
1
©  Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Network Security
Chapter 4

Asymmetric Cryptography

“However, prior exposure to discrete mathematics will help the reader to 
appreciate the concepts presented here.”

E. Amoroso in another context [Amo94] :o)
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Asymmetric Cryptography (1)

 General idea:
 Use two different keys -K and +K for encryption and decryption
 Given a random ciphertext c = E(+K, m) and +K it should be infeasible to 

compute m = D(-K, c) = D(-K, E(+K, m))
 This implies that it should be infeasible to compute -K when given +K

 The key -K is only known to one entity A and is called A’s private key -KA 

 The key +K can be publicly announced and is called A’s public key +KA

 Applications:
 Encryption: 

 If B encrypts a message with A’s public key +KA, he can be sure that 
only A can decrypt it using -KA

 Signing: 
 If A encrypts a message with his own private key -KA, everyone can 

verify this signature by decrypting it with A’s public key +KA

 Attention: It is crucial, that everyone can verify that he really knows A’s 
public key and not the key of an adversary!
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Asymmetric Cryptography (2)

 Design of asymmetric cryptosystems:
 Difficulty: Find an algorithm and a method to construct two keys -K, +K 

such that it is not possible to decipher E(+K, m) with the knowledge of +K
 Constraints:

 The key length should be “manageable”
 Encrypted messages should not be arbitrarily longer than unencrypted 

messages (we would tolerate a small constant factor)
 Encryption and decryption should not consume too much resources 

(time, memory)
 Basic idea: Take a problem in the area of mathematics / computer science, 

that is hard to solve when knowing only +K, but easy to solve when 
knowing -K

 Knapsack problems: basis of first working algorithms, which were 
unfortunately almost all proven to be insecure

 Factorization problem: basis of the RSA algorithm
 Discrete logarithm problem: basis of Diffie-Hellman and ElGamal
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Some Mathematical Background (1)

 Definitions:
 Let ℤ be the number of integers, and a, b, n  ℤ 
 We say a divides b (“a | b”) if there exists an integer k  ℤ such that a  k = b
 We say a is prime if it is positive and the only divisors of a are 1 and a
 We say r is the remainder of a divided by n if r = a - a / n  n

where x denotes the largest integer less than or equal to x
 Example: 4 is the remainder of 11 divided by 7 as 4 = 11 - 11 / 7  7
 We can write this in another way: a = q  n + r with q = a / n

 For the remainder r of the division of a by n we write a MOD n 
 We say b is congruent a mod n if it has the same remainder like a when 

divided by n. So, n divides (a-b), and we write b  a mod n 
 Examples:          4   11 mod 7,     25  11   mod 7,   11  25 mod 7, 

                         11   4       mod 7,    -10  4     mod 7
 As the remainder r of division by n is always smaller than n, we sometimes 

represent the set {x MOD n | x  ℤ} 
by elements of the set  ℤn = {0, 1, ..., n - 1}



5
©  Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Some Mathematical Background (2)

Property Expression

Commutative Laws

Associative Laws

Distributive Law

Identities

Inverses

(a + b) MOD n = (b + a) MOD n

(a  b) MOD n = (b  a) MOD n

[(a + b) + c] MOD n = [a + (b + c)] MOD n

[(a  b)  c] MOD n = [a  (b  c)] MOD n

[a  (b + c)] MOD n = [(a  b) + (a  c)] MOD n

(0 + a) MOD n = a MOD n

(1  a) MOD n = a MOD n

 a  ℤn:  (-a)  ℤn : a + (-a)  0 mod n

p is prime   a  ℤp:  (a-1)  ℤp: a  (a-1)  1 mod p

Properties of Modular Arithmetic
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Some Mathematical Background (3)

 Greatest common divisor:
 c = gcd(a, b) : (c | a) 𐌡  (c | b) 𐌡  [ d: (d | a) 𐌡  (d | b)  (d | c)]

and gcd(a, 0) := |a|
 The gcd recursion theorem:

  a, b  ℤ+: gcd(a, b) = gcd(b, a MOD b)
 Proof: 

 As gcd(a, b) divides both a and b it also divides any linear combination 
of them, especially (a - a / b  b) = a MOD b, 
so gcd(a, b) | gcd(b, a MOD b)

 As gcd(b, a MOD b) divides both b and a MOD b it also divides any 
linear combination of them, especially a / b  b + (a MOD b) = a,
so gcd(b, a MOD b) | gcd(a, b)

 Euclidean Algorithm:
 The algorithm Euclid given a, b computes gcd(a, b)
 int Euclid(int a, b)

{   if   (b = 0) { return(a);}
{ return(Euclid(b, a MOD b);}  }
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Some Mathematical Background (4)

 Extended Euclidean Algorithm:
 The algorithm ExtendedEuclid given a, b computes d, m, n such that:

d = gcd(a, b) = m  a + n  b
 struct{int d, m, n}   ExtendedEuclid(int a, b)

{  int d, d’, m, m’, n, n’;
   if  (b = 0) {return(a, 1, 0); }
   (d’, m’, n’) = ExtendedEuclid(b, a MOD b);
   (d, m, n) = (d’, n’, m’ - a / b  n’); 
   return(d, m, n); }

