

Network Security Chapter 4 Asymmetric Cryptography

"However, prior exposure to discrete mathematics will help the reader to appreciate the concepts presented here."

E. Amoroso in another context [Amo94] :0)

Network Security (WS 21/22): 04 – Asymmetric Cryptography

1

Asymmetric Cryptography (1)

- General idea:
 - □ Use two different keys -K and +K for encryption and decryption
 - □ Given a random ciphertext c = E(+K, m) and +K it should be infeasible to compute m = D(-K, c) = D(-K, E(+K, m))
 - This implies that it should be infeasible to compute -K when given +K
 - \Box The key -K is only known to one entity A and is called A's *private key* -K_A
 - \Box The key +K can be publicly announced and is called A's *public key* +K_A
- Applications:
 - Encryption:
 - If B encrypts a message with A's public key $+K_A$, he can be sure that only A can decrypt it using $-K_A$
 - □ Signing:
 - If A encrypts a message with his own private key $-K_A$, everyone can verify this signature by decrypting it with A's public key $+K_A$
 - □ Attention: It is crucial, that everyone can verify that he really knows A's public key and not the key of an adversary!

Asymmetric Cryptography (2)

- □ Design of asymmetric cryptosystems:
 - \Box Difficulty: Find an algorithm and a method to construct two keys -K, +K such that it is not possible to decipher E(+K, m) with the knowledge of +K
 - Constraints:
 - The key length should be "manageable"
 - Encrypted messages should not be arbitrarily longer than unencrypted messages (we would tolerate a small constant factor)
 - Encryption and decryption should not consume too much resources (time, memory)
 - □ Basic idea: Take a problem in the area of mathematics / computer science, that is hard to solve when knowing only +K, but easy to solve when knowing -K
 - Knapsack problems: basis of first working algorithms, which were unfortunately almost all proven to be insecure
 - Factorization problem: basis of the RSA algorithm
 - Discrete logarithm problem: basis of Diffie-Hellman and ElGamal

© Dr.-Ing G. Schäfer

3

Network Security (WS 21/22): 04 – Asymmetric Cryptography

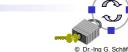
Some Mathematical Background (1)

- Definitions:
 - □ Let \mathbb{Z} be the number of integers, and $a, b, n \in \mathbb{Z}$
 - \square We say a divides b ("a | b") if there exists an integer $k \in \mathbb{Z}$ such that $a \times k = b$
 - ☐ We say a is prime if it is positive and the only divisors of a are 1 and a
 - □ We say r is the *remainder* of a divided by n if $r = a \lfloor a / n \rfloor \times n$ where $\lfloor x \rfloor$ denotes the largest integer less than or equal to x
 - Example: 4 is the remainder of 11 divided by 7 as 4 = 11 $\lfloor 11 / 7 \rfloor \times 7$
 - We can write this in another way: $a = q \times n + r$ with $q = \lfloor a / n \rfloor$
 - \Box For the remainder r of the division of a by n we write a MOD n
 - □ We say *b* is congruent a mod *n* if it has the same remainder like a when divided by *n*. So, *n* divides (a-b), and we write $b \equiv a \mod n$
 - Examples: $4 \equiv 11 \mod 7$, $25 \equiv 11 \mod 7$, $11 \equiv 25 \mod 7$, $11 \equiv 4 \mod 7$, $-10 \equiv 4 \mod 7$
 - As the remainder r of division by n is always smaller than n, we sometimes represent the set $\{x \text{ MOD } n \mid x \in \mathbb{Z}\}$ by elements of the set $\mathbb{Z}_n = \{0, 1, ..., n-1\}$

Some Mathematical Background (2)

Properties of Modular Arithmetic		
Property	Expression	
Commutative Laws	(a + b) MOD n = (b + a) MOD n	
	$(a \times b) MOD n = (b \times a) MOD n$	
Associative Laws	[(a + b) + c] MOD n = [a + (b + c)] MOD n	
	$[(a \times b) \times c] \text{ MOD } n = [a \times (b \times c)] \text{ MOD } n$	
Distributive Law	$[a \times (b + c)]$ MOD $n = [(a \times b) + (a \times c)]$ MOD n	
Identities	(0 + a) MOD n = a MOD n	
	$(1 \times a)$ MOD n = a MOD n	
Inverses	$\forall \ a \in \mathbb{Z}_n : \exists \ (-a) \in \mathbb{Z}_n : a + (-a) \equiv 0 \bmod n$	
	p is prime $\Rightarrow \forall a \in \mathbb{Z}_p$: $\exists (a^{-1}) \in \mathbb{Z}_p$: $a \times (a^{-1}) \equiv 1 \mod p$	

Network Security (WS 21/22): 04 – Asymmetric Cryptography



5

Some Mathematical Background (3)

- □ Greatest common divisor:
- □ The gcd recursion theorem:
 - \Box \forall a, b \in \mathbb{Z}^+ : gcd(a, b) = gcd(b, a MOD b)
 - □ Proof:
 - As gcd(a, b) divides both a and b it also divides any linear combination of them, especially $(a \lfloor a/b \rfloor \times b) = a \text{ MOD } b$, so $gcd(a, b) \mid gcd(b, a \text{ MOD } b)$
 - As gcd(b, a MOD b) divides both b and a MOD b it also divides any linear combination of them, especially $\lfloor a / b \rfloor \times b + (a \text{ MOD } b) = a$, so $gcd(b, a \text{ MOD } b) \mid gcd(a, b)$
- □ Euclidean Algorithm:
 - ☐ The algorithm *Euclid* given *a*, *b* computes gcd(a, b)
 - □ int Euclid(int a, b) { if (b = 0) { return(a);} { return(Euclid(b, a MOD b);} }

Some Mathematical Background (4)

- □ Extended Euclidean Algorithm:
 - □ The algorithm ExtendedEuclid given a, b computes d, m, n such that: $d = gcd(a, b) = m \times a + n \times b$
 - □ struct{int d, m, n} ExtendedEuclid(int a, b)
 { int d, d', m, m', n, n';
 if (b = 0) {return(a, 1, 0); }
 (d', m', n') = ExtendedEuclid(b, a MOD b);
 (d, m, n) = (d', n', m' \arrow a / b \arrow x n');
 return(d, m, n); }
 - □ Proof: (by induction)
 - Basic case (a, 0): $gcd(a, 0) = a = 1 \times a + 0 \times 0$
 - Induction from (b, a MOD b) to (a, b):
 - ExtendedEuclid computes d', m', n' correctly (induction hypothesis)

$$-d = d' = m' \times b + n' \times (a \text{ MOD } b) = m' \times b + n' \times (a - \lfloor a/b \rfloor \times b)$$
$$= n' \times a + (m' - \lfloor a/b \rfloor \times n') \times b$$

- ☐ The run time of Euclid(a, b) and ExtendedEuclid(a, b) is of O(log b)
 - Proof: see [Cor90a], section 33.2

© Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

7

Some Mathematical Background (5)

