e-mail: ren-
hao.uestc@gmail.com; e-mail: hongweili@uestc.edu.cn).

• Guowen Xu is with the school of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu
611731, China. (e-mail: guowen.xu@foxmail.com)

• Nan Cheng is with the School of Telecommunication Engineering, Xidian
University, Xian 710071, Shanxi, China, (e-mail: dr.nan.cheng@ieee.org)

• Dongxiao Liu and Xuemin (Sherman) Shen are with the Depart-
ment of Electrical and Computer Engineering, University of Water-
loo, Ontario N2L 3G1, Canada. (e-mail: dongxiao.liu@uwaterloo.ca;
sshen@uwaterloo.ca)

meet the new requirements without purchasing additional
hardware. Third, the heavy burden of the daily management
of DPI system is released. In addition, the advanced DPI
functions, such as machine learning [6], [7] based malware
detection [8], can be efficiently supported by cloud comput-
ing. Consequently, significant attentions have been paid to
the outsourcing of DPI for cloud-assisted middlebox [5].

Unfortunately, the DPI outsourcing also introduces sev-
eral security and privacy concerns. In specific, the network
traffic has to be redirected to the cloud for inspection. As
a result, an important privacy concern is the exposure of
packet payload. For example, the personal information of
enterprise employees is inevitably disclosed to the cloud
server if without any protection. The cloud service provider
may even attempt to analyze the private contents for eco-
nomic interest. Moreover, the passing packets may contain
sensitive information that relates to commercial secrets of
an enterprise. If these kinds of information are leaked to
the cloud or any competitor, serious losses may be caused.
Another crucial issue is the confidentiality of the DPI rules.
Usually, the details of the DPI rules directly reflect the
security and privacy policies. If an internal or external
attacker has accessed the DPI rules, it will be easier to
evade the inspection. With such strong background infor-
mation, the attacker can even find some loopholes of the
system. Thus, both the packet payload and the DPI rules
should be protected from the public cloud. A simple way
to achieve this goal is using standard crypto-systems (e.g.,
AES, RSA) to encrypt the packet payload and the DPI rules.
Unfortunately, it is usually difficult to process DPI directly
over ciphertext domain [5]. Therefore, it is challenging and
urgent to design a privacy-preserving DPI scheme over

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

2

cloud platform.
Some approaches have been proposed to offer DPI

service on the public cloud with privacy protection. The
first milestone-like work BlindBox [2] formally defined the
security and privacy requirements of middleboxes. It also
provided an efficient solution using symmetric encryption.
BlindBox [2] utilized garbled circuit [9] to obfuscate the
DPI rules, which could be time-consuming for large-scale
connections. Yuan et al. [10] adopted broadcast encryption
[11]. It can support the sharing of encrypted rules be-
tween different connections. Later, their subsequent work
[12] proposed an efficient method that is able to verify
the inspection results. Recently, Guo et al. [13] designed
a dynamic DPI scheme to support rule update. Several
public key encryption based schemes [8], [14], [15] are also
proposed to explore diverse functions such as malware de-
tection and decryptable matching. Due to the using of public
key crypto-system, computation overheads are inevitably
increased. As a result, the time cost on packet sender side
becomes higher. Meanwhile, the total packet throughput is
significantly decreased.

Previously proposed works have provided diverse DPI
services with different levels of privacy preservation. There
are still some issues not fully addressed. On one hand, larger
packet throughput without compromising the privacy pro-
tection is one of the crucial design goals. On the other hand,
efficient and fine-grained inspection result verification is
not well supported. These issues are challenging to solve
due to the natural conflicts between functionality, efficiency
and privacy. To tackle these challenges, we present three
observations that are not considered by existing works. 1).
First, in the reality, most contents of the packet payloads are
not matched (more than 99%) by any DPI rules. Therefore,
these packets should be fast filtered out. Intuitively, the con-
tent filtering and exact rule matching should be conducted
separately. By doing so, the whole DPI process efficiency can
be boosted significantly. 2). Second, result verification may
introduce extra packet delay, if the results are verified before
packet forwarding. As a practical method, the verification
can be executed independently. 3). Third, since most of
the packets will not be matched, only verifying the final
execution result is insufficient. Thus, the execution details
should be proved to offer a fine-grained verification.

In this paper, we propose an efficient verifiable deep
packet inspection scheme (EV-DPI) with privacy protection
over two non-collusion cloud servers. EV-DPI adapts fast
symmetric encryption primitives [16] to support privacy-
preserving DPI. EV-DPI also achieves inspection result ver-
ification using Cuckoo hashing [17], [18]. The verification
and DPI can be processed independently. This design guar-
antees the high performance in terms of network latency.
The main contributions of this paper are summarized as
follows.

• We propose a two-layer inspection architecture. The
first layer can fast filter out the most legitimate pack-
ets using encoded Bloom filter [19]. The second layer
supports exact rule matching using carefully tailored
conjunctive searchable encryption scheme [16]. By
doing so, EV-DPI achieves lower packet processing
cost on sender side and larger packet throughput on

Fig. 1: System Model.

middlebox side. Moreover, the intermediate and final
inspection results returned by both cloud servers can
all be efficiently verified.

• EV-DPI can preserve the privacy of packet payload
and the confidentiality of DPI rules against semi-
honest cloud servers [20]. Moreover, to conceal the
size pattern (i.e., the number of keywords) of each
DPI rule, we propose a secure rule extension scheme.
By doing so, the cloud server cannot distinguish
two encrypted rules based on the size pattern. Thus,
the confidentiality of DPI rules stored on the cloud
servers is further enhanced.

• Extensive experiments are conducted over Amazon
Cloud [21] to demonstrate the efficiency of EV-DPI.
In specific, the network administrator (gateway) is
simulated by a local server. The prototype of middle-
box is implemented on the cloud based on the public
DPI rule set [22]. Without compromising the privacy,
EV-DPI is more efficient in terms of packet latency
and packet throughput.

The remainder of this paper is organized as follows.
In Section 2, the system and threat models are described.
Based on the models, the design goals are presented. At
last, the building blocks are reviewed. In Section 3, we
show the design details of EV-DPI. The security analysis and
the performance evaluation are provided in Section 4 and
Section 5, respectively. In Section 6, closely related works
are reviewed. Section 7 concludes the paper.

2 MODELS AND DESIGN GOALS

In this section, we first review the system and threat model.
Then, we present the design goals to capture the require-
ments of functionality, privacy and efficiency. At last, the
cryptographic primitives used as the building blocks are
briefly introduced.

2.1 System Model
As shown in Fig. 1, the proposed system consists of four
entities to capture the typical scenarios of the cloud assisted
middlebox. The gateway (GW) is the administrator of the

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

3

internal network. It is responsible for key management and
DPI rule generation. At the system initialization phase, GW
outsources the encrypted DPI rule set to the middlebox. Af-
terwards, all the packets sent from the internal network will
be gathered by GW. The payload of each packet should be
encoded for privacy protection. At last, the encoded packets
are redirected to middlebox (MB). The MB is implemented
by two non-collusion cloud servers. One is token filtering
server (TFS) and the other is rule matching server (RMS).
Note that, MB can be instantiated by two real or virtual
cloud servers. The external server provides various services
to the users of internal network that could be file storage,
e-mail, web and so on. To clarify the details of the system,
we describe the work flow as follows.

• System initialization: GW generates an encoded
filter, an encrypted rule set, and uploads them to
TFS and RMS, respectively. All the secret keys will
be generated and distributed to TFS and RMS. To
support the verification of the inspection results, GW
also constructs two encoded hash tables and uploads
them to TFS and RMS.

• Packet processing: GW tokenizes the payloads of
packets sent from the internal network. Each token
is then encoded. Afterwards, encoded tokens along
with the packets are redirected to MB for DPI process.

• Token filtering: This is the first layer of EV-DPI.
Upon receiving the encoded tokens, TFS fast filters
out all the matched tokens. If there is no token
matched, the traffic should be transmitted to the
external server. Otherwise, TFS and RMS will col-
laboratively conduct exact rule matching. Note that,
TFS should generate the verification object for each
token to prove the execution correctness.

• Rule matching: This is the second layer that returns
the final inspection result. RMS needs to determine
whether each rule is exactly matched or not. During
the matching process, RMS may interact with TFS. If
any rule is matched, RMS will trigger the pre-defined
actions. RMS also needs to return the result to GW
for further detection. Otherwise, the packet should
be forwarded as usual. It is also needed for RMS to
generate the verification objects.