 Proof: (by induction)
 Basic case (a, 0): gcd(a, 0) = a = 1  a + 0  0
 Induction from (b, a MOD b) to (a, b):

– ExtendedEuclid computes d’, m’, n’ correctly (induction hypothesis)
– d = d’ = m’  b + n’  (a MOD b) = m’  b + n’  (a - a / b  b)

= n’  a + (m’ - a / b  n’)  b
 The run time of Euclid(a, b) and ExtendedEuclid(a, b) is of O(log b)

 Proof: see [Cor90a], section 33.2 
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Some Mathematical Background (5)

 Summarizing the discussion of the Euclidean algorithms we have:

Lemma 1: 
Let a, b  ℕ and d = gcd(a, b). Then there exists m, n  ℕ such that:

d = m  a + n  b
 We can use this lemma to prove the following:

Theorem 1 (Euclid):

If a prime divides the product of two integers, then it divides at least one of 
the integers: p | (a  b )  (p | a)  (p | b)

 Proof: Let p | (a  b)
 If p | a then we are done. 
 If not then gcd(p, a) = 1  

 m, n  ℕ:       1 = m  p + n  a
                      b = m  p  b + n  a  b
As p | (a  b ), p divides both summands of the equation and so it 
divides also the sum which is b

∎
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Some Mathematical Background (6)

 A small, but nice excursion:
 With the help of Theorem 1 the proof that      is not a rational number can 

be given in a very elegant way:

Assume that      can be expressed as a rational number m / n and that this 
fraction has been reduced such that gcd(m, n) = 1:

   

So, 2 divides m2, and thus by Theorem 1 it also divides m, and so 4 
divides m2. But then 4 divides 2n2 and, therefore, 2 divides also n2.

Again by Theorem 1 this implies that 2 divides n and so 2 divides both m 
and n, which is a contradiction to the assumption that the fraction m / n is 
reduced.

 And now to something more useful... – for cryptography :o)
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Some Mathematical Background (7)

Theorem 2 (fundamental theorem of arithmetic):

Factorization into primes is unique up to order.

 Proof:
 We will show that every integer with a non-unique factorization has a 

proper divisor with a non-unique factorization which leads to a clear 
contradiction when we finally have reduced to a prime number.

 Let’s assume that n is an integer with a non-unique factorization:

n = p1  p2  ...  pr

= q1  q2  ...  qs

The primes are not necessarily distinct, but the second factorization is not 
simply a reordering of the first one.

As p1 divides n it also divides the product q1  q2  ...  qs. By repeated 
application of Theorem 1 we show that there is at least one qi which is 
divisible by p1. If necessary reorder the qi’s so that it is q1. As both p1 and 
q1 are prime they have to be equal. So we can divide by p1 and we have 
that n / p1 has a non-unique factorization.
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Some Mathematical Background (8)

 We will use Theorem 2 to prove the following 

Corollary 1:

If gcd(c, m) = 1 and (a  c)  (b  c) mod m, then a  b mod m
 Proof: As (a  c)  (b  c) mod m   n  ℕ: (a  c) - (b  c) = n  m

       (a - b)       c =     n               m 

 p1  ...  pi      q1  ...  qj =     r1  ...  rk           s1  ...  sl

Please note that the p’s, q’s, r’s and s’s are prime and do not need to be 
distinct, but as gcd(c, m) = 1, there are no indices g, h such that qg = sh.

So we can continuously divide the equation by all q’s without ever 
“eliminating” one s and will finally end up with something like

    p1  ...  pi =     r1  ...  ro       s1  ...  sl

                                     (note that there will be fewer r’s)
     (a - b) =     r1  ...  ro       m

                a   b mod m
∎
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Some Mathematical Background (9)

 Let (n) denote the number of positive integers less than n and 
relatively prime to n
 Examples: (4) = 2, (6) = 2, (7) = 6, (15) = 8
 If p is prime  (p) = p - 1

Theorem 3 (Euler):

Let n and b be positive and relatively prime integers, i.e. gcd(n, b) = 1
  b(n)   1 mod n

Proof: 
 Let t = (n) and a1, ... at be the positive integers less than n which are 

relatively prime to n. 
Define r1, ..., rt to be the residues of b  a1 mod n, ..., b  at mod n
that is to say: b  ai   ri mod n.

 Note that i  j  ri  rj. 
If this would not hold, we would have b  ai  b  aj mod n 
and as gcd(b, n) = 1, Corollary 1 would imply ai  aj mod n which can not 
be as ai and aj are by definition distinct integers between 0 and n
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Some Mathematical Background (10)

Proof (continued):
 We also know that each ri is relatively prime to n because any common divisor

k of ri and n, i.e. n = k  m and ri = pi  k, would also have to divide ai, 
 as b  ai  (pi  k) mod (k  m)   s  ℕ: (b  ai) - (pi  k) = s  k  m

                                                   (b  ai) = s  k  m + (pi  k)

Because k divides each of the summands on the right-hand side and k does 
not divide b by assumption (n and b are relatively prime), it would also have to
divide ai which is supposed to be relatively prime to n

 Thus r1, ..., rt is a set of (n) distinct integers which are relatively prime to n.