□ Summarizing the discussion of the Euclidean algorithms we have:

Lemma 1:

Let $a, b \in \mathbb{N}$ and $d = \gcd(a, b)$. Then there exists $m, n \in \mathbb{N}$ such that: $d = m \times a + n \times b$

□ We can use this lemma to prove the following:

Theorem 1 (Euclid):

If a prime divides the product of two integers, then it divides at least one of the integers: $p \mid (a \times b) \Rightarrow (p \mid a) \vee (p \mid b)$

- \square Proof: Let $p \mid (a \times b)$
 - If $p \mid a$ then we are done.
 - If not then $gcd(p, a) = 1 \Rightarrow$ $\exists m, n \in \mathbb{N}$: $1 = m \times p + n \times a$ $\Leftrightarrow b = m \times p \times b + n \times a \times b$

As $p \mid (a \times b)$, p divides both summands of the equation and so it divides also the sum which is b

Some Mathematical Background (6)

- □ A small, but nice excursion:
 - \Box With the help of Theorem 1 the proof that $\sqrt{2}$ is not a rational number can be given in a very elegant way:

Assume that $\sqrt{2}$ can be expressed as a rational number m / n and that this fraction has been reduced such that gcd(m, n) = 1:

$$\Rightarrow \sqrt{2} = \frac{m}{n} \Leftrightarrow 2 = \frac{m^2}{n^2} \Leftrightarrow 2n^2 = m^2$$

So, 2 divides m^2 , and thus by Theorem 1 it also divides m, and so 4 divides m^2 . But then 4 divides $2n^2$ and, therefore, 2 divides also n^2 .

Again by Theorem 1 this implies that 2 divides n and so 2 divides both m and n, which is a contradiction to the assumption that the fraction m / n is reduced.

☐ And now to something more useful... – for cryptography :o)

Network Security (WS 21/22): 04 – Asymmetric Cryptography

9

Some Mathematical Background (7)

Theorem 2 (fundamental theorem of arithmetic):

Factorization into primes is unique up to order.

- □ Proof:
 - □ We will show that every integer with a non-unique factorization has a proper divisor with a non-unique factorization which leads to a clear contradiction when we finally have reduced to a prime number.
 - □ Let's assume that n is an integer with a non-unique factorization:

$$n = p_1 \times p_2 \times ... \times p_r$$
$$= q_1 \times q_2 \times ... \times q_s$$

The primes are not necessarily distinct, but the second factorization is not simply a reordering of the first one.

As p_1 divides n it also divides the product $q_1 \times q_2 \times ... \times q_s$. By repeated application of Theorem 1 we show that there is at least one q_i which is divisible by p_1 . If necessary reorder the q_i 's so that it is q_1 . As both p_1 and q_1 are prime they have to be equal. So we can divide by p_1 and we have that $n \mid p_1$ has a non-unique factorization.

10

Some Mathematical Background (8)

□ We will use Theorem 2 to prove the following Corollary 1:

If gcd(c, m) = 1 and $(a \times c) \equiv (b \times c) \mod m$, then $a \equiv b \mod m$

□ Proof: As $(a \times c) \equiv (b \times c) \mod m \Rightarrow \exists n \in \mathbb{N}$: $(a \times c) - (b \times c) = n \times m$

$$\Leftrightarrow \underbrace{(a-b)}_{p_1 \times ... \times p_i} \times \underbrace{c}_{q_1 \times ... \times q_i} = \underbrace{n}_{r_1 \times ... \times r_k} \times \underbrace{m}_{s_1 \times ... \times s_i}$$

Please note that the p's, q's, r's and s's are prime and do not need to be distinct, but as gcd(c, m) = 1, there are no indices g, h such that $q_a = s_h$.

So we can continuously divide the equation by all q's without ever "eliminating" one *s* and will finally end up with something like

$$\Leftrightarrow p_1 \times ... \times p_i = r_1 \times ... \times r_o \times s_1 \times ... \times s_i$$
(note that there will be fewer r's)

$$\Leftrightarrow (a-b) = r_1 \times ... \times r_0 \times m$$

$$\Rightarrow$$
 $a \equiv b \mod m$

Network Security (WS 21/22): 04 - Asymmetric Cryptography

11

Some Mathematical Background (9)

- Let $\Phi(n)$ denote the number of positive integers less than n and relatively prime to n
 - \Box Examples: $\Phi(4) = 2$, $\Phi(6) = 2$, $\Phi(7) = 6$, $\Phi(15) = 8$
 - □ If p is prime $\Rightarrow \Phi(p) = p 1$

Theorem 3 (Euler):

Let *n* and *b* be positive and relatively prime integers, i.e. gcd(n, b) = 1 $\Rightarrow b^{\Phi(n)} \equiv 1 \mod n$

Proof:

□ Let $t = \Phi(n)$ and $a_1, ... a_t$ be the positive integers less than n which are relatively prime to n.

Define $r_1, ..., r_t$ to be the residues of $b \times a_1 \mod n$, ..., $b \times a_t \mod n$ that is to say: $b \times a_i \equiv r_i \mod n$.

□ Note that $i \neq j \Rightarrow r_i \neq r_j$.

If this would not hold, we would have $b \times a_i \equiv b \times a_j \mod n$ and as gcd(b, n) = 1, Corollary 1 would imply $a_i \equiv a_j \mod n$ which can not be as a_i and a_i are by definition distinct integers between 0 and n

Some Mathematical Background (10)

Proof (continued):

- □ We also know that each r_i is relatively prime to n because any common divisor k of r_i and n, i.e. $n = k \times m$ and $r_i = p_i \times k$, would also have to divide a_i ,
- □ as $b \times a_i \equiv (p_i \times k) \mod (k \times m) \Rightarrow \exists s \in \mathbb{N}$: $(b \times a_i) (p_i \times k) = s \times k \times m$ $\Leftrightarrow (b \times a_i) = s \times k \times m + (p_i \times k)$

Because k divides each of the summands on the right-hand side and k does not divide b by assumption (n and b are relatively prime), it would also have to divide a_i which is supposed to be relatively prime to n

- Thus $r_1, ..., r_t$ is a set of $\Phi(n)$ distinct integers which are relatively prime to n. This means that they are exactly the same as $a_1, ... a_t$, except that they are in a different order. In particular, we know that $r_1 \times ... \times r_t = a_1 \times ... \times a_t$
- □ We now use the congruence

$$r_1 \times ... \times r_t \equiv b \times a_1 \times ... \times b \times a_t \mod n$$

 $\Leftrightarrow r_1 \times ... \times r_t \equiv b^t \times a_1 \times ... \times a_t \mod n$
 $\Leftrightarrow r_1 \times ... \times r_t \equiv b^t \times r_1 \times ... \times r_t \mod n$

□ As all r_i are relatively prime to n we can use Corollary 1 and divide by their product giving: $1 \equiv b^t \mod n \Leftrightarrow 1 \equiv b^{\Phi(n)} \mod n$

Network Security (WS 21/22): 04 – Asymmetric Cryptography

13

Some Mathematical Background (11)

Theorem 4 (Chinese Remainder Theorem):

Let $m_1, ..., m_r$ be positive integers that are pairwise relatively prime, i.e. $\forall i \neq j$: $gcd(m_i, m_i) = 1$. Let $a_1, ..., a_r$ be arbitrary integers.