• Verification: TFS and RMS each maintains a verifi-
cation space. They are used to store the verification
objects. The size of the verification space is decided
by GW. And GW can verify the returned results at
any time. The verification only involves GW. TFS
and RMS are unaware of when and which packet is
verified.

Life-cycle of a packet:
Here, we review the life-cycle of a packet to show the

basic work flow. Suppose a packet sender needs to send a
packet to the external server. The packet is first forwarded
to GW. Then, the payload of the packet is segmented into
tokens. GW encodes all the tokens and sends them to the
cloud server. Each encoded token should be tested by TFS.
It filters out the tokens that also appears in the outsourced
middlebox rule. If no token is matched, TFS can transmit
the packet to the external server as usual. Otherwise, TFS
generates search tags for all the matched tokens. Then, the

search tags are sent to RMS. In the last step, RMS conducts
exact rule matching using the search tags. If any rule is
asserted to be matched, RMS may choose to drop the packet
or even cut off the connection. Meanwhile, RMS needs to
return the result to GW. If no rule is matched, RMS forwards
the packet as usual. This is how a packet is processed and
inspected.

Benefits of using two non-collusion cloud servers:
Using two non-collusion cloud servers to implement

secure and privacy-preserving system is a common method
in public key based schemes [15], [23]. Normally, one server
carries the computational burden and the other reveals the
result. Recently, Guo et al. [13] also adopt this design to
implement a symmetric key based scheme. By doing so,
more functions are achieved with less information leakage.
In this paper, we use this method to boost the efficiency
and reduce the information leakage simultaneously. We
summarize the benefits as follows.

1). Reduced leakage: TFS is unaware of the final matching
result. Thus, it is difficult to launch attacks rely on the in-
formation of result pattern. RMS cannot access the original
encoded tokens. Moreover, some side channel information
such as the volume of matched tokens is protected from
RMS.

2). Improved efficiency: First, due to the using of two cloud
servers, the interaction between MB and GW is avoided.
Thus, the network delay is also reduced. Second, TFS filters
out most of the unmatched tokens and generates new search
tokens for previously matched tokens. Then, GW is released
from heavy token encryption burden.

2.2 Threat Model

In this paper, GW is considered to be fully trusted. It is per-
mitted to have full access to all the secret keys and encrypted
packets. The cloud-assisted middlebox including TFS and
RMS are semi-honest [24], [25]. They will follow the pre-
defined protocols, yet they may be interested in the contents
of passing packets. TFS and RMS may attempt to recover
the distribution or even the contents of encrypted DPI rule
set and passing tokens. Thus, any information leakages of
the protocols may be abused by TFS or RMS. For instance,
the size of the DPI rule set, the matching result of DPI rules
and so on. These two servers are not allowed to exchange
any information that is not pre-permitted. Formally, this
model is defined as two non-collusion servers [13], [23].
Moreover, the cloud servers are possible to be “Lazy” [12].
For economic benefit, the cloud service provider may only
perform partial computational tasks (e.g., only 70% packets
are inspected) to reduce the computational cost.

2.3 Design Goals

Under the system and threat model, EV-DPI should be
carefully designed to meet the requirements of functionality,
privacy protection and efficiency. In specific, the design
goals of EV-DPI are shown as follows.

• Functionality: As the basic DPI function, rule match-
ing must be supported. Any token that appears in
rule set should be detected. Also, the corresponding
actions should be triggered. If any rule is matched,

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

4

the middlebox is required to return the encrypted
matched rules as well as the matched tokens to GW.
Verifiability is a desirable function that should be
supported. It allows GW to verify the correctness of
inspection result.

• Privacy protection: To preserve the privacy of senders,
the contents of the packet payload and tokens should
be concealed from MB. The confidentiality of the
outsourced DPI rules should also be preserved.

• Efficiency: On the GW side, the token encryption
algorithm should be lightweight. On the MB side, the
unmatched tokens should be filtered out efficiently.
To boost the efficiency, we aim to support paralleled
computing on both GW and MB sides.

2.4 Cryptographic Primitives

Basic Cryptographic Primitives: 1). A pseudo-random
function (PRF) is a one-way function G : X × K → Y
if for all randomly chosen key k ∈ K, all probabilistic
polynomial-time adversary A cannot distinguish G(k, ·)
from a real random function f(k, ·) from X to Y . 2). A
symmetric encryption consists three polynomial-time algo-
rithms Σ = (KeyGen,Enc,Dec). KeyGen(·) can generate
the secret key k. Message m is encrypted as c = Enc(k,m)
and decrypted as m = Dec(k, c).

Bloom Filter: Bloom filter [19] is a storage-efficient data
structure that supports membership test. Given a binary
vector BF [i] = 0, where i ∈ [1, l] and l is the length of BF .
To add an element x into BF , k hash functions {h1, ..., hk}
are used as BF [hj(x) mod l] = 1. Thus, given an ele-
ment y, we can compute hj(y) mod l and check the value
BF [hj(y) mod l]. If for all j ∈ [1, k], BF [hj(y) mod l] = 1,
then y is within BF . The standard Bloom filter supports
the operation of adding new element. However, it fails
to process deletion of inserted elements. Bloom filter may
introduces false positive during the membership test. The
formal analysis of the false positive rate is given in [19].

Cuckoo Hashing: Cuckoo hashing [17] is implemented
by two tables T1, T2 with same size S. Given two hash
functions h1, h2, an element e can be inserted into one
of the two locations T1[h1(e) mod S], T2[h2(e) mod S]. If
the locations T1[h1(e) mod S] and T2[h2(e) mod S] are all
occupied. Then, it let e still take the computed location and
the original element is deleted and inserted again using
the same method. If no empty location is found during
the insertion, we have to re-build two larger hash tables.
To search an element, at most two times of hashing are
required.

Tuple Set: Tuple set (T-set) is presented by Cash et
al. [26]. It is an inverted index that supports searchable
encryption (encrypted keyword search). T-set consists three
algorithms Γ = (TsetSetup,TsetGenTag,TsetSearch). An
array T is indexed by keywords. Algorithm TsetSetup(T)
returns the private key K and the index Tset. T-set runs
stag ← TsetGenTag(K,w) to obtain the search token stag.
TsetSearch is the search algorithm that can return the
identifiers of matched files associated with stag.

Symmetric Hidden Vector Encryption: Symmetric hid-
den vector encryption (SHVE) is recently proposed by Lai
et al. [16]. SHVE is a prediction encryption that is able

Fig. 2: An example of DPI rule.

to determine the intersection of two sets over ciphertext
domain. Let Θ be an attribute set with finite size, ∗ be
the wildcard and Θ∗ = Θ ∪ {∗}. Given a PRF F :
{0, 1}λ × {0, 1}λ+logλ → {0, 1}λ+logλ, a symmetric encryp-
tion Σ = (KeyGen,Enc,Dec) with the same plaintext and
key space {0, 1}λ+logλ.

• SHVE.Setup(λ) : It takes the security parameter
λ as the input and samples a mater key mk uni-
formly from {0, 1}λ. The message space is defined
asM ={“True”}. It outputs (mk,M).

• SHVE.KeyGen(mk,u ∈ Θs
∗) : u = (u1, ..., us)

is the predicate vector with s elements. We use
L = {1 ≤ li ≤ s|uli 6= ∗}, 1 ≤ i ≤ |L| to denote
the locations in u that are not wildcard characters.
We samples a key K uniformly from {0, 1}λ+logλ
and compute k1 = (

⊕
i∈[|L|](F (mk, uli ||li)))

⊕
K

and k2 = Enc(K, 0λ+logλ). Then, it outputs the
decryption key KD = (k1, k2, L).

• SHVE.Enc(mk,m =“True”,v ∈ Θs) : It takes the
master key mk, the message m and the index vector
v = {v1, ..., vs} as the inputs. For all i ∈ [s], it calcu-
lates ci = F (mk, vi||i) and outputs C = {cj |j ∈ [s]}
as the ciphertext.

• SHVE.Query(KD, C) : It takes the ciphertext C, the
decryption key KD as the inputs and parses them
as C = {cj |j ∈ [s]},KD = (k1, k2, L). It computes
K = (

⊕
i∈[|L|] cli)

⊕
k1 and m′ = Dec(K, k2). If

m′ = 0λ+logλ, it outputs “True”; otherwise ⊥.

3 PROPOSED SCHEME

In this section, we first give an example of real DPI rule to
show the use case of EV-DPI. Then, a brief overview of the
scheme is given. In specific, the inspection procedures of a
packet is described. Afterward, the technical details of EV-
DPI are presented. Specifically, the two-layer DPI processing
and execution result verification are described step by step.