This means that they are exactly the same as a1, ... at, except that they are in a

different order. In particular, we know that r1 ...  rt = a1  ...  at 
 We now use the congruence

r1 ...  rt   b  a1  ...  b  at mod n
  r1 ...  rt   bt  a1  ...  at mod n
  r1 ...  rt   bt  r1 ...  rt mod n

 As all ri are relatively prime to n we can use Corollary 1 and divide by their

product giving: 1   bt mod n  1   b(n) mod n ∎
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Some Mathematical Background (11)

Theorem 4 (Chinese Remainder Theorem):

Let m1, ..., mr be positive integers that are pairwise relatively prime, 
i.e.  i  j: gcd(mi, mj) = 1. Let a1, ..., ar be arbitrary integers. 
Then there exists an integer a such that:

a  a1 mod m1

a  a2 mod m2

       ...

a  ar mod mr

Furthermore, a is unique modulo M := m1  ...  mr

Proof:
 For all i {1, .., r} we define Mi := (M / mi)(m

i
)

 As Mi is by definition relatively prime to mi we can apply Theorem 3 and 
know that Mi  1 mod mi 

 Since Mi is divisible by mj for every j  i, we have  j  i : Mi  0 mod mj 
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Some Mathematical Background (12)

Proof (continued):

 We can now construct the solution by defining:

a := a1  M1 + a2  M2 + ... + ar  Mr

 The two arguments given above concerning the congruences of the Mi 
imply that a actually satisfies all of the congruences.

 To see that a is unique modulo M, let b be any other integer satisfying the r 
congruences. As a  c mod n and b  c mod n  a  b mod n 
we have  i {1, .., r}: a  b mod mi 

  i {1, .., r}: mi | (a - b) 
 M | (a-b) as the mi are pairwise relatively prime
 a  b mod M  

∎
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Some Mathematical Background (13)

Lemma 2:

If gcd(m, n) = 1, then (m  n) = (m)  (n)

Proof:

 Let a be a positive integer less than and relatively prime to m  n. In other 
words, a is one of the integers counted by (m  n). 

 Consider the correspondence a  (a MOD m, a MOD n)

The integer a is relatively prime to m and relatively prime to n (if not it would 
divide m  n).

So, (a MOD m) is relatively prime to m and (a MOD n) is relatively prime to n
as: a = a / m   m + (a MOD m), so if there would be a common divisor of 
m and (a MOD m), this divisor would also divide a.

Thus every number a counted by (m  n) corresponds to a pair of two 
integers (a MOD m, a MOD n), the first one counted by (m) and the 
second one counted by (n).
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Some Mathematical Background (14)

Proof (continued):
❑ Because of the second part of Theorem 4, the uniqueness of the solution a 

modulo (m  n) to the simultaneous congruences: 

a  (a MOD m) mod m
a  (a MOD n) mod n

we can deduce, that distinct integers counted by (m  n) correspond to 
distinct pairs:

❑ Too see this, suppose that a  b counted by (m  n) does correspond 
to the same pair (a MOD m, a MOD n). This leads to a contradiction as 
b would also fulfill the congruences:

b  (a MOD m) mod m
b  (a MOD n) mod n

but the solution to these congruences is unique modulo (m  n)

Therefore, (m  n) is at most the number of such pairs:

(m  n)   (m)   (n) 
∎
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Some Mathematical Background (15)

Proof (continued):

 Consider now a pair of integers (b, c), one counted by (m) and the other 
one counted by (n):

Using the first part of Theorem 4 we can construct a unique positive 
integer a less than and relatively prime to m  n:

a  b mod m
a  c mod n 

So, the number of such pairs is at most (m  n): 

(m  n)  (m)  (n)
∎
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The RSA Public Key Algorithm (1)

 The RSA algorithm was invented in 1977 by R. Rivest, A. Shamir and 
L. Adleman [RSA78] and is based on Theorem 3.

 Let p, q be distinct large primes and n = p  q. Assume, we have also 
two integers e and d such that:

 d  e  1 mod (n) 
 Let M be an integer that represents the message to be encrypted, with 

M positive, smaller than and relatively prime to n. 
 Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35

So “HELLO” would be encoded as 1714212124. 
If necessary, break M into blocks of smaller messages: 17142 12124

 To encrypt, compute: E = Me MOD n
 This can be done efficiently using the square-and-multiply algorithm

 To decrypt, compute: M’ = Ed MOD n
 As d  e  1 mod (n)  k  ℤ: (d  e) - 1 = k  (n) 

               (d  e)   = k  ( n) + 1 
we have: M’  Ed  M(e  d)  M(k  ( n) + 1)  1k  M  M mod n

∎
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The RSA Public Key Algorithm (2)

 As (d  e) = (e  d) the operation also works in the opposite direction, 
that means you can encrypt with d and decrypt with e
 This property allows to use the same keys d and e for:

 Receiving messages that have been encrypted with one’s public key
 Sending messages that have been signed with one’s private key

 To set up a key pair for RSA:
 Randomly choose two primes p and q (of 100 to 200 digits each)
 Compute n = p  q, (n) = (p - 1)  (q - 1)  (Lemma 2)
 Randomly choose e, so that gcd(e, (n)) = 1
 With the extended euclidean algorithm compute d and c, such that:

e  d + (n)  c = 1, note that this implies, that e  d  1 mod (n)
 The public key is the pair (e, n) 
 The private key is the pair (d, n)
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The RSA Public Key Algorithm (3)

 The security of the scheme lies in the difficulty of factoring n = p  q 
as it is easy to compute (n) and then d, when p and q are known

 This class will not teach why it is difficult to factor large n’s, as this 
would require to dive deep into mathematics
 If p and q fulfill certain properties, the best known algorithms are 

exponential in the number of digits of n
 Please be aware that if you choose p and q in an “unfortunate” way, 

there might be algorithms that can factor more efficiently and your RSA 
encryption is not at all secure:

– Therefore, p and q should be about the same bitlength and sufficiently large
– (p - q) should not be too small
– If you want to choose a small encryption exponent, e.g. 3, there might be 

additional constraints, e.g. gcd(p - 1, 3) = 1 and gcd(q - 1, 3) = 1
 The security of RSA also depends on the primes generated being truly 

random (like every key creation method for any algorithm)
 Moral: If you are to implement RSA by yourself, ask a mathematician or 

better a cryptographer to check your design
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Diffie-Hellman Key Exchange (1)

 The Diffie-Hellman key exchange was first published in the landmark 
paper [DH76], which also introduced the fundamental idea of 
asymmetric cryptography 

 The DH exchange in its basic form enables two parties A and B to 
agree upon a shared secret using a public channel:
 Public channel means, that a potential attacker E (E stands for 

eavesdropper) can read all messages exchanged between A and B
 It is important, that A and B can be sure, that the attacker is not able to alter 

messages, as in this case he might launch a man-in-the-middle attack
 The mathematical basis for the DH exchange is the problem of finding 

discrete logarithms in finite fields
 The DH exchange is not an asymmetric encryption algorithm, but is 

nevertheless introduced here as it goes well with the mathematical flavor of 
this lecture... :o)
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Some More Mathematical Background (1)

 Definition: finite groups
 A group (S, ) is a set S together with a binary operation  for which the 

following properties hold:
 Closure: For all a, b  S, we have a  b  S
 Identity: There is an element e  S, such that e  a = a  e = a for all 

a  S
 Associativity: For all a, b, c  S, we have (a  b)  c = a  (b  c)
 Inverses: For each a  S, there exists a unique element b  S, such 

that a  b = b  a = e

 If a group (S, ) satisfies the commutative law  a, b  S: a  b = b  a 
then it is called an Abelian group

 If a group (S, ) has only a finite set of elements, i.e. |S| < , then it is 
called a finite group
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Some More Mathematical Background (2)
 Examples:

 (ℤn, +n) 
 with ℤn := {[0]n , [1]n, ..., [n - 1]n } 
 where [a]n := {b  ℤ | b  a mod n} and 
 +n is  defined such that [a]n +n [b]n = [a + b]n 

is a finite abelian group

For the proof see the table showing the properties of modular arithmetic
 (ℤ*

n, n) 
 with ℤ*

n := {[a]n  ℤn | gcd(a, n) = 1 }, and
 n is  defined such that [a]n n [b]n = [a  b]n

is a finite Abelian group. Please note that ℤ*
n  just contains those elements 

of ℤn that have a multiplicative inverse modulo n

For the proof see the properties of modular arithmetic
 Example: ℤ*

15 = {[1]15, [2]15, [4]15, [7]15, [8]15, [11]15, [13]15, [14]15}, as 

 1    1  1 mod 15,    2    8  1 mod 15,    4    4  1 mod 15,

7  13  1 mod 15,  11  11  1 mod 15,  14  14  1 mod 15
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Some More Mathematical Background (3)

 If it is clear that we are talking about (ℤn, +n) or (ℤ*
n, n) we often 

represent equivalence classes [a]n by their representative elements a 
and denote +n and n by + and , respectively.

 Definition: finite fields
 A field (S, , ) is a set S together with two operations ,  such that

 (S, ) and (S \ {e}, ) are commutative groups, i.e. only the identity 
element concerning the operation  does not need to have an inverse 
regarding the operation 

 For all a, b, c  S, we have a  (b  c) = (a  b)  (a  c)
 If |S| <  then (S, , ) is called a finite field

 Example:
 (ℤp, +p, p) is a finite field for each prime p
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Some More Mathematical Background (4)

 Definition: primitive root, generator
 Let (S, ) be a group, g  S and ga := g  g  ...  g    (a times with a  ℤ+)

Then g is called a primitive root or generator of (S, ) 

: {ga | 1  a  |S|} = S

 Examples:

 1 is a primitive root of (ℤn, +n)

