
1
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Network Security
Chapter 4

Asymmetric Cryptography

“However, prior exposure to discrete mathematics will help the reader to
appreciate the concepts presented here.”

E. Amoroso in another context [Amo94] :o)

2
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Asymmetric Cryptography (1)

 General idea:
 Use two different keys -K and +K for encryption and decryption
 Given a random ciphertext c = E(+K, m) and +K it should be infeasible to

compute m = D(-K, c) = D(-K, E(+K, m))
 This implies that it should be infeasible to compute -K when given +K

 The key -K is only known to one entity A and is called A’s private key -KA

 The key +K can be publicly announced and is called A’s public key +KA

 Applications:
 Encryption:

 If B encrypts a message with A’s public key +KA, he can be sure that
only A can decrypt it using -KA

 Signing:
 If A encrypts a message with his own private key -KA, everyone can

verify this signature by decrypting it with A’s public key +KA

 Attention: It is crucial, that everyone can verify that he really knows A’s
public key and not the key of an adversary!

3
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Asymmetric Cryptography (2)

 Design of asymmetric cryptosystems:
 Difficulty: Find an algorithm and a method to construct two keys -K, +K

such that it is not possible to decipher E(+K, m) with the knowledge of +K
 Constraints:

 The key length should be “manageable”
 Encrypted messages should not be arbitrarily longer than unencrypted

messages (we would tolerate a small constant factor)
 Encryption and decryption should not consume too much resources

(time, memory)
 Basic idea: Take a problem in the area of mathematics / computer science,

that is hard to solve when knowing only +K, but easy to solve when
knowing -K

 Knapsack problems: basis of first working algorithms, which were
unfortunately almost all proven to be insecure

 Factorization problem: basis of the RSA algorithm
 Discrete logarithm problem: basis of Diffie-Hellman and ElGamal

4
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (1)

 Definitions:
 Let ℤ be the number of integers, and a, b, n  ℤ
 We say a divides b (“a | b”) if there exists an integer k  ℤ such that a  k = b
 We say a is prime if it is positive and the only divisors of a are 1 and a
 We say r is the remainder of a divided by n if r = a - a / n  n

where x denotes the largest integer less than or equal to x
 Example: 4 is the remainder of 11 divided by 7 as 4 = 11 - 11 / 7  7
 We can write this in another way: a = q  n + r with q = a / n

 For the remainder r of the division of a by n we write a MOD n
 We say b is congruent a mod n if it has the same remainder like a when

divided by n. So, n divides (a-b), and we write b  a mod n
 Examples: 4  11 mod 7, 25  11 mod 7, 11  25 mod 7,

 11  4 mod 7, -10  4 mod 7
 As the remainder r of division by n is always smaller than n, we sometimes

represent the set {x MOD n | x  ℤ}
by elements of the set ℤn = {0, 1, ..., n - 1}

5
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (2)

Property Expression

Commutative Laws

Associative Laws

Distributive Law

Identities

Inverses

(a + b) MOD n = (b + a) MOD n

(a  b) MOD n = (b  a) MOD n

[(a + b) + c] MOD n = [a + (b + c)] MOD n

[(a  b)  c] MOD n = [a  (b  c)] MOD n

[a  (b + c)] MOD n = [(a  b) + (a  c)] MOD n

(0 + a) MOD n = a MOD n

(1  a) MOD n = a MOD n

 a  ℤn:  (-a)  ℤn : a + (-a)  0 mod n

p is prime   a  ℤp:  (a-1)  ℤp: a  (a-1)  1 mod p

Properties of Modular Arithmetic

6
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (3)

 Greatest common divisor:
 c = gcd(a, b) : (c | a) 𐌡 (c | b) 𐌡 [ d: (d | a) 𐌡 (d | b)  (d | c)]

and gcd(a, 0) := |a|
 The gcd recursion theorem:

  a, b  ℤ+: gcd(a, b) = gcd(b, a MOD b)
 Proof:

 As gcd(a, b) divides both a and b it also divides any linear combination
of them, especially (a - a / b  b) = a MOD b,
so gcd(a, b) | gcd(b, a MOD b)

 As gcd(b, a MOD b) divides both b and a MOD b it also divides any
linear combination of them, especially a / b  b + (a MOD b) = a,
so gcd(b, a MOD b) | gcd(a, b)

 Euclidean Algorithm:
 The algorithm Euclid given a, b computes gcd(a, b)
 int Euclid(int a, b)

{ if (b = 0) { return(a);}
{ return(Euclid(b, a MOD b);} }

7
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (4)

 Extended Euclidean Algorithm:
 The algorithm ExtendedEuclid given a, b computes d, m, n such that:

d = gcd(a, b) = m  a + n  b
 struct{int d, m, n} ExtendedEuclid(int a, b)

{ int d, d’, m, m’, n, n’;
 if (b = 0) {return(a, 1, 0); }
 (d’, m’, n’) = ExtendedEuclid(b, a MOD b);
 (d, m, n) = (d’, n’, m’ - a / b  n’);
 return(d, m, n); }

 Proof: (by induction)
 Basic case (a, 0): gcd(a, 0) = a = 1  a + 0  0
 Induction from (b, a MOD b) to (a, b):