Then there exists an integer a such that:

$$a \equiv a_1 \mod m_1$$

 $a \equiv a_2 \mod m_2$
...

 $a \equiv a_r \mod m_r$

Furthermore, a is unique modulo $M := m_1 \times ... \times m_r$

Proof:

- \Box For all $i \in \{1, ..., r\}$ we define $M_i := (M / m_i)^{\Phi(m_i)}$
- □ As M_i is by definition relatively prime to m_i we can apply Theorem 3 and know that $M_i \equiv 1 \mod m_i$
- □ Since M_i is divisible by m_j for every $j \neq i$, we have $\forall j \neq i$: $M_i \equiv 0 \mod m_j$

Some Mathematical Background (12)

Proof (continued):

□ We can now construct the solution by defining:

$$a := a_1 \times M_1 + a_2 \times M_2 + ... + a_r \times M_r$$

- \Box The two arguments given above concerning the congruences of the M_i imply that a actually satisfies all of the congruences.
- □ To see that a is unique modulo M, let b be any other integer satisfying the r congruences. As $a \equiv c \mod n$ and $b \equiv c \mod n \Rightarrow a \equiv b \mod n$ we have $\forall i \in \{1, ..., r\}$: $a \equiv b \mod m_i$

 $\Rightarrow \forall i \in \{1, ..., r\}: m_i \mid (a - b)$

 \Rightarrow M | (a-b) as the m_i are pairwise relatively prime

 \Leftrightarrow $a \equiv b \mod M$

© De los C. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

15

Some Mathematical Background (13)

Lemma 2:

If
$$gcd(m, n) = 1$$
, then $\Phi(m \times n) = \Phi(m) \times \Phi(n)$

Proof:

- □ Let *a* be a positive integer less than and relatively prime to $m \times n$. In other words, *a* is one of the integers counted by $\Phi(m \times n)$.
- \square Consider the correspondence $a \rightarrow (a \text{ MOD } m, a \text{ MOD } n)$

The integer a is relatively prime to m and relatively prime to n (if not it would divide $m \times n$).

So, (a MOD m) is relatively prime to m and (a MOD n) is relatively prime to n as: $a = \lfloor a / m \rfloor \times m + (a \text{ MOD } m)$, so if there would be a common divisor of m and (a MOD m), this divisor would also divide a.

Thus every number a counted by $\Phi(m \times n)$ corresponds to a pair of two integers (a MOD m, a MOD n), the first one counted by $\Phi(m)$ and the second one counted by $\Phi(n)$.

Some Mathematical Background (14)

Proof (continued):

 \square Because of the second part of Theorem 4, the uniqueness of the solution *a* modulo (m × n) to the simultaneous congruences:

 $a \equiv (a MOD m) mod m$

 $a \equiv (a MOD n) mod n$

we can deduce, that distinct integers counted by $\Phi(m \times n)$ correspond to distinct pairs:

□ Too see this, suppose that a \neq b counted by $\Phi(m \times n)$ does correspond to the same pair (a MOD m, a MOD n). This leads to a contradiction as b would also fulfill the congruences:

 $b \equiv (a MOD m) mod m$

 $b \equiv (a MOD n) mod n$

but the solution to these congruences is unique modulo $(m \times n)$

Therefore, $\Phi(m \times n)$ is at most the number of such pairs:

$$\Phi(m \times n) \leq \Phi(m) \times \Phi(n)$$

Network Security (WS 21/22): 04 – Asymmetric Cryptography

17

Some Mathematical Background (15)

Proof (continued):

 \Box Consider now a pair of integers (b, c), one counted by $\Phi(m)$ and the other one counted by $\Phi(n)$:

Using the first part of Theorem 4 we can construct a unique positive integer a less than and relatively prime to $m \times n$:

 $a \equiv b \mod m$

 $a \equiv c \mod n$

So, the number of such pairs is at most $\Phi(m \times n)$:

$$\Phi(m \times n) \ge \Phi(m) \times \Phi(n)$$

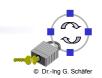
The RSA Public Key Algorithm (1)

- ☐ The RSA algorithm was invented in 1977 by R. Rivest, A. Shamir and L. Adleman [RSA78] and is based on Theorem 3.
- □ Let p, q be distinct large primes and $n = p \times q$. Assume, we have also two integers e and d such that:

$$d \times e \equiv 1 \mod \Phi(n)$$

- □ Let *M* be an integer that represents the message to be encrypted, with *M* positive, smaller than and relatively prime to *n*.
 - □ Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35
So "HELLO" would be encoded as 1714212124.
If necessary, break M into blocks of smaller messages: 17142 12124
- □ To encrypt, compute: $E = M^e \text{ MOD } n$
 - ☐ This can be done efficiently using the *square-and-multiply algorithm*
- □ To decrypt, compute: $M' = E^d \text{ MOD } n$

we have: $M' \equiv E^d \equiv M^{(e \times d)} \equiv M^{(k \times \Phi(n) + 1)} \equiv 1^k \times M \equiv M \mod n$



Network Security (WS 21/22): 04 – Asymmetric Cryptography

19

The RSA Public Key Algorithm (2)

- \Box As $(d \times e) = (e \times d)$ the operation also works in the opposite direction, that means you can encrypt with d and decrypt with e
 - ☐ This property allows to use the same keys *d* and *e* for:
 - Receiving messages that have been encrypted with one's public key
 - Sending messages that have been signed with one's private key
- □ To set up a key pair for RSA:
 - \square Randomly choose two primes p and q (of 100 to 200 digits each)
 - □ Compute $n = p \times q$, $\Phi(n) = (p 1) \times (q 1)$ (Lemma 2)
 - □ Randomly choose e, so that $gcd(e, \Phi(n)) = 1$
 - □ With the extended euclidean algorithm compute d and c, such that: $e \times d + \Phi(n) \times c = 1$, note that this implies, that $e \times d = 1 \mod \Phi(n)$
 - \Box The public key is the pair (e, n)
 - \Box The private key is the pair (d, n)

The RSA Public Key Algorithm (3)

- The security of the scheme lies in the difficulty of factoring $n = p \times q$ as it is easy to compute $\Phi(n)$ and then d, when p and q are known
- □ This class will not teach why it is difficult to factor large n's, as this would require to dive deep into mathematics
 - ☐ If *p* and *q* fulfill certain properties, the best known algorithms are exponential in the number of digits of *n*
 - Please be aware that if you choose p and q in an "unfortunate" way, there might be algorithms that can factor more efficiently and your RSA encryption is not at all secure:
 - Therefore, p and q should be about the same bitlength and sufficiently large
 - -(p-q) should not be too small
 - If you want to choose a small encryption exponent, e.g. 3, there might be additional constraints, e.g. gcd(p-1, 3) = 1 and gcd(q-1, 3) = 1
 - The security of RSA also depends on the primes generated being truly random (like every key creation method for any algorithm)
 - Moral: If you are to implement RSA by yourself, ask a mathematician or better a cryptographer to check your design