 3 is a primitive root of (ℤ*
7, 7) 

 Not all groups do have primitive roots and those who have are called 
cyclic groups

 Theorem 5: 

(ℤ*
n, n) does have a primitive root  n  {2, 4, p, 2  pe} where p is an 

odd prime and e  ℤ+

 For the proof see [Niv80a]
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Some More Mathematical Background (5)

 Theorem 6: 

If (S, ) is a group and b  S then (S’, ) with S’ = {ba | a  ℤ+} is also a 
group. 
 For the proof refer to [Cor90a] section 33.3

 As S’  S, (S’, ) is called a subgroup of (S, )

 If b is a primitive root of (S, ) then S’ = S

 Definition: order of a group and of an element
 Let (S, ) be a group, e  S its identity element and b  S any element of S: 

 Then |S| is called the order of (S, )

 Let c  ℤ+ be the smallest element so that bc = e (if such a c exists, if 
not set c = ). Then c is called the order of b.
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Some More Mathematical Background (6)

 Theorem 7 (Lagrange): 

If G is a finite group and H is a subgroup of G, then |H| divides |G|. 
Hence, if b  G then the order of b divides |G|.

 Theorem 8: 

If G is a cyclic finite group of order n and d divides n then G has exactly 
(d) elements of order d. In particular, G has (n) elements of order n.

 Theorems 5, 7, and 8 are the basis of the following algorithm that finds a 
cyclic group ℤ*

p and a primitive root g of it:
 Choose a large prime q such that p = 2q + 1 is prime. 

 As p is prime, Theorem 5 states that ℤ*
p is cyclic.

 The order of ℤ*
p is 2  q and (2  q) = (2)  (q) = q -1 as q is prime. 

 So, the odds of randomly choosing a primitive root are (q - 1) / 2q  1 / 2
 In order to efficiently test, if a randomly chosen g is a primitive root, we 

just have to test if g2  1 mod p or gq  1 mod p. If not, then its order has 
to be |ℤ*

p|, as Theorem 7 states that the order of g has to divide |ℤ*
p|
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Some More Mathematical Background (7)

 Definition: discrete logarithm
 Let p be prime, g be a primitive root of (ℤ*

p, p) and c be any element of 
ℤ*

p. Then there exists z such that: gz  c mod p 

z is called the discrete logarithm of c modulo p to the base g 
 Example 6 is the discrete logarithm of 1 modulo 7 to the base 3 as

 36  1 mod 7 
 The calculation of the discrete logarithm z when given g, c, and p is a 

computationally difficult problem and the asymptotical runtime of the best 
known algorithms for this problem is exponential in the bitlength of p
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Diffie-Hellman Key Exchange (2)

 If Alice (A) and Bob (B) want to agree on a shared secret s and their 
only means of communication is a public channel, they can proceed 
as follows:
 A chooses a prime p, a primitive root g of ℤ*

p, and a random number q:
 A and B can agree upon the values p and g prior to any 

communication, or A can choose p and g and send them with his first 
message

 A computes v = gq MOD p and sends to B: {p, g, v}
 B chooses a random number r:

 B computes w = g r MOD p and sends to A: {p, g, w} (or just {w})
 Both sides compute the common secret:

 A computes s = wq MOD p 
 B computes s’ = v r MOD p 
 As g(q  r) MOD p = g(r  q) MOD p it holds: s = s’ 

 An attacker Eve who is listening to the public channel can only compute 
the secret s, if she is able to compute either q or r which are the discrete 
logarithms of v, w modulo p to the base g
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Diffie-Hellman Key Exchange (3)

 If the attacker Eve is able to alter messages on the public channel, 
she can launch a man-in-the-middle attack:
 Eve generates to random numbers q’ and r’:

 Eve computes v’ = gq’ MOD p and w’ = gr’ MOD p 
 When A sends {p, g, v} she intercepts the message and sends 

to B: {p, g, v’ }
 When B sends {p, g, w} she intercepts the message and sends 

to A: {p, g, w’ }
 When the supposed “shared secret” is computed we get:

 A computes s1 = w’q MOD p =  vr’ MOD p the latter computed by E
 B computes s2 = v’r MOD p =  wq’ MOD p the latter computed by E
 So, in fact A and E have agreed upon a shared secret s1 as well as 

E and B have agreed upon a shared secret s2 

 If the “shared secret” is now used by A and B to encrypt messages to be 
exchanged over the public channel, E can intercept all the messages and 
decrypt / re-encrypt them before forwarding them between A and B.
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Diffie-Hellman Key Exchange (4)

 Two countermeasures against the man-in-the-middle attack:
 The shared secret is “authenticated” after it has been agreed upon

 We will treat this in the section on key management
 A and B use a so-called interlock protocol after agreeing on a shared 

secret:
 For this they have to exchange messages that E has to relay before 

she can decrypt / re-encrypt them
 The content of these messages has to be checkable by A and B
 This forces E to invent messages and she can be detected
 One technique to prevent E from decrypting the messages is to split 

them into two parts and to send the second part before the first one. 
– If the encryption algorithm used inhibits certain characteristics E can not encrypt the 

second part before she receives the first one. 
– As A will only send the first part after he received an answer (the second part of it) 

from B, E is forced to invent two messages, before she can get the first parts. 