– ExtendedEuclid computes d’, m’, n’ correctly (induction hypothesis)
– d = d’ = m’  b + n’  (a MOD b) = m’  b + n’  (a - a / b  b)

= n’  a + (m’ - a / b  n’)  b
 The run time of Euclid(a, b) and ExtendedEuclid(a, b) is of O(log b)

 Proof: see [Cor90a], section 33.2

8
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (5)

 Summarizing the discussion of the Euclidean algorithms we have:

Lemma 1:
Let a, b  ℕ and d = gcd(a, b). Then there exists m, n  ℕ such that:

d = m  a + n  b
 We can use this lemma to prove the following:

Theorem 1 (Euclid):

If a prime divides the product of two integers, then it divides at least one of
the integers: p | (a  b)  (p | a)  (p | b)

 Proof: Let p | (a  b)
 If p | a then we are done.
 If not then gcd(p, a) = 1 

 m, n  ℕ: 1 = m  p + n  a
  b = m  p  b + n  a  b
As p | (a  b), p divides both summands of the equation and so it
divides also the sum which is b

∎

9
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (6)

 A small, but nice excursion:
 With the help of Theorem 1 the proof that is not a rational number can

be given in a very elegant way:

Assume that can be expressed as a rational number m / n and that this
fraction has been reduced such that gcd(m, n) = 1:

So, 2 divides m2, and thus by Theorem 1 it also divides m, and so 4
divides m2. But then 4 divides 2n2 and, therefore, 2 divides also n2.

Again by Theorem 1 this implies that 2 divides n and so 2 divides both m
and n, which is a contradiction to the assumption that the fraction m / n is
reduced.

 And now to something more useful... – for cryptography :o)

22
2

2

222 mn
n

m

n

m


2

2

∎

10
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (7)

Theorem 2 (fundamental theorem of arithmetic):

Factorization into primes is unique up to order.

 Proof:
 We will show that every integer with a non-unique factorization has a

proper divisor with a non-unique factorization which leads to a clear
contradiction when we finally have reduced to a prime number.

 Let’s assume that n is an integer with a non-unique factorization:

n = p1  p2  ...  pr

= q1  q2  ...  qs

The primes are not necessarily distinct, but the second factorization is not
simply a reordering of the first one.

As p1 divides n it also divides the product q1  q2  ...  qs. By repeated
application of Theorem 1 we show that there is at least one qi which is
divisible by p1. If necessary reorder the qi’s so that it is q1. As both p1 and
q1 are prime they have to be equal. So we can divide by p1 and we have
that n / p1 has a non-unique factorization.

11
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (8)

 We will use Theorem 2 to prove the following

Corollary 1:

If gcd(c, m) = 1 and (a  c)  (b  c) mod m, then a  b mod m
 Proof: As (a  c)  (b  c) mod m   n  ℕ: (a  c) - (b  c) = n  m

 (a - b)  c = n  m

 p1  ...  pi  q1  ...  qj = r1  ...  rk  s1  ...  sl

Please note that the p’s, q’s, r’s and s’s are prime and do not need to be
distinct, but as gcd(c, m) = 1, there are no indices g, h such that qg = sh.

So we can continuously divide the equation by all q’s without ever
“eliminating” one s and will finally end up with something like

 p1  ...  pi = r1  ...  ro  s1  ...  sl

 (note that there will be fewer r’s)
 (a - b) = r1  ...  ro  m

 a  b mod m
∎

12
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (9)

 Let (n) denote the number of positive integers less than n and
relatively prime to n
 Examples: (4) = 2, (6) = 2, (7) = 6, (15) = 8
 If p is prime  (p) = p - 1

Theorem 3 (Euler):

Let n and b be positive and relatively prime integers, i.e. gcd(n, b) = 1
  b(n)  1 mod n

Proof:
 Let t = (n) and a1, ... at be the positive integers less than n which are

relatively prime to n.
Define r1, ..., rt to be the residues of b  a1 mod n, ..., b  at mod n
that is to say: b  ai  ri mod n.

 Note that i  j  ri  rj.
If this would not hold, we would have b  ai  b  aj mod n
and as gcd(b, n) = 1, Corollary 1 would imply ai  aj mod n which can not
be as ai and aj are by definition distinct integers between 0 and n

13
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (10)

Proof (continued):
 We also know that each ri is relatively prime to n because any common divisor

k of ri and n, i.e. n = k  m and ri = pi  k, would also have to divide ai,
 as b  ai  (pi  k) mod (k  m)   s  ℕ: (b  ai) - (pi  k) = s  k  m

  (b  ai) = s  k  m + (pi  k)

Because k divides each of the summands on the right-hand side and k does
not divide b by assumption (n and b are relatively prime), it would also have to
divide ai which is supposed to be relatively prime to n

 Thus r1, ..., rt is a set of (n) distinct integers which are relatively prime to n.

