

Network Security Chapter 4 Asymmetric Cryptography

"However, prior exposure to discrete mathematics will help the reader to appreciate the concepts presented here."

E. Amoroso in another context [Amo94] :o)

Network Security (WS 22/23): 04 - Asymmetric Cryptography

1

Recompetize Asymmetric Cryptography (1)

- General idea:
 - □ Use two different keys -*K* and +*K* for encryption and decryption
 - □ Given a random ciphertext *c* = *E*(+*K*, *m*) and +*K* it should be infeasible to compute *m* = *D*(-*K*, *c*) = *D*(-*K*, *E*(+*K*, *m*))
 - This implies that it should be infeasible to compute -K when given +K
 - □ The key -K is only known to one entity A and is called A's private key - K_A
 - □ The key +*K* can be publicly announced and is called A's *public key* + K_A

□ Applications:

- Encryption:
 - If B encrypts a message with A's public key +K_A, he can be sure that only A can decrypt it using -K_A
- Signing:
 - If A encrypts a message with his own private key -K_A, everyone can verify this signature by decrypting it with A's public key +K_A
- Attention: It is crucial, that everyone can verify that he really knows A's public key and not the key of an adversary!

Asymmetric Cryptography (2)

- Design of asymmetric cryptosystems:
 - Difficulty: Find an algorithm and a method to construct two keys -K, +K such that it is not possible to decipher E(+K, m) with the knowledge of +K
 - □ Constraints:
 - The key length should be "manageable"
 - Encrypted messages should not be arbitrarily longer than unencrypted messages (we would tolerate a small constant factor)
 - Encryption and decryption should not consume too much resources (time, memory)
 - Basic idea: Take a problem in the area of mathematics / computer science, that is *hard* to solve when knowing only +*K*, but *easy* to solve when knowing -*K*
 - Knapsack problems: basis of first working algorithms, which were unfortunately almost all proven to be insecure
 - Factorization problem: basis of the RSA algorithm
 - Discrete logarithm problem: basis of Diffie-Hellman and ElGamal

Network Security (WS 22/23): 04 – Asymmetric Cryptography

Rectinementered Some Mathematical Background (1)

Definitions:

- □ Let \mathbb{Z} be the number of integers, and *a*, *b*, *n* ∈ \mathbb{Z}
- □ We say *a divides b* ("*a* | *b*") if there exists an integer $k \in \mathbb{Z}$ such that $a \times k = b$
- □ We say *a is prime* if it is positive and the only divisors of *a* are 1 and *a*
- □ We say *r* is the *remainder* of *a* divided by *n* if $r = a \lfloor a / n \rfloor \times n$ where $\lfloor x \rfloor$ denotes the largest integer less than or equal to *x*
 - Example: 4 is the remainder of 11 divided by 7 as 4 = 11 $\lfloor 11 / 7 \rfloor \times 7$
 - We can write this in another way: $a = q \times n + r$ with $q = \lfloor a / n \rfloor$
- □ For the remainder *r* of the division of *a* by *n* we write *a* MOD *n*
- □ We say *b* is congruent a mod *n* if it has the same remainder like *a* when divided by *n*. So, *n* divides (*a*-*b*), and we write *b* = *a* mod *n*
 - Examples: $4 \equiv 11 \mod 7$, $25 \equiv 11 \mod 7$, $11 \equiv 25 \mod 7$, $11 \equiv 4 \mod 7$, $-10 \equiv 4 \mod 7$
- □ As the remainder *r* of division by *n* is always smaller than *n*, we sometimes represent the set $\{x \text{ MOD } n \mid x \in \mathbb{Z}\}$ by elements of the set $\mathbb{Z}_n = \{0, 1, ..., n 1\}$

Some Mathematical Background (2)

Properties of Modular Arithmetic		
Property	Expression	
Commutative Laws	(a + b) MOD n = (b + a) MOD n	
	$(a \times b) MOD n = (b \times a) MOD n$	
Associative Laws	[(a + b) + c] MOD n = [a + (b + c)] MOD n	
	[($a \times b$) × c] MOD n = [$a \times (b \times c)$] MOD n	
Distributive Law	$[a \times (b + c)] MOD n = [(a \times b) + (a \times c)] MOD n$	
Identities	(0 + a) MOD n = a MOD n	
	$(1 \times a) MOD n = a MOD n$	
Inverses	$\forall a \in \mathbb{Z}_n$: $\exists (-a) \in \mathbb{Z}_n : a + (-a) \equiv 0 \mod n$	
	p is prime $\Rightarrow \forall a \in \mathbb{Z}_p$: $\exists (a^{-1}) \in \mathbb{Z}_p$: $a \times (a^{-1}) \equiv 1 \mod p$	