 Remark: In practice the number g does not necessarily need to be a 
primitive root of p, it is sufficient if it generates a large subgroup of ℤ*

p
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The ElGamal Algorithm (1)

 The ElGamal algorithm can be used for both, encryption and digital 
signatures (see also [ElG85a] )

 Like the DH exchange it is based on the difficulty of computing 
discrete logarithms in finite fields

 In order to set up a key pair:
 Choose a large prime p, a generator g of the multiplicative group ℤ*

p and a 
random number v such that 1  v  p - 2. Calculate: y = gv mod p

 The public key is (y, g, p)
 The private key is v

 To sign a message m:
 Choose a random number k such that k is relatively prime to p - 1. 
 Compute r = gk mod p
 With the Extended Euclidean Algorithm compute k-1, the inverse of 

k mod (p - 1)
 Compute s = k-1  (m - v  r) mod (p - 1)
 The signature over the message is (r, s) 
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The ElGamal Algorithm (2)

 To verify a signature (r, s) over a message m:
 Confirm that y r  r s MOD p = g m MOD p
 Proof: We need the following 

 Lemma 3:
Let p be prime and g be a generator of ℤ*

p. 
Then i  j mod (p -1)  g i  g j mod p

Proof:
– i  j mod (p -1)  there exists k  ℤ+ such that (i - j) = (p -1)  k
– So, g(i - j) = g(p - 1)  k  1k  1 mod p,  because of Theorem 3 (Euler)

  g i  g j mod p

 So as        s   k -1  (m - v  r) mod (p - 1) 
         k  s  m - v  r  mod (p - 1) 
              m  v  r + k  s mod (p - 1) 
             g m   g(v  r + k  s) mod p          with Lemma 3
            g m  g(v  r)  g (k  s) mod p
            g m  y r  r s mod p
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The ElGamal Algorithm (3)

 Security of ElGamal signatures:
 As the private key v is needed to be able to compute s, an attacker would 

have to compute the discrete logarithm of y modulo p to the basis g in 
order to forge signatures

 It is crucial to the security, that a new random number k is chosen for 
every message, because an attacker can compute the secret v if he gets 
two messages together with their signatures based on the same k 
(see [Men97a], Note 11.66.ii)

 In order to prevent an attacker to be able to create a message M with a 
matching signature, it is necessary not to sign directly the message M as 
explained before, but to sign a cryptographic hash value m = h(M) of it 
(these will be treated soon, see also [Men97a], Note 11.66.iii)
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The ElGamal Algorithm (4)

 To encrypt a message m using the public key (y, g, p):
 Choose a random k  ℤ+ with k < p - 1
 Compute r = gk MOD p
 Compute s = m  yk MOD p
 The ciphertext is (r, s), which is twice as long as m 

 To decrypt the message (r, s) using v:
 Use the private key v to compute r(p - 1 - v) MOD p = r(-v) MOD p
 Recover m by computing m = r(-v)  s MOD p
 Proof:

 r(-v)  s  r(-v)  m  yk  g(-vk)  m  yk  g(-v  k)  m  g(v  k)  m mod p

 Security:
 The only known means for an attacker to recover m is to compute the 

discrete logarithm v of y modulo p to the basis g
 For every message a new random k is needed ([Men97a], Note 8.23.ii)

∎
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Elliptic Curve Cryptography (1)

 The algorithms presented so far have been invented for the 
multiplicative group (ℤ*

p, p) and the field (ℤp, +p, p), respectively

 It has been found during the 1980’s that they can be generalized and 
be used with other groups and fields as well

 The main motivation for this generalization is:
 A lot of mathematical research in the area of primality testing, factorization 

and computation of discrete logarithms has led to techniques that allow to 
solve these problems in a more efficient way, if certain properties are met:

 When the RSA-129 challenge was given in 1977 it was expected that 
it will take some 40 quadrillion years to factor the 129-digit number 
( 428 bit)

 In 1994 it took 8 months to factor it by a group of computers 
networked over the Internet, calculating for about 5000 MIPS-years

 Advances in factoring algorithms allowed 2009 to factor a 232-digit 
number (768 bit) in about 1500 AMD64-years [KAFL10]

 the key length has to be increased (currently about 2048 bit)
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Elliptic Curve Cryptography (2)

 Motivation (continued):
 Some of the more efficient techniques do rely on specific 

properties of the algebraic structures (ℤ*
p, p) and (ℤp, +p, p)

 Different algebraic structures may therefore provide the same 
security with shorter key lengths 

 A very promising structure for cryptography can be obtained from the 
group of points on an elliptic curve over a finite field
 The mathematical operations in these groups can be efficiently 

implemented both in hardware and software
 The discrete logarithm problem is believed to be hard in the 

general class obtained from the group of points on an elliptic curve 
over a finite field
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Foundations of ECC - Group Elements

 Algebraic group consisting of
 Points on Weierstrass’ Equation: y2 = x3 + ax + b
 Additional point O in “infinity”