This means that they are exactly the same as a1, ... at, except that they are in a

different order. In particular, we know that r1 ...  rt = a1  ...  at
 We now use the congruence

r1 ...  rt  b  a1  ...  b  at mod n
  r1 ...  rt  bt  a1  ...  at mod n
  r1 ...  rt  bt  r1 ...  rt mod n

 As all ri are relatively prime to n we can use Corollary 1 and divide by their

product giving: 1  bt mod n  1  b(n) mod n ∎

14
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (11)

Theorem 4 (Chinese Remainder Theorem):

Let m1, ..., mr be positive integers that are pairwise relatively prime,
i.e.  i  j: gcd(mi, mj) = 1. Let a1, ..., ar be arbitrary integers.
Then there exists an integer a such that:

a  a1 mod m1

a  a2 mod m2

 ...

a  ar mod mr

Furthermore, a is unique modulo M := m1  ...  mr

Proof:
 For all i {1, .., r} we define Mi := (M / mi)(m

i
)

 As Mi is by definition relatively prime to mi we can apply Theorem 3 and
know that Mi  1 mod mi

 Since Mi is divisible by mj for every j  i, we have  j  i : Mi  0 mod mj

15
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (12)

Proof (continued):

 We can now construct the solution by defining:

a := a1  M1 + a2  M2 + ... + ar  Mr

 The two arguments given above concerning the congruences of the Mi
imply that a actually satisfies all of the congruences.

 To see that a is unique modulo M, let b be any other integer satisfying the r
congruences. As a  c mod n and b  c mod n  a  b mod n
we have  i {1, .., r}: a  b mod mi

  i {1, .., r}: mi | (a - b)
 M | (a-b) as the mi are pairwise relatively prime
 a  b mod M

∎

16
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (13)

Lemma 2:

If gcd(m, n) = 1, then (m  n) = (m)  (n)

Proof:

 Let a be a positive integer less than and relatively prime to m  n. In other
words, a is one of the integers counted by (m  n).

 Consider the correspondence a  (a MOD m, a MOD n)

The integer a is relatively prime to m and relatively prime to n (if not it would
divide m  n).

So, (a MOD m) is relatively prime to m and (a MOD n) is relatively prime to n
as: a = a / m  m + (a MOD m), so if there would be a common divisor of
m and (a MOD m), this divisor would also divide a.

Thus every number a counted by (m  n) corresponds to a pair of two
integers (a MOD m, a MOD n), the first one counted by (m) and the
second one counted by (n).

17
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (14)

Proof (continued):
❑ Because of the second part of Theorem 4, the uniqueness of the solution a

modulo (m  n) to the simultaneous congruences:

a  (a MOD m) mod m
a  (a MOD n) mod n

we can deduce, that distinct integers counted by (m  n) correspond to
distinct pairs:

❑ Too see this, suppose that a  b counted by (m  n) does correspond
to the same pair (a MOD m, a MOD n). This leads to a contradiction as
b would also fulfill the congruences:

b  (a MOD m) mod m
b  (a MOD n) mod n

but the solution to these congruences is unique modulo (m  n)

Therefore, (m  n) is at most the number of such pairs:

(m  n)  (m)  (n)
∎

18
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (15)

Proof (continued):

 Consider now a pair of integers (b, c), one counted by (m) and the other
one counted by (n):

Using the first part of Theorem 4 we can construct a unique positive
integer a less than and relatively prime to m  n:

a  b mod m
a  c mod n

So, the number of such pairs is at most (m  n):

(m  n)  (m)  (n)
∎

19
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

The RSA Public Key Algorithm (1)

 The RSA algorithm was invented in 1977 by R. Rivest, A. Shamir and
L. Adleman [RSA78] and is based on Theorem 3.

 Let p, q be distinct large primes and n = p  q. Assume, we have also
two integers e and d such that:

 d  e  1 mod (n)
 Let M be an integer that represents the message to be encrypted, with

M positive, smaller than and relatively prime to n.
 Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35

So “HELLO” would be encoded as 1714212124.
If necessary, break M into blocks of smaller messages: 17142 12124

 To encrypt, compute: E = Me MOD n
 This can be done efficiently using the square-and-multiply algorithm

 To decrypt, compute: M’ = Ed MOD n
 As d  e  1 mod (n)  k  ℤ: (d  e) - 1 = k  (n)

  (d  e) = k  (n) + 1
we have: M’  Ed  M(e d)  M(k  (n) + 1)  1k  M  M mod n

∎

20
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

The RSA Public Key Algorithm (2)

 As (d  e) = (e  d) the operation also works in the opposite direction,
that means you can encrypt with d and decrypt with e
 This property allows to use the same keys d and e for:

 Receiving messages that have been encrypted with one’s public key
 Sending messages that have been signed with one’s private key

 To set up a key pair for RSA:
 Randomly choose two primes p and q (of 100 to 200 digits each)
 Compute n = p  q, (n) = (p - 1)  (q - 1) (Lemma 2)
 Randomly choose e, so that gcd(e, (n)) = 1
 With the extended euclidean algorithm compute d and c, such that:

e  d + (n)  c = 1, note that this implies, that e  d  1 mod (n)
 The public key is the pair (e, n)
 The private key is the pair (d, n)

21
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

The RSA Public Key Algorithm (3)

 The security of the scheme lies in the difficulty of factoring n = p  q
as it is easy to compute (n) and then d, when p and q are known

 This class will not teach why it is difficult to factor large n’s, as this
would require to dive deep into mathematics
 If p and q fulfill certain properties, the best known algorithms are

exponential in the number of digits of n
 Please be aware that if you choose p and q in an “unfortunate” way,

there might be algorithms that can factor more efficiently and your RSA
encryption is not at all secure:

– Therefore, p and q should be about the same bitlength and sufficiently large
– (p - q) should not be too small
– If you want to choose a small encryption exponent, e.g. 3, there might be

additional constraints, e.g. gcd(p - 1, 3) = 1 and gcd(q - 1, 3) = 1
 The security of RSA also depends on the primes generated being truly

random (like every key creation method for any algorithm)
 Moral: If you are to implement RSA by yourself, ask a mathematician or

better a cryptographer to check your design

22
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Diffie-Hellman Key Exchange (1)

 The Diffie-Hellman key exchange was first published in the landmark
paper [DH76], which also introduced the fundamental idea of
asymmetric cryptography

 The DH exchange in its basic form enables two parties A and B to
agree upon a shared secret using a public channel:
 Public channel means, that a potential attacker E (E stands for

eavesdropper) can read all messages exchanged between A and B
 It is important, that A and B can be sure, that the attacker is not able to alter

messages, as in this case he might launch a man-in-the-middle attack
 The mathematical basis for the DH exchange is the problem of finding

discrete logarithms in finite fields
 The DH exchange is not an asymmetric encryption algorithm, but is

nevertheless introduced here as it goes well with the mathematical flavor of
this lecture... :o)

23
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some More Mathematical Background (1)

 Definition: finite groups
 A group (S, ) is a set S together with a binary operation  for which the

following properties hold:
 Closure: For all a, b  S, we have a  b  S
 Identity: There is an element e  S, such that e  a = a  e = a for all

a  S
 Associativity: For all a, b, c  S, we have (a  b)  c = a  (b  c)
 Inverses: For each a  S, there exists a unique element b  S, such

that a  b = b  a = e

 If a group (S, ) satisfies the commutative law  a, b  S: a  b = b  a
then it is called an Abelian group

 If a group (S, ) has only a finite set of elements, i.e. |S| < , then it is
called a finite group

24
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some More Mathematical Background (2)
 Examples:

 (ℤn, +n)
 with ℤn := {[0]n , [1]n, ..., [n - 1]n }
 where [a]n := {b  ℤ | b  a mod n} and
 +n is defined such that [a]n +n [b]n = [a + b]n

is a finite abelian group

For the proof see the table showing the properties of modular arithmetic
 (ℤ*

n, n)
 with ℤ*

n := {[a]n  ℤn | gcd(a, n) = 1 }, and
 n is defined such that [a]n n [b]n = [a  b]n

is a finite Abelian group. Please note that ℤ*
n just contains those elements

of ℤn that have a multiplicative inverse modulo n

For the proof see the properties of modular arithmetic
 Example: ℤ*

15 = {[1]15, [2]15, [4]15, [7]15, [8]15, [11]15, [13]15, [14]15}, as

 1  1  1 mod 15, 2  8  1 mod 15, 4  4  1 mod 15,

7  13  1 mod 15, 11  11  1 mod 15, 14  14  1 mod 15

25
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some More Mathematical Background (3)

 If it is clear that we are talking about (ℤn, +n) or (ℤ*
n, n) we often

represent equivalence classes [a]n by their representative elements a
and denote +n and n by + and , respectively.

 Definition: finite fields
 A field (S, , ) is a set S together with two operations ,  such that

 (S, ) and (S \ {e}, ) are commutative groups, i.e. only the identity
element concerning the operation  does not need to have an inverse
regarding the operation 

 For all a, b, c  S, we have a  (b  c) = (a  b)  (a  c)
 If |S| <  then (S, , ) is called a finite field

 Example:
 (ℤp, +p, p) is a finite field for each prime p

26
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some More Mathematical Background (4)

 Definition: primitive root, generator
 Let (S, ) be a group, g  S and ga := g  g  ...  g (a times with a  ℤ+)

Then g is called a primitive root or generator of (S, )

: {ga | 1  a  |S|} = S

 Examples:

 1 is a primitive root of (ℤn, +n)

 3 is a primitive root of (ℤ*
7, 7)

 Not all groups do have primitive roots and those who have are called
cyclic groups

 Theorem 5:

(ℤ*
n, n) does have a primitive root  n  {2, 4, p, 2  pe} where p is an

odd prime and e  ℤ+

 For the proof see [Niv80a]

27
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some More Mathematical Background (5)

 Theorem 6:

If (S, ) is a group and b  S then (S’, ) with S’ = {ba | a  ℤ+} is also a
group.
 For the proof refer to [Cor90a] section 33.3

 As S’  S, (S’, ) is called a subgroup of (S, )

 If b is a primitive root of (S, ) then S’ = S

 Definition: order of a group and of an element
 Let (S, ) be a group, e  S its identity element and b  S any element of S:

 Then |S| is called the order of (S, )

 Let c  ℤ+ be the smallest element so that bc = e (if such a c exists, if
not set c = ). Then c is called the order of b.

28
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some More Mathematical Background (6)

 Theorem 7 (Lagrange):

If G is a finite group and H is a subgroup of G, then |H| divides |G|.
Hence, if b  G then the order of b divides |G|.

 Theorem 8:

If G is a cyclic finite group of order n and d divides n then G has exactly
(d) elements of order d. In particular, G has (n) elements of order n.

