

Network Security

Chapter 2 Basics of Cryptography

- Overview Cryptographic Algorithms
- □ Attacking Cryptography
- Properties of Encryption Algorithms
- Classification of Encryption Algorithms

Network Security (WS 21/22): 02 - Basics of Cryptography

1

Recharge tze Cryptographic Algorithms: Overview

- During this course two main applications of cryptographic algorithms are of principal interest:
 - Encryption of data: transforms plaintext data into ciphertext in order to conceal its' meaning
 - Signing of data: computes a check value or digital signature to a given plain- or ciphertext, that can be verified by some or all entities being able to access the signed data
- Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- □ Principal categories of cryptographic algorithms:
 - Symmetric cryptography using 1 key for en-/decryption or signing/checking
 - Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
 - Cryptographic hash functions using 0 keys (the "key" is not a separate input but "appended" to or "mixed" with the data).

2

Attacking Cryptography (1): Cryptanalysis

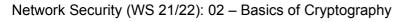
- Cryptanalysis is the process of attempting to discover the plaintext and / or the key
- □ Types of cryptanalysis:
 - Ciphertext only: specific patterns of the plaintext may remain in the ciphertext (frequencies of letters, digraphs, etc.)
 - □ Known ciphertext / plaintext pairs
 - Chosen plaintext or chosen ciphertext
 - Differential cryptanalysis & linear cryptanalysis
 - Newer development: related key analysis
- □ Cryptanalysis of public key cryptography:
 - □ The fact that one key is publicly exposed may be exploited
 - Public key cryptanalysis is more aimed at breaking the cryptosystem itself and is closer to pure mathematical research than to classical cryptanalysis
 - □ Important directions:
 - Computation of discrete logarithms
 - Factorization of large integers

Network Security (WS 21/22): 02 - Basics of Cryptography

3

Attacking Cryptography (2): Brute Force Attack

- The brute force attack tries every possible key until it finds an intelligible plaintext:
 - Every cryptographic algorithm can in theory be attacked by brute force
 - □ On average, half of all possible keys will have to be tried

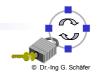

Average Time Required for Exhaustive Key Search				
Key Size [bit]	Number of keys	Time required at 1 encryption / μ s	Time required at 10 ⁶ encryption / μs	
56	2^{56} = 7.2 x 10^{16}	2 ⁵⁵ µs = 1142 years	10.01 hours	
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24}$ years	5.4 x 10 ¹⁸ years	
256	$2^{256} = 1.2 \times 10^{77}$	$2^{255}\mu s = 3.7 \times 10^{63}$ years	3.7 x 1057 years	

4

Reference Numbers Comparing Relative Magnitudes				
Reference	Magnitude			
Seconds in a year	≈ 3	x 10 ⁷		
Seconds since creation of solar system	≈ 2	x 10 ¹⁷		
Clock cycles per year (50 MHz computer)	≈ 1.6	x 10 ¹⁵		
Binary strings of length 64	$2^{64} \approx 1.8$	x 10 ¹⁹		
Binary strings of length 128	$2^{128}\ \approx 3.4$	x 10 ³⁸		
Binary strings of length 256	$2^{256}~\approx 1.2$	x 10 ⁷⁷		
Number of 75-digit prime numbers	≈ 5.2	x 10 ⁷²		
Electrons in the universe	≈ 8.37	x 10 ⁷⁷		

© Dr.-Ing G. Schäfer

5

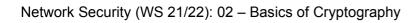

TELEMATIK Rechnernetze

Important Properties of Encryption Algorithms

Consider, a sender is encrypting plaintext messages P_1 , P_2 , ... to ciphertext messages C_1 , C_2 , ...

Then the following properties of the encryption algorithm are of special interest:

- Error propagation characterizes the effects of bit-errors during transmission of ciphertext to reconstructed plaintext P₁', P₂', ...
 - Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit
- Synchronization characterizes the effects of lost ciphertext data units to the reconstructed plaintext
 - Some encryption algorithms can not recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages
 - Other algorithms do automatically re-synchronize after 0 to n (n depending on the algorithm) ciphertext bits

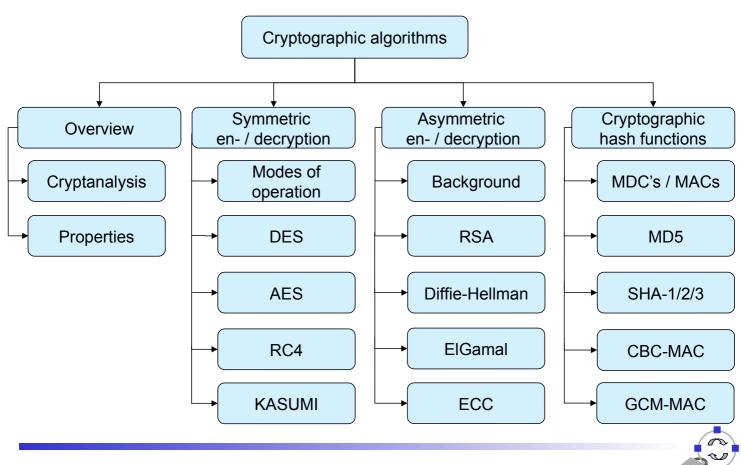


6

Classification of Encryption Algorithms: Three Dimensions

□ The type of operations used for transforming plaintext to ciphertext:

- Substitution, which maps each element in the plaintext (bit, letter, group of bits or letters) into another element
- □ Transposition, which re-arranges elements in the plaintext
- The number of keys used:
 - □ Symmetric ciphers, which use the same key for en- / decryption
 - □ Asymmetric ciphers, which use different keys for en- / decryption
- □ The way in which the plaintext is processed:
 - □ Stream ciphers work on bit streams and encrypt one bit after another:
 - Many stream ciphers are based on the idea of linear feedback shift registers, and there have been detected vulnerabilities of a lot of algorithms of this class, as there exists a profound mathematical theory on this subject.
 - Most stream ciphers do not propagate errors but are sensible to loss of synchronization.
 - Block ciphers work on blocks of width b with b depending on the specific algorithm.



7

8

Cryptographic Algorithms – Outline

Network Security (WS 21/22): 02 - Basics of Cryptography