ON IN CASHING

Network Security (WS 21/22): 04 – Asymmetric Cryptography

21

Diffie-Hellman Key Exchange (1)

- ☐ The Diffie-Hellman key exchange was first published in the landmark paper [DH76], which also introduced the fundamental idea of asymmetric cryptography
- ☐ The DH exchange in its basic form enables two parties A and B to agree upon a *shared secret* using a public channel:
 - □ Public channel means, that a potential attacker E (E stands for eavesdropper) can read all messages exchanged between A and B
 - □ It is important, that A and B can be sure, that the attacker is not able to alter messages, as in this case he might launch a *man-in-the-middle attack*
 - The mathematical basis for the DH exchange is the problem of finding discrete logarithms in finite fields
 - □ The DH exchange is not an asymmetric encryption algorithm, but is nevertheless introduced here as it goes well with the mathematical flavor of this lecture... :o)

Some More Mathematical Background (1)

- □ Definition: finite groups
 - \square A group (S, \oplus) is a set S together with a binary operation \oplus for which the following properties hold:
 - Closure: For all $a, b \in S$, we have $a \oplus b \in S$
 - *Identity:* There is an element $e \in S$, such that $e \oplus a = a \oplus e = a$ for all $a \in S$
 - Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - *Inverses:* For each $a \in S$, there exists a unique element $b \in S$, such that $a \oplus b = b \oplus a = e$
 - □ If a group (S, \oplus) satisfies the commutative law $\forall a, b \in S$: $a \oplus b = b \oplus a$ then it is called an *Abelian group*
 - □ If a group (S, \oplus) has only a finite set of elements, i.e. $|S| < \infty$, then it is called a *finite group*

Network Security (WS 21/22): 04 - Asymmetric Cryptography

23

Some More Mathematical Background (2)

- Examples:
 - \square (\mathbb{Z}_n , $+_n$)
 - with $\mathbb{Z}_n := \{[0]_n, [1]_n, ..., [n-1]_n\}$
 - where $[a]_n := \{b \in \mathbb{Z} \mid b \equiv a \mod n\}$ and
 - +_n is defined such that $[a]_n +_n [b]_n = [a + b]_n$

is a finite abelian group

For the proof see the table showing the properties of modular arithmetic

- \square $(\mathbb{Z}_n^*, \times_n)$
 - with \mathbb{Z}_n^* := {[a] $_n \in \mathbb{Z}_n$ | gcd(a, n) = 1 }, and
 - \times_n is defined such that $[a]_n \times_n [b]_n = [a \times b]_n$

is a finite Abelian group. Please note that \mathbb{Z}_n^* just contains those elements of \mathbb{Z}_n that have a multiplicative inverse modulo n

For the proof see the properties of modular arithmetic

■ Example: $\mathbb{Z}_{15}^* = \{[1]_{15}, [2]_{15}, [4]_{15}, [7]_{15}, [8]_{15}, [11]_{15}, [13]_{15}, [14]_{15}\}$, as

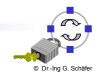
 $1 \times 1 \equiv 1 \mod 15$, $2 \times 8 \equiv 1 \mod 15$, $4 \times 4 \equiv 1 \mod 15$,

 $7 \times 13 \equiv 1 \mod 15$, $11 \times 11 \equiv 1 \mod 15$, $14 \times 14 \equiv 1 \mod 15$

24

Some More Mathematical Background (3)

- □ If it is clear that we are talking about $(\mathbb{Z}_n, +_n)$ or $(\mathbb{Z}_n^*, \times_n)$ we often represent equivalence classes $[a]_n$ by their representative elements a and denote $+_n$ and \times_n by + and \times , respectively.
- □ Definition: finite fields
 - \Box A *field* (S, \oplus , \otimes) is a set S together with two operations \oplus , \otimes such that
 - (S, \oplus) and (S \ {e $_{\oplus}$ }, \otimes) are commutative groups, i.e. only the identity element concerning the operation \oplus does not need to have an inverse regarding the operation \otimes
 - For all $a, b, c \in S$, we have $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$
 - □ If $|S| < \infty$ then (S, \oplus, \otimes) is called a *finite field*
- □ Example:
 - \square (\mathbb{Z}_p , +_p, ×_p) is a finite field for each prime p



Network Security (WS 21/22): 04 – Asymmetric Cryptography

25

Some More Mathematical Background (4)

- □ Definition: *primitive root, generator*
 - □ Let (S, \bullet) be a group, $g \in S$ and $g^a := g \bullet g \bullet ... \bullet g$ (a times with $a \in \mathbb{Z}^+$) Then g is called a *primitive root* or *generator* of (S, \bullet)

$$:\Leftrightarrow \{g^a\mid 1\leq a\leq |S|\}=S$$

- □ Examples:
 - \square 1 is a primitive root of $(\mathbb{Z}_n, +_n)$
 - \square 3 is a primitive root of $(\mathbb{Z}_{7}^{*}, \times_{7})$
- Not all groups do have primitive roots and those who have are called cyclic groups
- □ Theorem 5:

 $(\mathbb{Z}_n^*, \times_n)$ does have a primitive root $\Leftrightarrow n \in \{2, 4, p, 2 \times p^e\}$ where p is an odd prime and $e \in \mathbb{Z}^+$

☐ For the proof see [Niv80a]

Some More Mathematical Background (5)

- Theorem 6:
 - If (S, \bullet) is a group and $b \in S$ then (S', \bullet) with $S' = \{b^a \mid a \in \mathbb{Z}^+\}$ is also a group.
 - ☐ For the proof refer to [Cor90a] section 33.3
 - \square As $S' \subseteq S$, (S', \bullet) is called a *subgroup* of (S, \bullet)
 - □ If b is a primitive root of (S, \bullet) then S' = S
- □ Definition: order of a group and of an element
 - □ Let (S, \bullet) be a group, $e \in S$ its identity element and $b \in S$ any element of S:
 - Then |S| is called the *order* of (S, \bullet)
 - Let $c \in \mathbb{Z}^+$ be the smallest element so that $b^c = e$ (if such a c exists, if not set $c = \infty$). Then *c* is called the *order* of *b*.

Some More Mathematical Background (6)

<u>Theorem 7 (Lagrange):</u>

If G is a finite group and H is a subgroup of G, then |H| divides |G|. Hence, if $b \in G$ then the order of b divides |G|.