 Theorems 5, 7, and 8 are the basis of the following algorithm that finds a
cyclic group ℤ*

p and a primitive root g of it:
 Choose a large prime q such that p = 2q + 1 is prime.

 As p is prime, Theorem 5 states that ℤ*
p is cyclic.

 The order of ℤ*
p is 2  q and (2  q) = (2)  (q) = q -1 as q is prime.

 So, the odds of randomly choosing a primitive root are (q - 1) / 2q  1 / 2
 In order to efficiently test, if a randomly chosen g is a primitive root, we

just have to test if g2  1 mod p or gq  1 mod p. If not, then its order has
to be |ℤ*

p|, as Theorem 7 states that the order of g has to divide |ℤ*
p|

29
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some More Mathematical Background (7)

 Definition: discrete logarithm
 Let p be prime, g be a primitive root of (ℤ*

p, p) and c be any element of
ℤ*

p. Then there exists z such that: gz  c mod p

z is called the discrete logarithm of c modulo p to the base g
 Example 6 is the discrete logarithm of 1 modulo 7 to the base 3 as

 36  1 mod 7
 The calculation of the discrete logarithm z when given g, c, and p is a

computationally difficult problem and the asymptotical runtime of the best
known algorithms for this problem is exponential in the bitlength of p

30
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Diffie-Hellman Key Exchange (2)

 If Alice (A) and Bob (B) want to agree on a shared secret s and their
only means of communication is a public channel, they can proceed
as follows:
 A chooses a prime p, a primitive root g of ℤ*

p, and a random number q:
 A and B can agree upon the values p and g prior to any

communication, or A can choose p and g and send them with his first
message

 A computes v = gq MOD p and sends to B: {p, g, v}
 B chooses a random number r:

 B computes w = g r MOD p and sends to A: {p, g, w} (or just {w})
 Both sides compute the common secret:

 A computes s = wq MOD p
 B computes s’ = v r MOD p
 As g(q  r) MOD p = g(r  q) MOD p it holds: s = s’

 An attacker Eve who is listening to the public channel can only compute
the secret s, if she is able to compute either q or r which are the discrete
logarithms of v, w modulo p to the base g

31
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Diffie-Hellman Key Exchange (3)

 If the attacker Eve is able to alter messages on the public channel,
she can launch a man-in-the-middle attack:
 Eve generates to random numbers q’ and r’:

 Eve computes v’ = gq’ MOD p and w’ = gr’ MOD p
 When A sends {p, g, v} she intercepts the message and sends

to B: {p, g, v’ }
 When B sends {p, g, w} she intercepts the message and sends

to A: {p, g, w’ }
 When the supposed “shared secret” is computed we get:

 A computes s1 = w’q MOD p = vr’ MOD p the latter computed by E
 B computes s2 = v’r MOD p = wq’ MOD p the latter computed by E
 So, in fact A and E have agreed upon a shared secret s1 as well as

E and B have agreed upon a shared secret s2

 If the “shared secret” is now used by A and B to encrypt messages to be
exchanged over the public channel, E can intercept all the messages and
decrypt / re-encrypt them before forwarding them between A and B.

32
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Diffie-Hellman Key Exchange (4)

 Two countermeasures against the man-in-the-middle attack:
 The shared secret is “authenticated” after it has been agreed upon

 We will treat this in the section on key management
 A and B use a so-called interlock protocol after agreeing on a shared

secret:
 For this they have to exchange messages that E has to relay before

she can decrypt / re-encrypt them
 The content of these messages has to be checkable by A and B
 This forces E to invent messages and she can be detected
 One technique to prevent E from decrypting the messages is to split

them into two parts and to send the second part before the first one.
– If the encryption algorithm used inhibits certain characteristics E can not encrypt the

second part before she receives the first one.
– As A will only send the first part after he received an answer (the second part of it)

from B, E is forced to invent two messages, before she can get the first parts.

 Remark: In practice the number g does not necessarily need to be a
primitive root of p, it is sufficient if it generates a large subgroup of ℤ*

p

33
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

The ElGamal Algorithm (1)

 The ElGamal algorithm can be used for both, encryption and digital
signatures (see also [ElG85a])

 Like the DH exchange it is based on the difficulty of computing
discrete logarithms in finite fields

 In order to set up a key pair:
 Choose a large prime p, a generator g of the multiplicative group ℤ*

p and a
random number v such that 1  v  p - 2. Calculate: y = gv mod p

 The public key is (y, g, p)
 The private key is v

 To sign a message m:
 Choose a random number k such that k is relatively prime to p - 1.
 Compute r = gk mod p
 With the Extended Euclidean Algorithm compute k-1, the inverse of

k mod (p - 1)
 Compute s = k-1  (m - v  r) mod (p - 1)
 The signature over the message is (r, s)

34
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

The ElGamal Algorithm (2)

 To verify a signature (r, s) over a message m:
 Confirm that y r  r s MOD p = g m MOD p
 Proof: We need the following