Example of real DPI rule:
We give an example of a DPI rule sampled from the

public Snort rule set [22]. As shown in Fig. 2, the pat-
tern“Volume Serial Number” that appears after “content:”
are the keywords. And the number of this rule is 1292 (i.e.,
sid:1292). Thus, this rule can be tokenized as three keywords
{“Volume”,“Serial”,“Number”}. If these three keywords ap-
pears in the same packet in succession, then the No.1292
rule can be asserted to be matched. For a matched rule, the
pre-defined actions should be triggered by MB (RMS). The
action could be sending an alert to GW (network admin-
istrator), discarding the packet, cutting off the connection,
etc.

Scheme overview:
As shown in Fig. 3, a packet is used as an example to

describe the more detailed work flow. It starts from the
packet payload tokenization to the final step of EV-DPI. We

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

5

Fig. 3: Scheme Overview.

assume that the encoded token filter (ETF) and encrypted
rule set (ERS) are all already generated by GW. ETF and
ERS are then shared with TFS and RMS, respectively. ETF
is a Bloom filter with all the encoded keywords of DPI rules
as the elements. ERS can be parsed as ERS= (Tset, B̂F).
Tset is the inverted index of DPI rules. B̂F is an encrypted
Bloom filter that supports conjunctive keyword matching.
Each step of EV-DPI is described as follow.

(1) Packet tokenization: Once the packet is forwarded to
GW. The payload is tokenized as {tk1, tk2, ...}.

(2) Token encoding: Given the tokens, GW encodes them
as {etk1, etk2, ...} using PRF and sends them to TFS.

(3) Fast token filtering: For each encoded token, TFS uses
ETF to fast filter out the unmatched tokens. This step
is the standard Bloom filter membership test.

(4) Main keyword search: Let {etk1, etk2, ...etko} be the
matched token. Then, etk1 is chosen as the main
keyword. Afterward, TFS invokes TsetGenTag to
generate a T-set search token stok for etk1. stok is
sent to RMS. The size of the search result |t| (number
of matched rules) are returned to TFS.

(5) Token extending: Given the matched tokens
{etk1, etk2, ...etko}, TFS extends them to n tokens
as {etk1, etk2, ...etkn}, where n is also the size of
extended DPI rules.

(6) xtok generation: To inspect the remain tokens
{etk2, ...etkn}, TFS computes new search tokens as
xtok[ct] = {xtok[ct, 2], ..., xtok[ct, n]}, (1 ≤ ct ≤
|t|). Afterward, TFS sends xtok[ct] to RMS.

(7) Compute the locations: Upon receiving xtok[ct], RMS
computes the locations using hash functions and
return them to TFS. Here, locations indicate the “1”

positions in a Bloom filter (not encrypted).
(8) Vector encryption: TFS generates a vector vct with

value “1” in the computed locations. Then, TFS
invokes SHVE.KeyGen to generate the search tokens
vxtokct and sends them to RMS.

(9) Matching result revealing: After searching vxtokct
over B̂F , RMS reveals the final matching result of
each DPI rule. Once a rule is matched, pre-defined
actions will be triggered by RMS. Otherwise, the
packet should be forwarded to the external server.

(10) Result verification: GW can verify the results returned
by TFS and RMS independently at any time.

3.1 Two-layer Deep Packet Inspection
• System initialization:

In this phase, GW generates ETF and ERS. Afterwards,
ETF should be uploaded to TFS and ERS should be for-
warded to RMS. ETF serves as the first layer of EV-DPI and
ERS serves as the second layer.

The generation of ETF is clearly shown in Algorithm 1.
First, each keyword in rule set R is encoded by PRF F with
secret key KT . Then, each encoded keyword is mapped into
the Bloom filter BF using t hash functions. Afterward, BF
is attached to ETF. Note that, in the reality, multiple rule sets
can be represented by the same or different Bloom filters.
The design details are similar to single rule set. Here, we
only consider one rule set. At last, ETF along with the t
hash functions are uploaded to TFS.

To implement the second layer of EV-DPI, we build an
encrypted index (ERS) of the keyword set R. As illustrated
in Algorithm 2, ERS consists of three parts. The first part
is an encrypted inverted index Tset [26]. The construction

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

6

Algorithm 1 Build ETF
1: Input: Select secret key KT for PRF F , keyword set

of the DPI rule R, t hash functions {h1, ..., ht}, binary
vector BF [] whose length is m.
Output: ETF.

2: Set BF [·] = 0.
3: for all keywords k ∈ R do
4: for i ∈ [t] do
5: Compute k̂ = F (KT , k).
6: Compute loc = hi(k̂) mod m, BF [loc] = 1.
7: end for
8: end for
9: Set ETF = BF .

10: Output ETF.

of Tset is similar to OXT [26]. The ID of each DPI rule is
denoted as rid. For the rules that contains the same keyword
k (rid ∈ R(k)), the IDs of the rules will be attached to
the list t. Note that, PRF Fp can map a message to Z∗p,
where p is a large prime number. TsetSetup also outputs
a secret key KR, that is used to generate search tokens
for Tset. The implementation details of Tset can be found
in [26]. The second part is an extension method of all
the DPI rules. The main purpose of this operation is to
hide the number of keywords in each rule. Therefore, we
choose to extend it to the same size. Suppose the largest
number of keywords in a single rule is n. Given any rule
that contains o keywords, n − o dummy keywords will be
added. The dummy keywords are generated by embedding
real keywords with the sequence numbers. The extended
encoded keywords set is denoted as R∗. In the third part,
we map each encoded keyword k̂ into a Bloom filter and
encrypt it as B̂F using SHVE. In this step, the relationship
between each encoded keyword k̂ and the rule identifier
rid is build and encrypted. At last, the Algorithm. 2 returns
ERS= (Tset, B̂F). GW uploads RMS and the secret keys
{KR,KD,KX ,mk} to TFS.
• Packet processing:

Packets sent from the internal network are all converged
to GW. Firstly, GW tokenizes the packet payload using
delimiter-based scheme [2]. Delimiters could be any
symbols such as space, comma, connector, etc. For instance,
given a string “login.net?user=Allen”, the typical tokens
could be “login.”, “login.net”, “user=Allen”, etc. Formally,
given a long string (i.e., the packet payload), it is segmented
as follows. Let {S1, S2, ..., Sm} be all the non-delimiter
strings and {P1, P2, ..., Pn} be all the delimiters. They
both appear in the order of their indexes. Then, the
algorithm scans the payload and finds the first delimiter
P1. If the S2 appears after P1, the generated tokens are
{S1, S1P1, S1P1S2}. Then, the algorithm repeats the same
method for P2. If P2 just appears after P1, it continues to find
S3. Then, the generated tokens are {S1, P1P2, , S1P1P2},
and the link of all the strings from P2 to S3 (S3 is not
included). The algorithm can segment the whole payload
recursively using this method. Secondly, each token tk is
encoded as etk = F (KT , tk). Finally, all the encoded tokens
and the packets are sent to MB (TFS).

Algorithm 2 Build ERS
1: Input: Secret keys KT ,KS ,KD for PRF F , KI ,KZ ,KX

for PRF Fp, KE for symmetric encryption Σ, mk for
SHVE. Keyword set of the DPI rule R. t hash functions
{h1, ..., ht}. Binary vector BF [] whose length is m.
Output: ERS.

2: ————————————————————————
3: (a). Build an index for all the keywords using Tset:
4: for all keywords k ∈ R do
5: Set list t = {}.
6: Compute k̂ = F (KT , k), KE = F (KS , k̂).
7: R(k) : all the rules that include keyword k.
8: for rid ∈ R(k) do
9: Set counter ct = 1.