- Theorem 8:
 - If G is a cyclic finite group of order n and d divides n then G has exactly $\Phi(d)$ elements of order d. In particular, G has $\Phi(n)$ elements of order n.
- Theorems 5, 7, and 8 are the basis of the following algorithm that finds a cyclic group \mathbb{Z}_{p}^{*} and a primitive root g of it:
 - Choose a large prime q such that p = 2q + 1 is prime.
 - As p is prime, Theorem 5 states that \mathbb{Z}_p^* is cyclic.
 - The order of \mathbb{Z}_{q}^{*} is $2 \times q$ and $\Phi(2 \times q) = \Phi(2) \times \Phi(q) = q$ -1 as q is prime.
 - So, the odds of randomly choosing a primitive root are $(q 1) / 2q \approx 1 / 2$
 - In order to efficiently test, if a randomly chosen g is a primitive root, we just have to test if $g^2 \equiv 1 \mod p$ or $g^q \equiv 1 \mod p$. If not, then its order has to be $|\mathbb{Z}_{p}^*|$, as Theorem 7 states that the order of g has to divide $|\mathbb{Z}_{p}^*|$

Some More Mathematical Background (7)

- □ Definition: *discrete logarithm*
 - \Box Let p be prime, g be a primitive root of $(\mathbb{Z}_p^*,\times_p)$ and c be any element of \mathbb{Z}_p^* . Then there exists z such that: $g^z \equiv c \mod p$
 - z is called the discrete logarithm of c modulo p to the base g
 - Example 6 is the discrete logarithm of 1 modulo 7 to the base 3 as $3^6 \equiv 1 \mod 7$
 - \Box The calculation of the discrete logarithm z when given g, c, and p is a computationally difficult problem and the asymptotical runtime of the best known algorithms for this problem is exponential in the bitlength of p

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Diffie-Hellman Key Exchange (2)

- ☐ If Alice (A) and Bob (B) want to agree on a shared secret s and their only means of communication is a public channel, they can proceed as follows:
 - \square A chooses a prime p, a primitive root g of \mathbb{Z}_p^* , and a random number q:
 - A and B can agree upon the values p and q prior to any communication, or A can choose p and g and send them with his first message
 - A computes $v = g^q \text{ MOD } p$ and sends to B: $\{p, g, v\}$
 - ☐ B chooses a random number *r*:
 - B computes $w = g^r \text{ MOD } p$ and sends to A: $\{p, g, w\}$ (or just $\{w\}$)
 - □ Both sides compute the common secret:
 - A computes $s = w^q \text{ MOD } p$
 - B computes s' = v' MOD p
 - As $g^{(q \times r)}$ MOD $p = g^{(r \times q)}$ MOD p it holds: s = s'
 - ☐ An attacker Eve who is listening to the public channel can only compute the secret s, if she is able to compute either q or r which are the discrete logarithms of v, w modulo p to the base g

29

Diffie-Hellman Key Exchange (3)

- ☐ If the attacker Eve is able to alter messages on the public channel, she can launch a *man-in-the-middle attack:*
 - \Box Eve generates to random numbers q' and r':
 - Eve computes $v' = g^{q'} \text{ MOD } p$ and $w' = g^{r'} \text{ MOD } p$
 - □ When A sends $\{p, g, v\}$ she intercepts the message and sends to B: $\{p, g, v'\}$
 - □ When B sends $\{p, g, w\}$ she intercepts the message and sends to A: $\{p, g, w'\}$
 - □ When the supposed "shared secret" is computed we get:
 - A computes $s_1 = w'^q \text{ MOD } p = v^r \text{ MOD } p$ the latter computed by E
 - B computes $s_2 = v'' \text{ MOD } p = w'' \text{ MOD } p$ the latter computed by E
 - So, in fact A and E have agreed upon a shared secret s_1 as well as E and B have agreed upon a shared secret s_2
 - ☐ If the "shared secret" is now used by A and B to encrypt messages to be exchanged over the public channel, E can intercept all the messages and decrypt / re-encrypt them before forwarding them between A and B.

Network Security (WS 21/22): 04 – Asymmetric Cryptography

31

Diffie-Hellman Key Exchange (4)

- □ Two countermeasures against the man-in-the-middle attack:
 - ☐ The shared secret is "authenticated" after it has been agreed upon
 - We will treat this in the section on key management
 - □ A and B use a so-called *interlock protocol* after agreeing on a shared secret:
 - For this they have to exchange messages that E has to relay before she can decrypt / re-encrypt them
 - The content of these messages has to be checkable by A and B
 - This forces E to invent messages and she can be detected
 - One technique to prevent E from decrypting the messages is to split them into two parts and to send the second part before the first one.
 - If the encryption algorithm used inhibits certain characteristics E can not encrypt the second part before she receives the first one.
 - As A will only send the first part after he received an answer (the second part of it) from B, E is forced to invent two messages, before she can get the first parts.
- Remark: In practice the number g does not necessarily need to be a primitive root of p, it is sufficient if it generates a large subgroup of \mathbb{Z}_p^*

TELEMATIK

The ElGamal Algorithm (1)

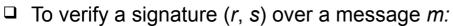
- □ The ElGamal algorithm can be used for both, encryption and digital signatures (see also [ElG85a])
- □ Like the DH exchange it is based on the difficulty of computing discrete logarithms in finite fields
- □ In order to set up a key pair:
 - □ Choose a large prime p, a generator g of the multiplicative group \mathbb{Z}_p^* and a random number v such that $1 \le v \le p$ 2. Calculate: $y = g^v \mod p$
 - \Box The public key is (y, g, p)
 - □ The private key is *v*
- □ To sign a message *m*:
 - \Box Choose a random number k such that k is relatively prime to p 1.
 - \square Compute $r = g^k \mod p$
 - □ With the Extended Euclidean Algorithm compute k⁻¹, the inverse of k mod (p 1)
 - □ Compute $s = k^{-1} \times (m v \times r) \mod (p 1)$
 - \Box The signature over the message is (r, s)

© Dr. Ing G. Schafer

33

Network Security (WS 21/22): 04 – Asymmetric Cryptography

The ElGamal Algorithm (2)



- □ Confirm that $y^r \times r^s \text{ MOD } p = g^m \text{ MOD } p$
- □ Proof: We need the following
 - Lemma 3:

Let p be prime and g be a generator of \mathbb{Z}_{p}^{*} . Then $i \equiv j \mod (p-1) \Rightarrow g^{j} \equiv g^{j} \mod p$

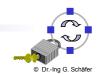
Proof:

- $-i \equiv j \mod (p-1) \Rightarrow$ there exists $k \in \mathbb{Z}^+$ such that $(i-j) = (p-1) \times k$
- So, $g^{(i-j)} = g^{(p-1)\times k} \equiv 1^k \equiv 1 \mod p$, because of Theorem 3 (Euler) ⇒ $g^j \equiv g^j \mod p$

■ So as
$$s \equiv k^{-1} \times (m - v \times r)$$
 $\mod (p - 1)$
 $\Leftrightarrow k \times s \equiv m - v \times r$ $\mod (p - 1)$
 $\Leftrightarrow m \equiv v \times r + k \times s$ $\mod (p - 1)$
 $\Rightarrow g^m \equiv g^{(v \times r + k \times s)}$ $\mod p$ with Lemma 3
 $\Leftrightarrow g^m \equiv g^{(v \times r)} \times g^{(k \times s)}$ $\mod p$
 $\Leftrightarrow g^m \equiv y^r \times r^s \mod p$