 Lemma 3:
Let p be prime and g be a generator of ℤ*

p.
Then i  j mod (p -1)  g i  g j mod p

Proof:
– i  j mod (p -1)  there exists k  ℤ+ such that (i - j) = (p -1)  k
– So, g(i - j) = g(p - 1)  k  1k  1 mod p, because of Theorem 3 (Euler)

  g i  g j mod p

 So as s  k -1  (m - v  r) mod (p - 1)
  k  s  m - v  r mod (p - 1)
  m  v  r + k  s mod (p - 1)
  g m  g(v  r + k  s) mod p with Lemma 3
  g m  g(v  r)  g (k  s) mod p
  g m  y r  r s mod p

35
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

The ElGamal Algorithm (3)

 Security of ElGamal signatures:
 As the private key v is needed to be able to compute s, an attacker would

have to compute the discrete logarithm of y modulo p to the basis g in
order to forge signatures

 It is crucial to the security, that a new random number k is chosen for
every message, because an attacker can compute the secret v if he gets
two messages together with their signatures based on the same k
(see [Men97a], Note 11.66.ii)

 In order to prevent an attacker to be able to create a message M with a
matching signature, it is necessary not to sign directly the message M as
explained before, but to sign a cryptographic hash value m = h(M) of it
(these will be treated soon, see also [Men97a], Note 11.66.iii)

36
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

The ElGamal Algorithm (4)

 To encrypt a message m using the public key (y, g, p):
 Choose a random k  ℤ+ with k < p - 1
 Compute r = gk MOD p
 Compute s = m  yk MOD p
 The ciphertext is (r, s), which is twice as long as m

 To decrypt the message (r, s) using v:
 Use the private key v to compute r(p - 1 - v) MOD p = r(-v) MOD p
 Recover m by computing m = r(-v)  s MOD p
 Proof:

 r(-v)  s  r(-v)  m  yk  g(-vk)  m  yk  g(-v  k)  m  g(v  k)  m mod p

 Security:
 The only known means for an attacker to recover m is to compute the

discrete logarithm v of y modulo p to the basis g
 For every message a new random k is needed ([Men97a], Note 8.23.ii)

∎

37
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Elliptic Curve Cryptography (1)

 The algorithms presented so far have been invented for the
multiplicative group (ℤ*

p, p) and the field (ℤp, +p, p), respectively

 It has been found during the 1980’s that they can be generalized and
be used with other groups and fields as well

 The main motivation for this generalization is:
 A lot of mathematical research in the area of primality testing, factorization

and computation of discrete logarithms has led to techniques that allow to
solve these problems in a more efficient way, if certain properties are met:

 When the RSA-129 challenge was given in 1977 it was expected that
it will take some 40 quadrillion years to factor the 129-digit number
( 428 bit)

 In 1994 it took 8 months to factor it by a group of computers
networked over the Internet, calculating for about 5000 MIPS-years

 Advances in factoring algorithms allowed 2009 to factor a 232-digit
number (768 bit) in about 1500 AMD64-years [KAFL10]

 the key length has to be increased (currently about 2048 bit)

38
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Elliptic Curve Cryptography (2)

 Motivation (continued):
 Some of the more efficient techniques do rely on specific

properties of the algebraic structures (ℤ*
p, p) and (ℤp, +p, p)

 Different algebraic structures may therefore provide the same
security with shorter key lengths

 A very promising structure for cryptography can be obtained from the
group of points on an elliptic curve over a finite field
 The mathematical operations in these groups can be efficiently

implemented both in hardware and software
 The discrete logarithm problem is believed to be hard in the

general class obtained from the group of points on an elliptic curve
over a finite field

39
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC - Group Elements

 Algebraic group consisting of
 Points on Weierstrass’ Equation: y2 = x3 + ax + b
 Additional point O in “infinity”

 May be calculated over ℝ, but in cryptography ℤp and GF(2n) are used

 Already in ℝ arguments influence form significantly:
 y2 = x3 - 3x + 5 y2 = x3 - 40x + 5

40
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

 Addition of elements = Addition of points on the curve
 Geometric interpretation:

 Each point P: (x,y) has an inverse -P: (x,-y)
 A line through two points P and Q usually intersects with a third point R
 Generally, sum of two points P and Q equals –R

Foundations of ECC - Point Addition

P

Q

R

-R = P+Q

41
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC - Point Addition (Special cases)

 The additional point O is the neutral element, i.e., P + O = P
 P + (-P):

 If the inverse point is added to P, the line and curve intersect in “infinity”
 By definition: P + (-P) = O

 P + P: The sum of two identical points P is the inverse of the
intersecting point with the tangent through P:

P R

-R = P+P

42
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC - Algebraic Addition

 If one of the summands is O, the sum is the other summand
 If the summands are inverse to each other the sum is O
 For the more general cases the slope of the line is:

 Result of point addition, where (xr, yr) is already the reflected point (-R)

43
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC - Multiplication

 Multiplication of natural number n and point P performed by multiple
repeated additions

 Numbers are grouped into powers of 2 to achieve logarithmic runtime, e.g.
25P = P + 8P + 16P

 This is possible if and only if the n is known!
 If n is unknown for nP = Q, a logarithm has to be solved, which is possible if

the coordinate values are chosen from ℝ

 For ℤp and GF(2n) the discrete logarithm problem for elliptic curves
has to be solved, which cannot be done efficiently!

 Note: it is not defined how two points are multiplied, but only a natural
number n and point P

44
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC – Curves over ℤp

 Over ℤp the curve degrades to a set of points

 For :

 Note: For some x values, there is no y value!