10: Compute xrid = Fp(KI , rid).
11: Compute zk = Fp(KZ , k||ct), yct = xrid · z−1k .
12: Compute eridct = Enc(KE , rid).
13: Set ct = ct+ 1 and add (yct, eridct) to t.
14: end for
15: Set T[k̂] = t.
16: end for
17: Run (Tset,KR)← TsetSetup(T).
18: ————————————————————————
19: (b). Extend the DPI rules into same size:
20: for all rules R ⊂ R and R∗ = ∅ do
21: Parse each rule R as {k1, ..., ko}.
22: Compute {k̂1, ..., k̂o} = {F (KT , k1), ..., F (KT , ko)}.
23: for i = o+ 1; i ≤ n; i+ + do
24: Compute k̂i = F (KD, k̂1||...||k̂o||i).
25: end for
26: Set R∗ = {k̂1, ..., k̂n} and R∗ = R∗ ∪R∗.
27: end for
28: ————————————————————————
29: (c). Map the extended rules into an encrypted Bloom filter:
30: Set BF [·] = 0.
31: for all encoded keywords k̂ ∈ R∗ do
32: for all rid ∈ R∗(k̂) do
33: Compute xrid = Fp(KI , rid).
34: for j = 1; j ≤ t; j + + do
35: Compute loc = hj(g

Fp(KX ,k̂)·xrid) mod m.
36: Set BF [loc] = 1.
37: end for
38: end for
39: end for
40: Compute B̂F = SHVE.Enc(mk,“True”, BF).
41: ————————————————————————
42: Return ERS= (Tset, B̂F).

• Fast token filtering:
TFS uses ETF to filter out most unmatched tokens.

Specifically, given an encoded token etk, TFS computes t
hash functions as:

loc1 = h1(etk) mod m, ..., loct = ht(etk) mod m.

Then, TFS checks whether ETF[loci] = 1 holds, where
1 ≤ i ≤ t. If so, token etk can be asserted to be matched.
TFS continues to check the remain tokens until all the
encoded tokens of a packet are inspected. If there is no
token matched, the packet should be forwarded to external

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

7

server as usual. Otherwise, TFS continues to conduct exact
rule match with the help of RMS.

• Exact rule matching:
In this phase, TFS should generate search trapdoors

using matched tokens. Then TFS sends them to RMS to
find out the final rule matching results. Suppose a series of
matched tokens {etk1, ..., etko} appear one after the other.
Then, {etk1, ..., etko} will be encrypted as a trapdoor that
supports conjunctive keywords matching [16], [26] over
ERS. The details are shown as follows:

Step 1: Given a series of matched tokens {etk1, ..., etko}.
TFS randomly chooses an encoded token as the main token.
Without loss of generality, we let etk1 be the main token.
Then, TFS computes stok = TsetGenTag(KR, etk1) and
sends stok to RMS.

Step 2: RMS first parses ERS as (Tset, B̂F). Then, RMS
invokes t = TsetSearch(stok,Tset) to obtain the search
result t of the main token. If t is empty (no rule is matched),
RMS let TFS transmit the packet to external server. And
TFS should continue to process the next packet. Otherwise,
the number of matched rules |t| will be returned to TFS.

Step 3: Upon receiving |t|, TFS extends the tokens as
etki = F (KD, etk1||...||etko||i), where i ranges from o + 1
to n with step length 1. Then, for ct ranges from 1 to |t| and
j ranges from 2 to n, both with step length 1; TFS computes

xtok[ct, j] = gFp(KZ ,etk1||ct)·Fp(KX ,etkj),

and sends xtok[ct] = {xtok[ct, 2], ..., xtok[ct, n]} to RMS.
Step 4: For ct ranges from 1 to |t| and j ranges from 2

to n, both with step length 1; RMS parses the result pairs
(yct, eridct) from t and computes:

xtag = xtok[ct, j]yct ,

locct,j,1 = h1(xtag) mod m, ..., locct,j,t = ht(xtag) mod m.

Then, RMS returns {locct,j,1, ..., locct,j,t} to TFS.
Step 5: For ct ranges from 1 to |t| and j ranges from 2 to

n, both with step length 1; TFS initializes vct = ∗m and sets
vct[locct,j,1], ...,vct[locct,j,t] = 1. Afterwards, TFS invokes

vxtokct = SHVE.KeyGen(mk,vct).

Finally, TFS sends {vxtok1, ..., vxtok|t|} to RMS.
Step 6: Upon receiving {vxtok1, ..., vxtok|t|}, for ct

ranges from 1 to |t|, RMS invokes

ηct = SHVE.Query(vxtokct, B̂F).

Let Γ = {} be the result set. If ηct =“True”, the correspond-
ing DPI rule is exactly matched. RMS should trigger the
action and set Γ = Γ∪{eridct}. The matched encrypted rule
set Γ along with the uploaded trapdoors should be returned
to GW for further analysis. If no ηct equals to “True”, packet
will be transmitted to external server.

Discussion: The second layer of EV-DPI can support
exactly rule matching using the technique of conjunctive
searchable encryption [16]. As we know, compared to the
previously proposed OXT [26], the used method in this pa-
per introduces an additional communication round between
the two cloud servers. Here, we argue that it is worthy to do
so. First, OXT discloses the result pattern, which indicates

the intermediate results (the search result of the partial of the
keywords). This information leakage can be used to recover
the search keywords [27], [28]. Thus, the cloud server is
required to return the final result directly. Second, through
the experiment, we find that few of the tokens (near 0.1%)
are matched. And only matched tokens introduces one more
round of communication. So, the extra delay is worthy for
the benefit of less information leakage.

3.2 Execution Result Verification

As discussed in Section 2.2, the cloud server is possible to be
“Lazy”. Thus, the correctness of the returned result should
be verified. In specific, the motivation of offering verification
service to the GW (middlebox owner) are mainly two-folds.

First, in the reality, most of the packets will not be
matched to any rule. Thus, the cloud server can just forward
parts of the packets without inspection. It is also difficult
for GW to detect such irresponsible behavior. Concretely, if
30% of the packets are not inspected, then the cloud service
provider can save 30% of the computing resources. Thus,
the verification is necessary to resist such “Lazy” cloud
servers.

Second, any outsourced middlebox is the potential attack
target of both internal and external attackers [5], [29]. It
should be the cloud service provider’s responsibility to
resist the attacks. Thus, the cloud server needs to use
the verification objects to prove that it strictly follows the
protocols. Moreover, the verification offers a full control
of the outsourced middlebox. GW can also measure the
quality of the cloud computing service through verifying
the inspection results.

In this paper, the fast filtering processing accomplished
on TFS, and the exact rule matching conducted on RMS
should all be verified by GW.

• Verification on TFS:
We use Bloom filter [19] to support the membership

checking of the encoded tokens. And only fast hashing
operations are conducted. Thus, the verification of the
returned result is simple. If a token is asserted to be
matched, the encoded token itself is the verification objective
(VB). For an unmatched token, VB should be the encoded
token and the hash functions that maps the token into
the positions with value 0. Afterwards, VBs are stored on
verification space. To verify the matched tokens, GW redo
the hashing operations which is exactly the same as the
filtering process. If all the mapped positions of the Bloom
filter are set as 1, GW will accept the result. Otherwise,
the result is incorrect and should be rejected. To verify the
unmatched tokens, only one-time hashing is required. If the
mapped position has the value 0, the result can be accepted.
Otherwise, GW rejects the result and sends alert to TFS.

• Verification on RMS:
The verification of exact rule matching on RMS are

accomplished with two steps. The first step is verifying the
correctness of the search results on Tset and the second
step is verifying the query results on B̂F . In the view of
searchable encryption (SE) [30], [31], the first step is to verify
the result of single keyword search on Tset. Here, we adopt

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

8

a latest non-dictionary verifiable SE scheme [18] to support
such function. The details are shown as follow.

GW generates hash tables that consists of all the possible
verification objectives and outsources them to RMS. For all
the keywords k ∈ R, we select a secret key KV for PRF F .
Then, GW computes k̂ = F (KT , k) and k̃ = F (KV , 0||k̂).
Let |R| be the number of keywords; (h1, h2) be the hash
functions used for building hash tables. Then, GW maps
all the keywords R into two cuckoo hash tables (T ∗1 , T

∗
2)

with size |R| + 1. For each k̃, we have T ∗1 [h1(k̃)] = k̃ or
T ∗2 [h2(k̃)] = k̃. For x = 1, 2, i ranges from 1 to |R|+ 1 with
step 1, if T ∗x [i] = k̃, GW calculates

Tx[i] = {k̃, F (KV , x||i||k̃), F (KV , 3||k̃||R(k))};

otherwise, GW computes

Tx[i] = {null, F (KV , x||i||null), null}.

Therefore, for each k̃, one of the following two equations
should hold.{
T1[h1(k̃)] = {k̃, F (KV , 1||h1(k̃)||k̃, F (KV , 3||k̃||R(k)},
T2[h2(k̃)] = {k̃, F (KV , 2||h2(k̃)||k̃, F (KV , 3||k̃||R(k)}.

At last, GW shares the secret key KV with TFS and out-
sources {T1[·], T2[·]} along with {h1, h2} to RMS.