The ElGamal Algorithm (3)

- □ Security of ElGamal signatures:
 - □ As the private key v is needed to be able to compute s, an attacker would have to compute the discrete logarithm of y modulo p to the basis g in order to forge signatures
 - □ It is crucial to the security, that a new random number *k* is chosen for every message, because an attacker can compute the secret *v* if he gets two messages together with their signatures based on the same *k* (see [Men97a], Note 11.66.ii)
 - □ In order to prevent an attacker to be able to create a message M with a matching signature, it is necessary not to sign directly the message M as explained before, but to sign a cryptographic hash value m = h(M) of it (these will be treated soon, see also [Men97a], Note 11.66.iii)



Network Security (WS 21/22): 04 – Asymmetric Cryptography

35

The ElGamal Algorithm (4)

- \Box To encrypt a message m using the public key (y, g, p):
 - □ Choose a random $k \in \mathbb{Z}^+$ with k
 - □ Compute $r = g^k \text{ MOD } p$
 - □ Compute $s = m \times y^k \text{ MOD } p$
 - \Box The ciphertext is (r, s), which is twice as long as m
- \Box To decrypt the message (r, s) using v:
 - □ Use the private key v to compute $r^{(p-1-v)}$ MOD $p = r^{(-v)}$ MOD p
 - □ Recover *m* by computing $m = r^{(-v)} \times s \text{ MOD } p$
 - □ Proof:

$$r^{(-v)} \times s \equiv r^{(-v)} \times m \times y^k \equiv g^{(-vk)} \times m \times y^k \equiv g^{(-v \times k)} \times m \times g^{(v \times k)} \equiv m \mod p$$

- □ Security:
 - ☐ The only known means for an attacker to recover *m* is to compute the discrete logarithm *v* of *y* modulo *p* to the basis *g*
 - □ For every message a new random *k* is needed ([Men97a], Note 8.23.ii)

Elliptic Curve Cryptography (1)

- □ The algorithms presented so far have been invented for the multiplicative group $(\mathbb{Z}_p^*, \times_p)$ and the field $(\mathbb{Z}_p, +_p, \times_p)$, respectively
- ☐ It has been found during the 1980's that they can be generalized and be used with other groups and fields as well
- ☐ The main motivation for this generalization is:
 - □ A lot of mathematical research in the area of primality testing, factorization and computation of discrete logarithms has led to techniques that allow to solve these problems in a more efficient way, if certain properties are met:
 - When the RSA-129 challenge was given in 1977 it was expected that it will take some 40 quadrillion years to factor the 129-digit number (≈ 428 bit)
 - In 1994 it took 8 months to factor it by a group of computers networked over the Internet, calculating for about 5000 MIPS-years
 - Advances in factoring algorithms allowed 2009 to factor a 232-digit number (768 bit) in about 1500 AMD64-years [KAFL10]
 - ⇒ the key length has to be increased (currently about 2048 bit)



Network Security (WS 21/22): 04 – Asymmetric Cryptography

37

Elliptic Curve Cryptography (2)

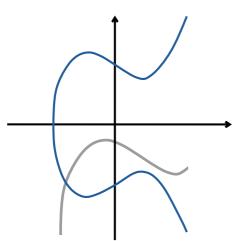
- Motivation (continued):
 - □ Some of the more efficient techniques do rely on specific properties of the algebraic structures $(\mathbb{Z}_{p}^{*}, \times_{p})$ and $(\mathbb{Z}_{p}, +_{p}, \times_{p})$
 - □ Different algebraic structures may therefore provide the same security with shorter key lengths
- □ A very promising structure for cryptography can be obtained from the group of points on an elliptic curve over a finite field
 - ☐ The mathematical operations in these groups can be efficiently implemented both in hardware and software
 - ☐ The discrete logarithm problem is believed to be hard in the general class obtained from the group of points on an elliptic curve over a finite field

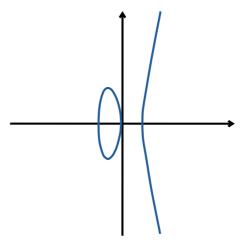
Foundations of ECC - Group Elements

- □ Algebraic group consisting of
 - \Box Points on Weierstrass' Equation: $y^2 = x^3 + ax + b$
 - ☐ Additional point O in "infinity"
- \square May be calculated over \mathbb{R} , but in cryptography \mathbb{Z}_p and $\mathsf{GF}(2^n)$ are used
- $\ \ \square$ Already in $\ \mathbb{R}$ arguments influence form significantly:

$$y^2 = x^3 - 3x + 5$$

$$y^2 = x^3 - 40x + 5$$



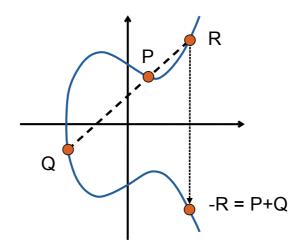


Network Security (WS 21/22): 04 – Asymmetric Cryptography

39

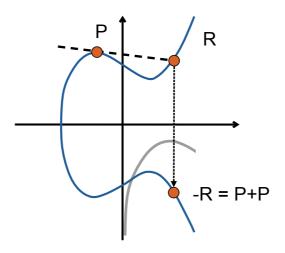
Foundations of ECC - Point Addition

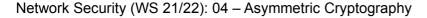
- Addition of elements = Addition of points on the curve
- □ Geometric interpretation:
 - \Box Each point P: (x,y) has an inverse -P: (x,-y)
 - □ A line through two points P and Q usually intersects with a third point R
 - ☐ Generally, sum of two points P and Q equals –R



Foundations of ECC - Point Addition (Special cases)

- ☐ The additional point O is the neutral element, i.e., P + O = P
- □ P + (-P):
 - ☐ If the inverse point is added to P, the line and curve intersect in "infinity"
 - \Box By definition: P + (-P) = O
- □ P + P: The sum of two identical points P is the inverse of the intersecting point with the tangent through P:





41

Foundations of ECC - Algebraic Addition

- If one of the summands is O, the sum is the other summand
- ☐ If the summands are inverse to each other the sum is O
- □ For the more general cases the slope of the line is:

$$\alpha = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{for } P \neq -Q \land P \neq Q \\ \frac{3x_P^2 + a}{2y_P} & \text{for } P = Q \end{cases}$$