 Note: There is no y value for each x value!

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x

y

45
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC – Calculate the y-values in ℤp

 In general a little bit more problematic: determine the y-values for a
given x (as its square value is calculated) by

 Hence p is often chosen s.t.
 Then y is calculated by and

if and only if a solution exists at all
 Short proof:

 From the Euler Theorem 3 we know that

 Thus the square root must be 1 or -1
 Case 1:

 Multiply both sides by f(x):
 As p + 1 is divisible by 4 we can take the square root so that

 Case 2: In this case no solution exists for the given x value (as shown
by Euler)

∎

46
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC – Addition and Multiplication in ℤp

 Due to the discrete structure point mathematical operations do not
have a geometric interpretation any more, but

 Algebraic addition similar to addition over ℝ
 If the inverse point is added to P, the line and “curve” still intersect in “infinity”
 All x- and y-values are calculated mod p
 Division is replaced by multiplication with the inverse element of the

denominator
 Use the Extended Euclidean Algorithm with w and p to derive the

inverse -w
 Algebraic multiplication of a natural number n and a point P is also

performed by repeated addition of summands of the power of 2
 The discrete logarithm problem is to determine a natural number n in

nP = Q for two known points P and Q

47
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC – Size of generated groups

 Please note that the order of a group generated by a point on
a curve over ℤp is not p-1!

 Determining the exact order is not easy, but can be done in
logarithmic time by Schoofs algorithm [Sch85] (requires
much more mathematical background than desired here)

 But Hasse’s theorem on elliptic curves states that the group
size n must lay between:

 p + 1 - 2√p ≤ n ≤ p + 1 + 2√p
 As mentioned before: Generating rather large groups is

sufficient

48
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC - ECDH

 The Diffie-Hellman-Algorithm can easily be adapted to elliptic curves
 If Alice (A) and Bob (B) want to agree on a shared secret s:

 A and B agree on a cryptographically secure elliptic curve and a point P on
that curve

 A chooses a random number q:
 A computes Q = q P and transmits Q to Bob

 B chooses a random number r:
 B computes R = r P and transmits P to Alice

 Both sides compute the common secret:
 A computes S = q R
 B computes S’ = r Q
 As q r P = r q P the secret point S = S’

 Attackers listening to the public channel can only compute S, if able to
compute either q or r which are the discrete logarithms of Q and R for
the point P

49
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC – EC version of ElGamal Algorithm (I)

 Adapting ElGamal for elliptic curves is rather straight forward
for the encryption routine

 To set up a key pair:
 Choose an elliptic curve over a finite field, a point G that

generates a large group, and a random number v such
that 1 < v < n, where n denotes to the size of the induced
group, Calculate: Y = vG

 The public key is (Y, G, curve)
 The private key is v

50
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC – EC version of ElGamal Algorithm (II)

 To encrypt a message:
 Choose a random k  ℤ+ with k < n – 1, compute R = kG
 Compute S = M + kY, where M is a point derived by the message

 Problem: Interpreting the message m as a x coordinate of M is not
sufficient, as the y value does not have to exist

 Solution from [Ko87]: Choose a constant c (e.g. 100) check if cm is the
x coordinate of a valid point, if not try cm+1, then cm+2 and so on

 To decode m: take the x value of M and do an integer division by c
(receiver has to know c too)

 The ciphertext are the points (R, S)
 Twice as long as m, if stored in so-called compressed form, i.e. only x

coordinates are stored and a single bit, indicating whether the larger or
smaller corresponding y-coordinate shall be used

 To decrypt a message:
 Derive M by calculating S – vR
 Proof: S – vR = M + kY – vR = M + kvG – vkG = M + O = M

51
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC – EC version of ElGamal Algorithm (II)

 To sign a message:
 Choose a random k  ℤ+ with k < n – 1, compute R = kG
 Compute s = k-1(m + rv) mod n, where r is the x-value of R
 The signature are (r, s), again about as twice as long as n

 To verify a signed message:
 Check if the point P = ms-1G+rs-1Y has the x-coordinate r
 Note: s-1 is calculated by the Extended Euclidian Algorithm with the input s

and n (the order of the group)
 Proof: ms-1G+rs-1Y = ms-1G+rs-1vG = (m+rv)(s-1)G = (ks)(s-1)G = kG = R

 Security discussion:
 As in the original version of ElGamal it is crucial to not use k twice
 Messages should not be signed directly
 Further checks may be required, i.e., G must not be O, a valid point on the

curve etc. (see [NIST09] for further details)

52
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC – Security (I)

 The security heavily depends on the chosen curve and point:
 The discriminant of the curve must not be zero, i.e.,

 otherwise the curve is degraded (a so called singular curve)
 Menezes et. al. have found a sub-exponential algorithm for so-called

supersingular elliptic curves but this does not work in the general case
[Men93a]

 The constructed algebraic groups should have as many elements a possible
 This class will not go into more details of elliptic curve cryptography as this

requires way more mathematics than desired for this course... :o)
 For non-cryptographers it is best to depend on predefined curves, e.g., [LM10]

or [NIST99] and standards such as ECDSA
 Many publications choose parameters a and b such that they are provably

chosen by a random process (e.g. publish x for h(x) = a and y for h(y) = b);
Shall ensure that the curves do not contain a cryptographic weakness that
only the authors knows about