To support verification on RMS, each main token etk
(i.e., token used to search on Tset) should be encoded again
as ẽtk = F (KV , etk). Afterwards, ẽtk is sent to RMS. Let
t be the search result on Tset. RMS searches the two hash
tables as:

{a1, b1, c1} = T1[h1(ẽtk)]; {a2, b2, c2} = T2[h2(ẽtk)].

If ẽtk = a1, set pf = c1 and if ẽtk = a2, set pf = c2.
Otherwise, pf = {a1, b1, a2, b2}. Then, RMS outputs the ver-
ification objective VB = {ẽtk, t,pf} of the searched encoded
token etk and stores it on the verification space.

To verify the search result of etk, GW first checks
whether pf = c1 or pf = c2. If so, it continues to check
if pf = F (KV , 3||ẽtk||t) holds. If this equation holds, GW
accepts the result. Otherwise, the result should be rejected.
If pf = {a1, b1, a2, b2} and ẽtk ∈ {a1, a2} or t 6= ∅ or
b1 6= F (KV , 1||h1(ẽtk)||a1) or b2 6= F (KV , 2||h2(ẽtk)||a2),
the result should be rejected; otherwise, accepted.

Note that, the search results on B̂F are verified by GW.
To boost the efficiency, TFS first links the remain n − 1
tokens as one token. Then, it is encoded using PRF F with
secret key KV . Thus, only one-time verification is required.
Moreover, the generation of the hash tables and VBs are
exactly the same as the main keyword. Here, we omit the
details.

4 SECURITY ANALYSIS

In this section, we discuss the security and privacy
properties of EV-DPI according to the threat model and
design goals presented in Section 2. In specific, two issues
are considered. One is the privacy of packet payload and
the other is the confidentiality of DPI rules.

•Privacy of packet payload:

The content of packet payload is tokenized and encoded
using PRF F with secret key KT . In the view of TFS,
the encoded tokens are randomized. Thus, it is hard to
be recovered by a polynomial-time attacker according to
the security property of PRF. For the matched tokens,
TFS generates stags and xtoks using four secret keys
{KR,KD,KZ ,KX}. These four secret keys are kept private
from RMS. Therefore, the generation of stags and xtoks
has further promoted the security level of encoded tokens.
In the view of RMS, no additional information can be
deduced from received stags and xtoks. Note that, RMS
cannot access the original encoded tokens. Moreover, the
packet payload itself can be encrypted by using any secure
and efficient end-to-end encryption method such as AES
[2]. Thus, both TFS and RMS cannot infer the plaintext of
passing encrypted packet payload. In a word, the privacy
of packet payload is well-preserved by using PRFs.

•Confidentiality of DPI rules:
The confidentiality of outsourced DPI rules directly re-

lies on the design details of two encrypted filters ETF, ERS
and the Cuckoo hash tables generated for result verification.
We discuss the confidentiality of ETF, ERS and the Cuckoo
hash tables successively.

1). ETF is constructed using standard Bloom filter [19].
If the plaintext of each keyword is directly mapped into
the Bloom filter, an attacker can infer the data distribution
through large-scale membership test. In EV-DPI, each key-
word is first encoded using PRF F with the secret key KT .
By doing so, the distribution of data is concealed. Therefore,
it becomes difficult for RMS to recover the original data.
Moreover, similar construction method used in [32] has been
theoretically and practically proved to be semantic secure.

2). ERS can be parsed as ERS= (Tset, B̂F). Thus, the
confidentiality of DPI relies on the instantiation approach
of Tset and the encryption method SHVE used for B̂F .
In EV-DPI, we follow the instantiation method of Tset
presented in [26], which is proofed to be secure. SHVE is
constructed using PRFs and secure symmetric encryption.
Formally, in [16], the authors proved that SHVE is selec-
tively simulation-secure. Therefore, B̂F can preserve the
confidentiality of the dataset (i.e., xtags). Note that, TFS
cannot access Tset, B̂F . Moreover, the final matching result
is also kept secret from TFS. Thus, it is hard for TFS to
recover the encrypted DPI rules through searching huge
number of tokens and analyzing the search result.

3). Three elements in Cuckoo hash tables {T1[·], T2[·]} are
all encoded by PRF F with secret key KV . And only GW is
allowed to access KV . Thus, RMS cannot distinguish the el-
ements in {T1[·], T2[·]} without KV . The verification objects
stored on TFS leaks no additional information. Therefore,
the proposed verification scheme can well conceal the orig-
inal DPI rules.

In summary, the confidentiality of outsourced DPI rules
is well preserved.

Discussion: Here, two critical security issues related to
EV-DPI are discussed.

1). As shown in Algorithm 2, some dummy keywords are
added into each rule. Thus, in the exactly rule matching phase,
each query and rule are extended to the same size. RMS

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

9

then cannot distinguish two queries or two rules through
the number of tokens or keywords. Also, the size of each
encrypted rule is exactly the same. Therefore, the cloud
server is unable to distinguish an individual rule through
this side channel information.

2). Another important issue is the randomness of en-
coded tokens and keywords. Since PRFs provides no ran-
domness over the same inputs, the equality between differ-
ent encoded tokens and keywords are revealed. To address
this issue, there are two existing methods [2], [10] are pro-
posed. a). The first one is presented by Sherry et al. [2]. They
construct two synchronization tables over the middlebox
and the packet sender. In the table, each entry is a counter
for a token. And the counters in two tables are updated
simultaneously when a token appears repeatedly. Then,
each token is encoded together with the counter. Therefore,
both packet sender and middlebox have to construct and
maintain two tables. Moreover, the message space of tokens
could be large, which will definitely introduce large tables.
b). To mitigate this problem, Yuan et al. [10] choose to
trade storage for the efficiency. The main idea is to attach
an integer number behind the token or keyword before
encoding. Thus, each token has multiple encoded versions.
All the versions will be used repeatedly. The only cost is that
the size of DPI rule has to be extended. According to the
analysis over real dataset, the authors find that 3 versions
are adequate. However, this method still cannot provide real
or even pseudo randomness. We argue that this could be an
open problem of symmetric key based schemes.

5 PERFORMANCE EVALUATION

In this section, a comprehensive evaluation on the
performance of EV-DPI is given. In specific, the functionality
and efficiency are discussed. We also compare the
experiment results with the latest proposed scheme
GWJ [13] which is also designed based on symmetric key
encryption.

•Functionality:
First, EV-DPI supports basic DPI rule matching over

ciphertext domain. It is also supported in previously
proposed schemes [2], [10], [14], [33]. Second, EV-DPI can
return the matching details to GW for further analysis. Such
as the encrypted rule identification, intermediate result, etc.
Third, token-level verification is supported that allows GW
to verify the matching result of each passing token. Thus,
EV-DPI has achieved the comprehensive design goals in
terms of functionality.

EV-DPI adopts a two-layer inspection architecture. The
first layer fast filters out suspicious packets. The second
layer could be enabled to decrypt the suspicious packets and
inspect the packets in the plaintext domain. For instance, if
some tokens or basic rules are matched, then such packet
should be considered as dangers packet. The confidentiality
of this packet will not be protected. Thus, the middlebox
can decrypt it and perform complex inspection rules in the
plaintext domain. This method is demoted as probable cause
privacy [2]. By dong so, the basic DPI functions is supported

and the privacy is preserved. Moreover, the advanced func-
tions, including complex regular expression and machine
learning [34] based detection can all be well supported.
•Implementation details:

The gateway is simulated by a local server. It offers
Intel Xeon E5-2620 CPU (2.1GHz) and 32GB memory. The
middlebox is simulated on the Amazon Cloud with in-
stance “c4.4xlarge”. This instance provides Intel Xeon E5-
2666 CPU (2.9GHz) and 30GB memory. Through the test,
the maximum network throughput of this instance is nearly
4.9 Gbit/s. Since EV-DPI supports parallel processing, the
middlebox also can be simulated by multiple cloud servers.
For instance, if the function of TFS is implemented over
multiple servers, the inspection efficiency can be signifi-
cantly improved. Especially when larger-scale of packets
and connections need to be processed. The communication
between gateway and middlebox is not simulated in the
real world. The additional communication cost is mainly
brought by the encoded tokens generated by gateway. These
tokens will be sent from gateway to middlebox. Thus, we
can directly compute the size of the total tokens based on
the implementation details of PRF. The operation system is
Linux and the programming language is Java. To boost the
efficiency, the multi-threading technique is applied for every
phase that supports parallel processing. The lightweight
public instruction detection rule set Snort [22] is adopted.
The public intrusion detection evaluation dataset DARPA
[35] is used. We use OpenSSL to implement cryptographic
tools. The HMAC-SHA2 is used to instantiate PRFs and the
output is truncated as 128 bits. AES-128 is adopted as the
symmetric encryption.
•Efficiency evaluation on GW:

Initialization overhead:
In EV-DPI, the initialization phase can be divided into

three parts. That are the construction of encrypted filter ETF,
the index ERS and the Cuckoo hash tables {T1[·], T2[·]}.
As shown in Fig. 4a, the time costs of EV-DPI and GWJ
[13] increase linearly with the number of rules. When the
number of rules reaches 3000, the total cost of EV-DPI is
roughly 3.82s. The construction of ERS takes nearly 3.1s
while ETF and {T1[·], T2[·]} only cost 0.23s and 0.49s, re-
spectively. As shown in Alg. 2, modular exponential oper-
ations are conducted to build B̂F . Thus, the computation
of ERS costs much more time than ETF and {T1[·], T2[·]}.
Since only PRFs and symmetric encryption are used, GWJ
requires totally 0.72s to build the index. Both schemes let
GW tokenize and encode the packet payload. Thus, only
one-time initialization is required (i.e., constant). Thus, we
argue that 3 seconds additional cost is acceptable.

Packet processing time:
Packets gathered by GW are all tokenized and encoded

before being uploaded to MB. For each token, EV-DPI only
requires one-time PRF calculation while GWJ needs to con-
duct two-time of PRF calculation and one-time symmetric
encryption. Therefore, the total packet processing time is
significantly reduced. As shown in Fig. 4b, with the increas-
ing of the number of packets, the time costs of EV-DPI and
GWJ increase in linear. When the number of packets reaches
106, the time cost of EV-DPI and GWJ are roughly 500s and
1400s, respectively.

Communication overhead:

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

10

(a) Initialization time. (b) Packet processing time. (c) Communication overhead on
GW.

(d) Verification time.

Fig. 4: Performance Comparison on GW side.

Fig. 5: Packet throughput of MB.

The communication overhead between GW and MB de-
pends on the size of encoded tokens. It is determined by
the encoding method. For EV-DPI, each token is encoded
by a PRF with 128 bits (truncated) output. For GWJ, the
encoded token consists of three parts. In specific, two parts
are computed using PRF and one part is the ciphertext of
the token. GWJ uses the same HMAC and truncates the
output as 128 bits. As shown in Fig. 4c, the costs of EV-
DPI and GWJ are 152.6MB and 352.9MB, respectively, when
the number of tokens is 107. In practice, the communication
latency is a crucial factor that significantly affects the whole
performance of the system. Since EV-DPI produces smaller
encoded tokens, it can achieve lower communication la-
tency.

Verification time:
Since EV-DPI is able to support inspect result verification

on both two cloud servers, we evaluate the efficiency
respectively. For each server, the whole verification process
consists of two parts. One is the generation of verification
objects (VBs) and the other is verifying the result based on
VBs. As shown in Fig. 4d, GW costs much more time to
verify the result returned by TFS than RMS. Because the
matching result of every token on TFS should be verified
but only about 0.1% packets are matched on RMS. Roughly,
GW takes 10% time to verify the result returned by RMS.
When the number of tokens reaches 107, the total time cost
is 300s. Note that, the total cost includes the generation of
VBs, the interaction latency between GW and MB, and the
verification result revealing.

•Efficiency evaluation on MB:
We evaluate the packet throughput of MB to prove the

efficiency, which is the key performance metric. To inspect
one packet, all the encoded tokens are first fast filtered
by TFS. Then, to support exact rule matching, additional
computation and interaction with RMS are required. Since
the membership test time for one token over the Bloom
filter is constant, the whole-time cost of inspection over MB
is significantly boosted. The reason is that only very few
tokens are matched on TFS. From the result of experiment,
we find that roughly 7.5% time is consumed for exact
rule matching. And the proportion of two parts are clearly
shown in Fig. 5. To inspect a large number of packets that
reach one million, the whole time cost of EV-DPI is 997s.
In order to support rule update, GWJ [13] needs to check
the rules one by one for each token. So, the time cost of
one token matching increases linearly with the number of
DPI rules. It takes 2717s to inspect one million packets. On
average, the total latency for single packet inspection of EV-
DPI is 2.1ms and GWJ is 3.7ms. Thus, EV-DPI has improved
the packet throughput and reduced the latency.

Conclusion: Here, we give a conclusion of the main
differences between the baseline scheme GWJ [13] and EV-
DPI. The first difference is the functionality. GWJ has con-
sidered the issue of rule update. The authors utilize two
non-collusion servers to support the update of DPI rules.
We acknowledge that this function is useful and it deserves
further study. In EV-DPI, we target on the inspection result
verification, which offers a strong control of outsourced
middlebox. The second difference is the initialization cost.
GWJ has only built one encrypted filter for all the DPI
rules. In EV-DPI, two encrypted filters are built. One is
used for fast token filtering and the other is used for exact
rule matching. Therefore, EV-DPI causes more initialization
costs than GWJ. Note that, both schemes only require one-
time initialization for all the connections. In anther word,
the cost is irrelevant to the volume of network traffic. The
third difference is the token generation. One encoded token
in GWJ contains three parts. In EV-DPI, one encoded token
only contains one part. Thus, EV-DPI has reduced the token
generation and communication costs. The fourth difference
it the inspection efficiency. EV-DPI can filter out most of the
regular packets efficiently in the first place. Thus, EV-DPI
has improved the inspection efficiency.

Discussion: The accuracy of the inspection result is
an important issue that should be considered. In specific,

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

11

inspection accuracy is the ratio of packets that should be
matched to the given DPI rule, yet they are wrongly re-
garded as regular packets. In the proposed EV-DPI, if a
packet matches a DPI rule, the packet will be captured
in the second layer inspection. It is guaranteed by the
adopted searchable encryption technique [16]. However, EV-
DPI cannot support all the DPI rules [22] in the plaintext
domain. For EV-DPI, the fraction of addressable rules in the
ciphertext domain is 67%, which is the same as BlindBox
[2] and GWJ [13]. It is worthy to note that EV-DPI can
increase the overall ratio of addressable rules if probable cause
privacy is well supported. Thus, we acknowledge that how
to efficiently support probable cause privacy is an important
and challenging future work.

6 RELATED WORK

In this section, we give a brief review of previously
proposed schemes that are closely related to this paper.
Considerable amount of works is presented towards
diverse secure and privacy-preserving network functions
for outsourced middleboxes [36]. Roughly, they can be
divided into two categories. The privacy-preserving DPI
schemes [2] can inspect the packet payload and the secure
header matching schemes [37] can detect the packet
header. And all the works [5] explore diver functions over
ciphertext domain. We also discuss the topic of searchable
encryption [38] used in the second layer of EV-DPI.

•Privacy-preserving DPI:
Symmetric key based schemes: The first privacy-preserving

DPI scheme named as BlindBox is proposed in [2]. BlindBox
provides a definition of the threat model and the system
model to lay a foundation of this topic. It assumes that
there are two connections between the packet sender and the
receiver. One is the traditional TCP connection and the other
is a virtual connection used for payload inspection. The
payload is firstly tokenized and then encrypted using AES.
And the DPI rules are obfuscated using garbled circuit [9].
Yuan et al. [10] utilize broadcast encryption [11] to control
the membership of the network. Thus, all the authorized
users can share the same encrypted DPI rules. They also
leverage Cuckoo hash [17] to fast filter the passing tokens.
Yuan et al. [12] also explore anther important issue, that is
the verification of the DPI execution results. In [12], the ver-
ification technique ringer [5] is adopted. The authors extend
the basic scheme to support multiple middleboxes, which
has the potential to support service function chain [39]. Lan
et al. directly use searchable encryption scheme without any
modification to implement privacy-preserving DPI. Thus,
it may suffer from higher packet latency. Recently, Guo et
al. [13] achieve dynamic DPI over two non-collusion cloud
servers, which allows the middlebox to update the encoded
DPI rules. The system and threat models of this scheme
are similar to EV-DPI. EV-DPI has not only improved the
efficiency, but also provided fine-grained result verification.