 \square Result of point addition, where (x_r, y_r) is already the reflected point (-R)

$$x_r = \alpha^2 - x_p - x_q$$
$$y_r = \alpha(x_p - x_r) - y_p$$

Foundations of ECC - Multiplication

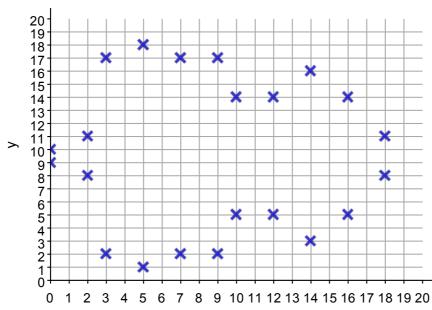
- □ Multiplication of natural number *n* and point *P* performed by multiple repeated additions
- Numbers are grouped into powers of 2 to achieve logarithmic runtime, e.g. 25P = P + 8P + 16P
- ☐ This is possible if and only if the n is known!
- □ If n is unknown for nP = Q, a logarithm has to be solved, which is possible if the coordinate values are chosen from \mathbb{R}
- \square For \mathbb{Z}_p and GF(2ⁿ) the discrete logarithm problem for elliptic curves has to be solved, which cannot be done efficiently!
- Note: it is not defined how two points are multiplied, but only a natural number n and point P

Network Security (WS 21/22): 04 – Asymmetric Cryptography

43

Foundations of ECC – Curves over \mathbb{Z}_p

- $\hfill \square$ Over \mathbb{Z}_p the curve degrades to a set of points
- $\Box \text{ For } y^2 \equiv x^3 3x + 5 \bmod 19 :$



Note: For some x values, there is no y value!

Foundations of ECC – Calculate the y-values in \mathbb{Z}_p

- \Box In general a little bit more problematic: determine the y-values for a given x (as its square value is calculated) by $y^2 \equiv f(x) \mod p$
- figural Hence p is often chosen s.t. $p\equiv 3 \mod 4$
- □ Then y is calculated by $y_1 \equiv f(x)^{\frac{p+1}{4}} \mod p$ and $y_2 \equiv -f(x)^{\frac{p+1}{4}} \mod p$ if and only if a solution exists at all
- □ Short proof:

 - $\hfill\Box$ Thus the square root must be 1 or -1 $f(x)^{\frac{p-1}{2}}\equiv \pm 1 \mod p$
 - $\Box \text{ Case 1: } f(x)^{\frac{p-1}{2}} \equiv 1 \bmod p$
 - Multiply both sides by f(x): $f(x)^{\frac{p+1}{2}} \equiv f(x) \equiv y^2 \mod p$
 - \blacksquare As p + 1 is divisible by 4 we can take the square root so that $f(x)^{\frac{p+1}{4}} \equiv y \bmod p$
 - □ Case 2: In this case no solution exists for the given x value (as shown by Euler)

Network Security (WS 21/22): 04 – Asymmetric Cryptography

45

Foundations of ECC – Addition and Multiplication in $\mathbb{Z}_{\rm p}$

- Due to the discrete structure point mathematical operations do not have a geometric interpretation any more, but
- \Box Algebraic addition similar to addition over $\Bbb R$
- ☐ If the inverse point is added to P, the line and "curve" still intersect in "infinity"
- □ All x- and y-values are calculated mod p
- Division is replaced by multiplication with the inverse element of the denominator
 - Use the Extended Euclidean Algorithm with *w* and *p* to derive the inverse -*w*
- □ Algebraic multiplication of a natural number *n* and a point *P* is also performed by repeated addition of summands of the power of 2
- □ The discrete logarithm problem is to determine a natural number n in nP = Q for two known points P and Q

Foundations of ECC – Size of generated groups

- □ Please note that the order of a group generated by a point on a curve over \mathbb{Z}_p is not p-1!
- □ Determining the exact order is not easy, but can be done in logarithmic time by Schoofs algorithm [Sch85] (requires much more mathematical background than desired here)
- □ But Hasse's theorem on elliptic curves states that the group size n must lay between:
- □ p + 1 $2\sqrt{p} \le n \le p + 1 + 2\sqrt{p}$
- □ As mentioned before: Generating rather large groups is sufficient

Network Security (WS 21/22): 04 – Asymmetric Cryptography

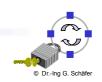
47

Foundations of ECC - ECDH

- ☐ The Diffie-Hellman-Algorithm can easily be adapted to elliptic curves
- ☐ If Alice (A) and Bob (B) want to agree on a shared secret s:
 - □ A and B agree on a cryptographically secure elliptic curve and a point *P* on that curve
 - □ A chooses a random number *q*:
 - A computes Q = q P and transmits Q to Bob
 - ☐ B chooses a random number *r*:
 - B computes R = rP and transmits P to Alice
 - □ Both sides compute the common secret:
 - A computes S = q R
 - B computes S' = r Q
 - As q r P = r q P the secret point S = S'
- □ Attackers listening to the public channel can only compute S, if able to compute either *q* or *r* which are the discrete logarithms of *Q* and *R* for the point *P*

Foundations of ECC – EC version of ElGamal Algorithm (I)

- Adapting ElGamal for elliptic curves is rather straight forward for the encryption routine
- □ To set up a key pair:
 - □ Choose an elliptic curve over a finite field, a point G that generates a large group, and a random number v such that 1 < v < n, where n denotes to the size of the induced group, Calculate: Y = vG
 - ☐ The public key is (*Y, G, curve*)
 - ☐ The private key is *v*



Network Security (WS 21/22): 04 – Asymmetric Cryptography

49

Foundations of ECC – EC version of ElGamal Algorithm (II)

- □ To encrypt a message:
 - □ Choose a random $k \in \mathbb{Z}^+$ with k < n 1, compute R = kG
 - \Box Compute S = M + kY, where M is a point derived by the message
 - Problem: Interpreting the message m as a x coordinate of M is not sufficient, as the y value does not have to exist
 - Solution from [Ko87]: Choose a constant *c* (e.g. 100) check if *cm* is the x coordinate of a valid point, if not try *cm*+1, then *cm*+2 and so on
 - To decode m: take the x value of M and do an integer division by c (receiver has to know c too)
 - \Box The ciphertext are the points (R, S)
 - □ Twice as long as *m*, if stored in so-called *compressed form*, i.e. only x coordinates are stored and a single bit, indicating whether the larger or smaller corresponding y-coordinate shall be used
- □ To decrypt a message:
 - \square Derive M by calculating S vR
 - \square Proof: S vR = M + kY vR = M + kvG vkG = M + O = M

Foundations of ECC – EC version of ElGamal Algorithm (II)

- □ To sign a message:
 - □ Choose a random $k \in \mathbb{Z}^+$ with k < n 1, compute R = kG
 - □ Compute $s = k^{-1}(m + rv) \mod n$, where r is the x-value of R
 - \Box The signature are (r, s), again about as twice as long as n
- □ To verify a signed message:
 - \Box Check if the point $P = ms^{-1}G + rs^{-1}Y$ has the x-coordinate r
 - □ *Note*: s⁻¹ is calculated by the Extended Euclidian Algorithm with the input s and n (the order of the group)
 - □ Proof: $ms^{-1}G+rs^{-1}Y = ms^{-1}G+rs^{-1}vG = (m+rv)(s^{-1})G = (ks)(s^{-1})G = kG = R$
- □ Security discussion:
 - ☐ As in the original version of ElGamal it is crucial to not use *k* twice
 - Messages should not be signed directly
 - □ Further checks may be required, i.e., G must not be O, a valid point on the curve etc. (see [NIST09] for further details)