53
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC – Security (II)

 The security depends on the length of p
 Key lengths with comparable strengths according to

[NIST12]:

Symmetric
Algorithms

RSA ECC

112 2048 224-255

128 3072 256-383

192 7680 384-511

256 15360 > 512

54
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC – Security (III)

 The security also heavily depends on the implementation!
 The different cases (e.g. with O) in ECC calculation may be

observable, i.e., power consumption and timing differences
 Attackers might deduct side-channel attacks, as in OpenSSL

0.9.8o [BT11]
 Attacker may deduce the bit length of a value k in kP by

measuring the time required for the square and multiply
algorithm

 Algorithm was aborted early in OpenSSL when no further bits
where set to “1”

 Attackers might try to generate invalid points to derive facts about
the used key as in OpenSSL 0.9.8g, leading to a recovery of a full
256-bit ECC key after only 633 queries [BBP12]

 Lesson learned: Do not do it on your own, unless you have to and
know what you are doing!

55
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC – Further remarks

 As mentioned earlier it is possible to construct cryptographic elliptic
curves over G(2n), which may be faster in hardware implementations
 We refrained from details as this would not have brought many

different insights!
 Elliptic curves and similar algebraic groups are an active field of

research and allow other advanced applications e.g.:
 So-called Edwards Curves are currently discussed, as they seem

more robust against side-channel attacks (e.g. [BLR08])
 Bilinear pairings allow

 Programs to verify that they belong to the same group, without
revealing their identity (Secret handshakes, e.g. [SM09])

 Public keys to be structured, e.g. use “Alice” as public key for
Alice (Identity based encryption, foundations in [BF03])

 Before deploying elliptic curve cryptography in a product, make sure to
not violate patents, as there are still many valid ones in this field!

56
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Conclusion

 Asymmetric cryptography allows to use two different keys for:
 Encryption / Decryption
 Signing / Verifying

 The most practical algorithms that are still considered to be secure are:
 RSA, based on the difficulty of factoring and solving discrete logarithms
 Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
 ElGamal, like DH based on the difficulty of computing discrete logarithms

 As their security is entirely based on the difficulty of certain mathematical
problems, algorithmic advances constitute their biggest threat

 Practical considerations:
 Asymmetric cryptographic operations are about magnitudes slower than

symmetric ones
 Therefore, they are often not used for encrypting / signing bulk data
 Symmetric techniques are used to encrypt / compute a cryptographic hash

value and asymmetric cryptography is just used to encrypt a key / hash value

57
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Additional References

[Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.

[Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1990.

[DH76] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT-22 , pp. 644-654, 1976.

[ElG85a] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on
Discrete Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4,
pp. 469-472, July 1985.

[Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.

[Men93a] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic
Publishers, 1993.

[Niv80a] I. Niven, H. Zuckerman. An Introduction to the Theory of Numbers. John Wiley
& Sons, 4th edition, 1980.

[RSA78] R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Communications of the ACM, February 1978.

58
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Additional References

[KAFL10] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos, P. Gaudry, A.
Kruppa, P. Montgomery, D. Osvik, H. Te Riele, A.Timofeev, P. Zimmermann.
Factorization of a 768-bit RSA modulus. In Proceedings of the 30th annual
conference on Advances in cryptology (CRYPTO'10), 2010.

[LM10] M. Lochter, J. Merkle. Elliptic Curve Cryptography (ECC) Brainpool Standard
Curves and Curve Generation, IETF Request for Comments: 5639, 2010.

[NIST99] NIST. Recommended Elliptic Curves for Federal Government Use. 1999.

[NIST12] NIST. Recommendation for Key Management: Part 1: General (Revision 3). NIST
Special Publication 800-57. 2012.

[Ko87] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, Vol. 48,
No. 177 (Jan., 1987), pp. 203-209. 1987.

[BBP12] B.B. Brumley, M. Barbosa, D. Page, F. Vercauteren. Practical realisation and
elimination of an ECC-related software bug attack. Cryptology ePrint Archive:
Report 2011/633 and CT-RSA Pages 171-186. 2012.

[BT11] B.B. Brumley, N. Tuveri. Remote timing attacks are still practical. Proceedings of
the 16th European conference on Research in computer security (ESORICS'11).
Pages 355-371. 2011.

59
© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Additional References

[BLR08] D. Bernstein, T. Lange, R. Rezaeian Farashahi. Binary Edwards Curves.
Cryptographic Hardware and Embedded Systems (CHES). Pages 244-265. 2008.

[NIST09] NIST. Digital Signature Standard (DSS). FIPS PUB 186-3. 2009.

[SM09] A. Sorniotti, R. Molva. A provably secure secret handshake with dynamic
controlled matching. Computers & Security, 2009.

[BF03] D. Boneh, M. Franklin. Identity-Based Encryption from the Weil Pairing. SIAM J. of
Computing, Vol. 32, No. 3, Pages 586-615, 2003.

[Sch85] R. Schoof. Elliptic Curves over Finite Fields and the Computation of Square Roots
mod p. Math. Comp., 44(170). Pages 483–494. 1985.