Public key based schemes: The first public key based
privacy-preserving network function outsourcing scheme is
presented by Melis et al. [23]. The somehow homomorphic
encryption (BGN) [40] is used to support additive and
one-time multiplicative homomorphic operations over the

ciphertext domain. Our previously proposed scheme [15]
also utilize BGN to process DPI and machine learning
based malware detection. Similarly, Fan et al. [8] also
leverage homomorphic encryption to support DPI as
well as malware detection. Recently, a scheme based on
decryptable searchable encryption [41] named as BlindIDS
is presented by Canard [14]. BlindIDS allows the packet
receiver directly decrypt the received tokens to verify that
whether the tokens are generated and encrypted correctly.

•Secure header matching:
The first secure header matching is proposed in [33] by

Lan et al. The authors design a new algorithm named as
PrefixMatch to support the prefix matching over ciphertext
domain. PrefixMatch is implemented in [33] and is proved
to be quite efficient. Guo et al. [37] convert the header
matching problem into privacy preserving range query [42],
[43] over ciphertext domain. The numerical ranges in the
rules are encrypted using order-revealing encryption (ORE)
[44]. The right ciphertext of ORE can achieve semantic
secure under chosen plaintext attack. Guo et al. [13] also
leverage ORE to support stateful firewall, which lays a
foundation for the real deployment of header matching
based network functions.

•Searchable encryption:
As pointed out by Lan et al. [33], searchable encryption

(SE) [38] can be adopted to support privacy preserving DPI.
Moreover, the recent advancement of secure range query
[25] shows that SE can also be adapted to support semantic
secure and efficient range query. Thus, we argue that the
SE techniques have the potential for processing the diverse
outsourced network functions. SE was originally designed
for keyword search [30] over ciphertext domain. With the
fast development of this area, many useful properties such
as multi-keyword search [45], conjunctive keyword search
[16], [26] and even privacy preserving machine learning [46]
are supported. In this paper, we adapt the scheme presented
in [16] to implement the second layer of EV-DPI. In [16], the
information leakage of the intermediate search result (result
pattern) is formalized and concealed.

7 CONCLUSIONS

In this paper, we have proposed an efficient verifiable deep
packet inspection (EV-DPI) scheme with privacy preserva-
tion. EV-DPI can well support the verification over final
and intermediate inspection results. Both inspection and
verification protocols are able to preserve the privacy of
packet payload and confidentiality of DPI rules. We have
demonstrated the high performance of EV-DPI through
extensive experiments and compared the results with the ex-
isting scheme. In the future, we will explore the blockchain
techniques and learning-based approach to secure diverse
outsourced middlebox services.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their important
comments to improve the quality of this paper. This work
is supported by the National Key R&D Program of China

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

12

under Grants 2017YFB0802300 and 2017YFB0802000, the
National Natural Science Foundation of China under Grants
61972454,61802051, 61772121, 61728102, and 61472065, the
Peng Cheng Laboratory Project of Guangdong Province
PCL2018KP004, the Guangxi Key Laboratory of Cryptog-
raphy and Information Security under Grant GCIS201804,
the NSERC, Canada, the China Scholarship Council (CSC)
NO. 201706070048. Special thanks should be given to the
professor and research colleagues of BBCR Lab at University
of Waterloo for the valuable discussion.

REFERENCES

[1] Y. Kanizo, O. Rottenstreich, I. Segall, and J. Yallouz, “Designing
optimal middlebox recovery schemes with performance guaran-
tees,” IEEE JSAC, vol. 36, no. 10, pp. 2373–2383, 2018.

[2] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox:
Deep packet inspection over encrypted traffic,” in Proc. of ACM
SIGCOMM, 2015, pp. 213–226.

[3] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, and X. Shen,
“Cost-efficient resource provisioning for dynamic requests in
cloud assisted mobile edge computing,” IEEE TCC, 2019,
doi:10.1109/TCC.2019.2903240.

[4] X. Liu, R. Deng, K. R. Choo, and Y. Yang, “Privacy-preserving
outsourced support vector machine design for secure drug dis-
covery,” IEEE TCC, 2018, doi:10.1109/TCC.2018.2799219.

[5] C. Wang, X. Yuan, Y. Cui, and K. Ren, “Toward secure outsourced
middlebox services: Practices, challenges, and beyond,” IEEE Net-
work, vol. 32, no. 1, pp. 166–171, 2018.

[6] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/Aerial-assisted computing offloading for IoT applications:
A learning-based approach,” IEEE JSAC, vol. 37, no. 5, pp. 1117–
1129, 2019.

[7] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient
and privacy-enhanced federated learning for industrial artificial
intelligence,” IEEE TII, 2019, doi:10.1109/TII.2019.2945367.

[8] J. Fan, C. Guan, K. Ren, Y. Cui, and C. Qiao, “SPABox: Safe-
guarding privacy during deep packet inspection at a middlebox,”
IEEE/ACM ToN, vol. 25, no. 6, pp. 3753–3766, 2017.

[9] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and
F. Koushanfar, “TinyGarble: Highly compressed and scalable se-
quential garbled circuits,” in Proc. of IEEE S&P, May 2015, pp.
411–428.

[10] X. Yuan, X. Wang, J. Lin, and C. Wang, “Privacy-preserving deep
packet inspection in outsourced middleboxes,” in Proc. of IEEE
INFOCOM, 2016, pp. 1–9.

[11] T. V. X. Phuong, G. Yang, W. Susilo, and X. Chen, “Attribute based
broadcast encryption with short ciphertext and decryption key,”
in Proc. of ESORICS, 2015, pp. 252–269.

[12] X. Yuan, H. Duan, and C. Wang, “Bringing execution assurances
of pattern matching in outsourced middleboxes,” in Proc. of IEEE
ICNP, 2016, pp. 1–10.

[13] Y. Guo, C. Wang, and X. Jia, “Enabling secure and dynamic deep
packet inspection in outsourced middleboxes,” in Proc. of ACM
SCC, 2018, pp. 49–55.

[14] S. Canard, A. Diop, N. Kheir, M. Paindavoine, and M. Sabt, “Blin-
dIDS: Market-compliant and privacy-friendly intrusion detection
system over encrypted traffic,” in Proc. of ACM AsiaCCS, 2017, pp.
561–574.

[15] H. Li, H. Ren, D. Liu, and X. Shen, “Privacy-enhanced deep packet
inspection at outsourced middlebox,” in Proc. of WCSP, 2018, pp.
1–6.

[16] S. Lai, S. Patranabis, A. Sakzad, J. K. Liu, D. Mukhopadhyay,
R. Steinfeld, S.-F. Sun, D. Liu, and C. Zuo, “Result pattern hiding
searchable encryption for conjunctive queries,” in Proc. of ACM
CCS, 2018, pp. 745–762.

[17] G. Levy, S. Pontarelli, and P. Reviriego, “Flexible packet matching
with single double cuckoo hash,” IEEE Communications Magazine,
vol. 55, no. 6, pp. 212–217, 2017.

[18] W. Ogata and K. Kurosawa, “Efficient no-dictionary verifiable
searchable symmetric encryption,” in Proc. of IFCA FC, 2017, pp.
498–516.

[19] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
1970.

[20] Y. Zhang, C. Xu, X. Lin, and X. Shen, “Blockchain-based public
integrity verification for cloud storage against procrastinating
auditors,” IEEE TCC, 2019, doi:10.1109/TCC.2019.2908400.

[21] “Amazon cloud,” https://aws.amazon.com/cn/, 2019, [Online,
accessed 27-March-2019].

[22] “Snort rules,” https://www.snort.org/, 2019, [Online, accessed
07-March-2019].

[23] L. Melis, H. J. Asghar, E. De Cristofaro, and M. A. Kaafar, “Private
processing of outsourced network functions: Feasibility and con-
structions,” in Proc. of ACM SDN-NFV Security, 2016, pp. 39–44.

[24] Y. Zhang, C. Xu, H. Li, K. Yang, J. Zhou, and X. Lin, “Healthdep:
An efficient and secure deduplication scheme for cloud-assisted
ehealth systems,” IEEE TII, vol. 14, no. 9, pp. 4101–4112, 2018.

[25] H. Ren, H. Li, Y. Dai, K. Yang, and X. Lin, “Querying in Internet
of Things with privacy preserving: Challenges, solutions and
opportunities,” IEEE Network, no. 99, pp. 1–8, 2018.

[26] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and
M. Steiner, “Highly-scalable searchable symmetric encryption
with support for boolean queries,” in Proc. of CRYPTO, 2013, pp.
353–373.

[27] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse
attacks against searchable encryption,” in Proc. of ACM CCS, 2015,
pp. 668–679.

[28] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are
belong to us: The power of file-injection attacks on searchable
encryption,” in Proc. USENIX Security, 2016, pp. 707–720.