 May be calculated over ℝ, but in cryptography ℤp and GF(2n) are used

 Already in ℝ arguments influence form significantly:
 y2 = x3 - 3x + 5                  y2 = x3 - 40x + 5
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 Addition of elements = Addition of points on the curve
 Geometric interpretation:

 Each point P: (x,y) has an inverse -P: (x,-y)
 A line through two points P and Q usually intersects with a third point R
 Generally, sum of two points P and Q equals –R

Foundations of ECC - Point Addition

P

Q

R

-R = P+Q
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Foundations of ECC - Point Addition (Special cases)

 The additional point O is the neutral element, i.e., P + O = P
 P + (-P): 

 If the inverse point is added to P, the line and curve intersect in “infinity”
 By definition: P + (-P) = O

 P + P: The sum of two identical points P is the inverse of the 
intersecting point with the tangent through P:

P R

-R = P+P
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Foundations of ECC - Algebraic Addition

 If one of the summands is O, the sum is the other summand
 If the summands are inverse to each other the sum is O
 For the more general cases the slope of the line is:

 Result of point addition, where (xr, yr) is already the reflected point (-R)



43
©  Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC - Multiplication

 Multiplication of natural number n and point P performed by multiple 
repeated additions 

 Numbers are grouped into powers of 2 to achieve logarithmic runtime, e.g. 
25P = P + 8P + 16P

 This is possible if and only if the n is known!
 If n is unknown for nP = Q, a logarithm has to be solved, which is possible if 

the coordinate values are chosen from ℝ

 For ℤp and GF(2n) the discrete logarithm problem for elliptic curves 
has to be solved, which cannot be done efficiently!

 Note: it is not defined how two points are multiplied, but only a natural 
number n and point P
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Foundations of ECC – Curves over ℤp

 Over ℤp the curve degrades to a set of points

 For                                                       :

 Note: For some x values, there is no y value!

 Note: There is no y value for each x value!

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x

y
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Foundations of ECC – Calculate the y-values in ℤp 

 In general a little bit more problematic: determine the y-values for a 
given x (as its square value is calculated) by 

 Hence p is often chosen s.t. 
 Then y is calculated by                                  and

if and only if a solution exists at all
 Short proof:

 From the Euler Theorem 3 we know that

 Thus the square root must be 1 or -1
 Case 1: 

 Multiply both sides by f(x):
 As p + 1 is divisible by 4 we can take the square root so that

 Case 2: In this case no solution exists for the given x value (as shown
by Euler)

∎
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Foundations of ECC – Addition and Multiplication in ℤp

 Due to the discrete structure point mathematical operations do not 
have a geometric interpretation any more, but

 Algebraic addition similar to addition over ℝ
 If the inverse point is added to P, the line and “curve” still intersect in “infinity”
 All x- and y-values are calculated mod p
 Division is replaced by multiplication with the inverse element of the 

denominator
 Use the Extended Euclidean Algorithm with w and p to derive the 

inverse -w
 Algebraic multiplication of a natural number n and a point P is also 

performed by repeated addition of summands of the power of 2
 The discrete logarithm problem is to determine a natural number n in 

nP = Q for two known points P and Q
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Foundations of ECC – Size of generated groups

 Please note that the order of a group generated by a point on 
a curve over ℤp is not p-1!

 Determining the exact order is not easy, but can be done in 
logarithmic time by Schoofs algorithm [Sch85] (requires 
much more mathematical background than desired here)

 But Hasse’s theorem on elliptic curves states that the group 
size n must lay between:

 p + 1 - 2√p ≤ n ≤ p + 1 + 2√p
 As mentioned before: Generating rather large groups is 

sufficient
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Foundations of ECC - ECDH

 The Diffie-Hellman-Algorithm can easily be adapted to elliptic curves
 If Alice (A) and Bob (B) want to agree on a shared secret s:

 A and B agree on a cryptographically secure elliptic curve and a point P on 
that curve

 A chooses a random number q:
 A computes Q = q P and transmits Q to Bob

 B chooses a random number r:
 B computes R = r P and transmits P to Alice

 Both sides compute the common secret:
 A computes S   = q R
 B computes S’ = r Q 
 As q r P = r q P the secret point S = S’

 Attackers listening to the public channel can only compute S, if able to 
compute either q or r which are the discrete logarithms of Q and R for 
the point P
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Foundations of ECC – EC version of ElGamal Algorithm (I)

 Adapting ElGamal for elliptic curves is rather straight forward 
for the encryption routine

 To set up a key pair:
 Choose an elliptic curve over a finite field, a point G that 

generates a large group, and a random number v such 
that 1 < v < n, where n denotes to the size of the induced 
group, Calculate: Y = vG

 The public key is (Y, G, curve)
 The private key is v
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Foundations of ECC – EC version of ElGamal Algorithm (II)

 To encrypt a message:
 Choose a random k  ℤ+ with k < n – 1, compute R = kG
 Compute S = M + kY, where M is a point derived by the message