Network Security (WS 21/22): 04 – Asymmetric Cryptography 51

Foundations of ECC – Security (I)

- ☐ The security heavily depends on the chosen curve and point:
- The discriminant of the curve must not be zero, i.e., $4a^3 + 27b^2 \not\equiv 0 \mod p$ otherwise the curve is degraded (a so called *singular curve*)
- Menezes et. al. have found a sub-exponential algorithm for so-called supersingular elliptic curves but this does not work in the general case [Men93a]
- ☐ The constructed algebraic groups should have as many elements a possible
- ☐ This class will not go into more details of elliptic curve cryptography as this requires way more mathematics than desired for this course...:o)
- □ For non-cryptographers it is best to depend on predefined curves, e.g., [LM10] or [NIST99] and standards such as ECDSA
- □ Many publications choose parameters a and b such that they are provably chosen by a random process (e.g. publish x for h(x) = a and y for h(y) = b); Shall ensure that the curves do not contain a cryptographic weakness that only the authors knows about

Foundations of ECC – Security (II)

- ☐ The security depends on the length of *p*
 - □ Key lengths with comparable strengths according to [NIST12]:

Symmetric Algorithms	RSA	ECC
112	2048	224-255
128	3072	256-383
192	7680	384-511
256	15360	> 512



53

Foundations of ECC – Security (III)

- The security also heavily depends on the implementation!
 - ☐ The different cases (e.g. with O) in ECC calculation may be observable, i.e., power consumption and timing differences
 - □ Attackers might deduct side-channel attacks, as in OpenSSL 0.9.8o [BT11]
 - Attacker may deduce the bit length of a value k in kP by measuring the time required for the square and multiply algorithm
 - Algorithm was aborted early in OpenSSL when no further bits where set to "1"
 - □ Attackers might try to generate invalid points to derive facts about the used key as in OpenSSL 0.9.8g, leading to a recovery of a full 256-bit ECC key after only 633 queries [BBP12]
- □ Lesson learned: Do not do it on your own, unless you have to and know what you are doing!

Foundations of ECC – Further remarks

	As mentioned earlier it is possible to construct cryptographic elliptic curves over G(2 ⁿ), which may be faster in hardware implementations
	We refrained from details as this would not have brought many different insights!
	Elliptic curves and similar algebraic groups are an active field of research and allow other advanced applications e.g.:
	 So-called Edwards Curves are currently discussed, as they seem more robust against side-channel attacks (e.g. [BLR08])
	□ Bilinear pairings allow
	 Programs to verify that they belong to the same group, without revealing their identity (Secret handshakes, e.g. [SM09])
	 Public keys to be structured, e.g. use "Alice" as public key for Alice (Identity based encryption, foundations in [BF03])
	Before deploying elliptic curve cryptography in a product, make sure to not violate patents, as there are still many valid ones in this field!
	1
N	etwork Security (WS 21/22): 04 – Asymmetric Cryptography 55
	Conclusion
	Asymmetric cryptography allows to use two different keys for: □ Encryption / Decryption
	□ Signing / Verifying
	The most practical algorithms that are still considered to be secure are: RSA, based on the difficulty of factoring and solving discrete logarithms
	 Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol) ElGamal, like DH based on the difficulty of computing discrete logarithms
	As their security is entirely based on the difficulty of certain mathematica problems, algorithmic advances constitute their biggest threat
	Practical considerations:
	 Asymmetric cryptographic operations are about magnitudes slower than symmetric ones
	☐ Therefore, they are often not used for encrypting / signing bulk data

□ Symmetric techniques are used to encrypt / compute a cryptographic hash

value and asymmetric cryptography is just used to encrypt a key / hash value

TELEMATIK Rechnernetze

Additional References

- [Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.
- [Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. *Introduction to Algorithms*. The MIT Press, 1990.
- [DH76] W. Diffie, M. E. Hellman. *New Directions in Cryptography.* IEEE Transactions on Information Theory, IT-22, pp. 644-654, 1976.
- [EIG85a] T. EIGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4, pp. 469-472, July 1985.
- [Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.
- [Men93a] A. J. Menezes. *Elliptic Curve Public Key Cryptosystems*. Kluwer Academic Publishers, 1993.
- [Niv80a] I. Niven, H. Zuckerman. *An Introduction to the Theory of Numbers.* John Wiley & Sons, 4th edition, 1980.
- [RSA78] R. Rivest, A. Shamir und L. Adleman. *A Method for Obtaining Digital Signatures and Public Key Cryptosystems*. Communications of the ACM, February 1978.



Network Security (WS 21/22): 04 – Asymmetric Cryptography

57

Additional References

- [KAFL10] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos, P. Gaudry, A. Kruppa, P. Montgomery, D. Osvik, H. Te Riele, A.Timofeev, P. Zimmermann. Factorization of a 768-bit RSA modulus. In Proceedings of the 30th annual conference on Advances in cryptology (CRYPTO'10), 2010.
- [LM10] M. Lochter, J. Merkle. *Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation*, IETF Request for Comments: 5639, 2010.
- [NIST99] NIST. Recommended Elliptic Curves for Federal Government Use. 1999.
- [NIST12] NIST. Recommendation for Key Management: Part 1: General (Revision 3). NIST Special Publication 800-57. 2012.
- [Ko87] N. Koblitz. *Elliptic Curve Cryptosystems*. Mathematics of Computation, Vol. 48, No. 177 (Jan., 1987), pp. 203-209. 1987.
- [BBP12] B.B. Brumley, M. Barbosa, D. Page, F. Vercauteren. *Practical realisation and elimination of an ECC-related software bug attack.* Cryptology ePrint Archive: Report 2011/633 and CT-RSA Pages 171-186. 2012.
- [BT11] B.B. Brumley, N. Tuveri. *Remote timing attacks are still practical.* Proceedings of the 16th European conference on Research in computer security (ESORICS'11). Pages 355-371. 2011.

Additional References

- [BLR08] D. Bernstein, T. Lange, R. Rezaeian Farashahi. *Binary Edwards Curves*. Cryptographic Hardware and Embedded Systems (CHES). Pages 244-265. 2008.
- [NIST09] NIST. Digital Signature Standard (DSS). FIPS PUB 186-3. 2009.
- [SM09] A. Sorniotti, R. Molva. *A provably secure secret handshake with dynamic controlled matching.* Computers & Security, 2009.
- [BF03] D. Boneh, M. Franklin. *Identity-Based Encryption from the Weil Pairing*. SIAM J. of Computing, Vol. 32, No. 3, Pages 586-615, 2003.
- [Sch85] R. Schoof. *Elliptic Curves over Finite Fields and the Computation of Square Roots mod p.* Math. Comp., 44(170). Pages 483–494. 1985.