[29] X. Yuan, H. Duan, and C. Wang, “Assuring string pattern match-
ing in outsourced middleboxes,” IEEE/ACM ToN, 2018.

[30] H. Li, D. Liu, Y. Dai, T. Luan, and S. Yu, “Personalized search
over encrypted data with efficient and secure updates in mobile
clouds,” IEEE TETC, vol. 6, pp. 97–109, 2015.

[31] I. Ghosh Ray, Y. Rahulamathava, and M. Rajarajan, “A new
lightweight symmetric searchable encryption scheme for string
identification,” IEEE TCC, 2018, doi:10.1109/TCC.2018.2820014.

[32] S. Kamara and T. Moataz, “Boolean searchable symmetric encryp-
tion with worst-case sub-linear complexity,” in Proc. of EURO-
CRYPT, 2017, pp. 94–124.

[33] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Em-
bark: Securely outsourcing middleboxes to the cloud,” in Proc. of
USENIX NSDI, 2016, pp. 255–273.

[34] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure and
verifiable federated learning,” IEEE TIFS, vol. 15, no. 7, pp. 911–
926, 2020, doi:10.1109/TIFS.2019.2929409.

[35] “DARPA traffic,” https://www.ll.mit.edu/r-d/datasets, 2019,
[Online, accessed 07-March-2019].

[36] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network
processing as a cloud service,” in Proc. of ACM SIGCOMM, 2012,
pp. 13–24.

[37] Y. Guo, C. Wang, X. Yuan, and X. Jia, “Enabling privacy-preserving
header matching for outsourced middleboxes,” in Proc. of IWQoS,
2018.

[38] D. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. of IEEE S&P, 2000, pp. 44–55.

[39] M. Huang, W. Liang, Y. Ma, and S. Guo, “Maximizing
throughput of delay-sensitive nfv-enabled request admissions
via virtualized network function placement,” IEEE TCC, 2019,
doi:10.1109/TCC.2019.2915835.

[40] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-dnf formulas on
ciphertexts,” in Proc. of IACR TCC, J. Kilian, Ed., 2005, pp. 325–341.

[41] T. Fuhr and P. Paillier, “Decryptable searchable encryption,” in
Proc. of ProvSec, 2007.

[42] G. Xu, H. Li, Y. Dai, K. Yang, and X. Lin, “Enabling efficient and
geometric range query with access control over encrypted spatial
data,” IEEE TIFS, vol. 14, no. 4, pp. 870–885, 2019.

[43] J. Liang, Z. Qin, S. Xiao, J. Zhang, H. Yin, and K. Li, “Privacy-
preserving range query over multi-source electronic health records
in public clouds,” Elsevier JPDC, vol. 135, no. 7, pp. 127–139, 2020.

[44] K. Lewi and D. J. Wu, “Order-revealing encryption: New construc-
tions, applications, and lower bounds,” in Proc. of ACM CCS, 2016,
pp. 1167–1178.

[45] Y. Yang, X. Liu, X. Zheng, C. Rong, and W. Guo, “Efficient traceable
authorization search system for secure cloud storage,” IEEE TCC,
2018, doi:10.1109/TCC.2018.2820714.

[46] J. Liang, Z. Qin, S. Xiao, L. Ou, and X. Lin, “Efficient and secure
decision tree classification for cloud-assisted online diagnosis ser-
vices,” IEEE TDSC, 2019, doi:10.1109/TDSC.2019.2922958.

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2991167, IEEE
Transactions on Cloud Computing

13

Hao Ren (S’14) is currently a Ph.D. candidate at
the School of Computer Science and Engineer-
ing, University of Electronic Science and Tech-
nology of China (UESTC), China. He is also a
visiting Ph.D. student at ECE department, Uni-
versity of Waterloo, Canada. His research inter-
ests include Applied Cryptography, Security and
Privacy for Cloud Computing and IoT.

Hongwei Li (M’11-SM’18) is currently the Head
and a Professor at Department of Information
Security, School of Computer Science and En-
gineering, University of Electronic Science and
Technology of China (UESTC). He received the
Ph.D. degree from UESTC in June 2008. He
worked as a Postdoctoral Fellow at the Univer-
sity of Waterloo from Oct. 2011 to Oct. 2012
under the supervision of Prof. Sherman Shen.
His research interests include network security
and applied cryptography. Dr. Li has published

more than 100 technical papers. Dr. Li serves as the Associate Editor of
IEEE IoT Journal, and PPNA, the Guest Editor of IEEE Network, IEEE
IoT Journal and IEEE Transactions on Vehicular Technology. He also
serves/served the technical symposium co-chair of ACM TUR-C 2019,
IEEE ICCC 2016, IEEE GLOBECOM 2015 and IEEE BigDataService
2015, and technical program committees for international conferences,
such as IEEE INFOCOM, IEEE ICC, IEEE GLOBECOM, IEEE WCNC.
He won Best Paper Awards from IEEE MASS 2018 and IEEE HEALTH-
COM 2015. He is the Senior Member of IEEE and the Distinguished
Lecturer of IEEE Vehicular Technology Society.

Dongxiao Liu (S’13) received his B.S. and M.S.
degree in School of Computer Science and En-
gineering, University of Electronic Science and
Technology of China (UESTC), China in 2013
and 2016, respectively. Currently, he is pursuing
the PhD degree at the Department of Electrical
and Computer Engineering, University of Water-
loo, Canada. His research interests include ap-
plied cryptography and privacy enhancing tech-
nologies for blockchain.

Guowen Xu (S’15) received his B.S. degree
in information and computing science from An-
hui University of Architecture in 2014. Currently,
he is a Ph.D. student at the School of Com-
puter Science and Engineering, University of
Electronic Science and Technology of China ,
China. His research interests include Cryptog-
raphy, Searchable Encryption, and the Privacy-
preserving Deep Learning.

Nan Cheng (S’12-M’16) received the Ph.D. de-
gree from the Department of Electrical and
Computer Engineering, University of Waterloo in
2016, and B.E. degree and the M.S. degree from
the Department of Electronics and Information
Engineering, Tongji University, Shanghai, China,
in 2009 and 2012, respectively. He is currently a
professor with School of Telecommunication En-
gineering, Xidian University, Shaanxi, China. He
worked as a Post-doctoral fellow with the Depart-
ment of Electrical and Computer Engineering,

University of Toronto, from 2017 to 2018. His current research focuses
on space-air-ground integrated system, big data in vehicular networks,
and self-driving system. His research interests also include performance
analysis, MAC, opportunistic communication, and application of AI for
vehicular networks.

Xuemin (Sherman) Shen (M’97-SM’02-F’09)
received Ph.D. degree from Rutgers Univer-
sity, New Jersey (USA) in electrical engineering,
1990. Dr. Shen is a University Professor, Depart-
ment of Electrical and Computer Engineering,
University of Waterloo, Canada. His research
focuses on resource management in intercon-
nected wireless/wired networks, wireless net-
work security, social networks, smart grid, and
vehicular ad hoc and sensor networks. Dr. Shen
is a registered Professional Engineer of Ontario,

Canada, an IEEE Fellow, an Engineering Institute of Canada Fellow, a
Canadian Academy of Engineering Fellow, a Royal Society of Canada
Fellow, and a Distinguished Lecturer of IEEE Vehicular Technology
Society and Communications Society.

Dr. Shen is the Editor-in-Chief for IEEE Internet of Thing Journal and
the vice president on publications of IEEE Communications Society. He
received the Joseph LoCicero Award in 2015, the Education Award in
2017, the Harold Sobol Award in 2018, and the James Evans Avant
Garde Award in 2018 from the IEEE Communications Society. He has
also received the Excellent Graduate Supervision Award in 2006, and
the Outstanding Performance Award in 2004, 2007, 2010, 2014, and
2018 from the University of Waterloo, the Premier’s Research Excel-
lence Award (PREA) in 2003 from the Province of Ontario, Canada. Dr.
Shen served as the Technical Program Committee Chair/Co-Chair for
IEEE Globecom’ 16, IEEE Infocom’14, IEEE VTC’10 Fall, the Symposia
Chair for IEEE ICC’10, the Tutorial Chair for IEEE VTC’11 Spring,
the Chair for IEEE Communications Society Technical Committee on
Wireless Communications, and P2P Communications and Networking.

Authorized licensed use limited to: TU Ilmenau. Downloaded on October 14,2020 at 08:51:19 UTC from IEEE Xplore. Restrictions apply.