 Problem: Interpreting the message m as a x coordinate of M is not 
sufficient, as the y value does not have to exist

 Solution from [Ko87]: Choose a constant c (e.g. 100) check if cm is the 
x coordinate of a valid point, if not try cm+1, then cm+2 and so on

 To decode m: take the x value of M and do an integer division by c 
(receiver has to know c too)

 The ciphertext are the points (R, S)
 Twice as long as m, if stored in so-called compressed form, i.e. only x 

coordinates are stored and a single bit, indicating whether the larger or 
smaller corresponding y-coordinate shall be used

 To decrypt a message:
 Derive M by calculating S – vR
 Proof: S – vR = M + kY – vR = M + kvG – vkG = M + O = M
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Foundations of ECC – EC version of ElGamal Algorithm (II)

 To sign a message:
 Choose a random k  ℤ+ with k < n – 1, compute R = kG
 Compute s = k-1(m + rv) mod n, where r is the x-value of R
 The signature are (r, s), again about as twice as long as n

 To verify a signed message:
 Check if the point P = ms-1G+rs-1Y has the x-coordinate r
 Note: s-1 is calculated by the Extended Euclidian Algorithm with the input s 

and n (the order of the group)
 Proof: ms-1G+rs-1Y = ms-1G+rs-1vG = (m+rv)(s-1)G = (ks)(s-1)G = kG = R

 Security discussion:
 As in the original version of ElGamal it is crucial to not use k twice
 Messages should not be signed directly
 Further checks may be required, i.e., G must not be O, a valid point on the 

curve etc. (see [NIST09] for further details)
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Foundations of ECC – Security (I)

 The security heavily depends on the chosen curve and point:
 The discriminant of the curve must not be zero, i.e.,

 otherwise the curve is degraded (a so called singular curve)
 Menezes et. al. have found a sub-exponential algorithm for so-called 

supersingular elliptic curves but this does not work in the general case 
[Men93a]

 The constructed algebraic groups should have as many elements a possible
 This class will not go into more details of elliptic curve cryptography as this 

requires way more mathematics than desired for this course... :o)
 For non-cryptographers it is best to depend on predefined curves, e.g., [LM10] 

or [NIST99] and standards such as ECDSA
 Many publications choose parameters a and b such that they are provably 

chosen by a random process (e.g. publish x for h(x) = a and y for h(y) = b); 
Shall ensure that the curves do not contain a cryptographic weakness that 
only the authors knows about



53
©  Dr.-Ing G. Schäfer

Network Security (WS 21/22): 04 – Asymmetric Cryptography

Foundations of ECC – Security (II)

 The security depends on the length of p
 Key lengths with comparable strengths according to 

[NIST12]:

Symmetric 
Algorithms

RSA ECC

112 2048 224-255

128 3072 256-383

192 7680 384-511

256 15360 > 512
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Foundations of ECC – Security (III)

 The security also heavily depends on the implementation!
 The different cases (e.g. with O) in ECC calculation may be 

observable, i.e., power consumption and timing differences
 Attackers might deduct side-channel attacks, as in OpenSSL 

0.9.8o [BT11]
 Attacker may deduce the bit length of a value k in kP by 

measuring the time required for the square and multiply 
algorithm 

 Algorithm was aborted early in OpenSSL when no further bits 
where set to “1”

 Attackers might try to generate invalid points to derive facts about 
the used key as in OpenSSL 0.9.8g, leading to a recovery of a full 
256-bit ECC key after only 633 queries [BBP12]

 Lesson learned: Do not do it on your own, unless you have to and 
know what you are doing!
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Foundations of ECC – Further remarks

 As mentioned earlier it is possible to construct cryptographic elliptic 
curves over G(2n), which may be faster in hardware implementations
 We refrained from details as this would not have brought many 

different insights!
 Elliptic curves and similar algebraic groups are an active field of 

research and allow other advanced applications e.g.:
 So-called Edwards Curves are currently discussed, as they seem 

more robust against side-channel attacks (e.g. [BLR08])
 Bilinear pairings allow 

 Programs to verify that they belong to the same group, without 
revealing their identity (Secret handshakes, e.g. [SM09])

 Public keys to be structured, e.g. use “Alice” as public key for 
Alice (Identity based encryption, foundations in [BF03])

 Before deploying elliptic curve cryptography in a product, make sure to 
not violate patents, as there are still many valid ones in this field!
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Conclusion

 Asymmetric cryptography allows to use two different keys for:
 Encryption / Decryption
 Signing / Verifying

 The most practical algorithms that are still considered to be secure are:
 RSA, based on the difficulty of factoring and solving discrete logarithms
 Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
 ElGamal, like DH based on the difficulty of computing discrete logarithms

 As their security is entirely based on the difficulty of certain mathematical 
problems, algorithmic advances constitute their biggest threat

 Practical considerations:
 Asymmetric cryptographic operations are about magnitudes slower than 

symmetric ones
 Therefore, they are often not used for encrypting / signing bulk data
 Symmetric techniques are used to encrypt / compute a cryptographic hash 

value and asymmetric cryptography is just used to encrypt a key / hash value
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