Network Security (WS 22/23): 04 - Asymmetric Cryptography

5

TELEMATIK Rechnernetze

Some Mathematical Background (3)

- Greatest common divisor:
 - □ $c = gcd(a, b) :\Leftrightarrow (c \mid a) \land (c \mid b) \land [\forall d: (d \mid a) \land (d \mid b) \Rightarrow (d \mid c)]$ and gcd(a, 0) := |a|
- □ The gcd recursion theorem:
 - $\Box \forall a, b \in \mathbb{Z}^{+}: gcd(a, b) = gcd(b, a \text{ MOD } b)$
 - □ Proof:
 - As gcd(a, b) divides both a and b it also divides any linear combination of them, especially (a - La / b ⊥ × b) = a MOD b, so gcd(a, b) | gcd(b, a MOD b)
 - As gcd(b, a MOD b) divides both b and a MOD b it also divides any linear combination of them, especially \[a / b] \times b + (a MOD b) = a, so gcd(b, a MOD b) | gcd(a, b)
- □ Euclidean Algorithm:
 - □ The algorithm *Euclid* given *a*, *b* computes gcd(a, b)

```
int Euclid(int a, b)
{ if (b = 0) { return(a);}
        { return(Euclid(b, a MOD b);} }
```


Some Mathematical Background (4)

Extended Euclidean Algorithm: □ The algorithm *ExtendedEuclid* given *a*, *b* computes *d*, *m*, *n* such that: $d = gcd(a, b) = m \times a + n \times b$ □ struct{int d, m, n} ExtendedEuclid(int a, b) { int d, d', m, m', n, n'; *if* (*b* = 0) {*return*(*a*, 1, 0); } (d', m', n') = ExtendedEuclid(b, a MOD b); $(d, m, n) = (d', n', m' - \lfloor a / b \rfloor \times n');$ return(d, m, n); } Proof: (by induction) ■ Basic case (*a*, 0): *gcd*(*a*, 0) = *a* = 1 × *a* + 0 × 0 Induction from (b, a MOD b) to (a, b): ExtendedEuclid computes d', m', n' correctly (induction hypothesis) $= m' \times b + n' \times (a \mod b) = m' \times b + n' \times (a - \lfloor a / b \rfloor \times b)$ $-d = d^{\prime}$ $= n' \times a + (m' - \lfloor a / b \rfloor \times n') \times b$

- □ The run time of Euclid(a, b) and ExtendedEuclid(a, b) is of O(log b)
 - Proof: see [Cor90a], section 33.2

Network Security (WS 22/23): 04 – Asymmetric Cryptography

Rectinementer Some Mathematical Background (5)

Summarizing the discussion of the Euclidean algorithms we have:

<u>Lemma 1:</u>

Let $a, b \in \mathbb{N}$ and d = gcd(a, b). Then there exists $m, n \in \mathbb{N}$ such that: $d = m \times a + n \times b$

□ We can use this lemma to prove the following:

```
Theorem 1 (Euclid):
```

If a prime divides the product of two integers, then it divides at least one of the integers: $p \mid (a \times b) \Rightarrow (p \mid a) \lor (p \mid b)$

- □ Proof: Let $p \mid (a \times b)$
 - If *p* | *a* then we are done.
 - If not then gcd(p, a) = 1 ⇒
 ∃ m, n ∈ ℕ: 1 = m × p + n × a
 ⇔ b = m × p × b + n × a × b
 As p | (a × b), p divides both summands of the equation and so it divides also the sum which is b

Some Mathematical Background (6)

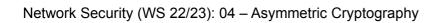
- □ A small, but nice excursion:
 - □ With the help of Theorem 1 the proof that $\sqrt{2}$ is not a rational number can be given in a very elegant way:

Assume that $\sqrt{2}$ can be expressed as a rational number *m* / *n* and that this fraction has been reduced such that gcd(m, n) = 1:

$$\Rightarrow \sqrt{2} = \frac{m}{n} \iff 2 = \frac{m^2}{n^2} \iff 2n^2 = m^2$$

So, 2 divides m^2 , and thus by Theorem 1 it also divides m, and so 4 divides m^2 . But then 4 divides $2n^2$ and, therefore, 2 divides also n^2 . Again by Theorem 1 this implies that 2 divides n and so 2 divides both m and n, which is a contradiction to the assumption that the fraction m / n is reduced.

□ And now to something more useful... – for cryptography :o)



Some Mathematical Background (7)

Theorem 2 (fundamental theorem of arithmetic):

Factorization into primes is unique up to order.

- □ Proof:
 - We will show that every integer with a non-unique factorization has a proper divisor with a non-unique factorization which leads to a clear contradiction when we finally have reduced to a prime number.
 - □ Let's assume that n is an integer with a non-unique factorization:

$$n = p_1 \times p_2 \times \dots \times p_r$$

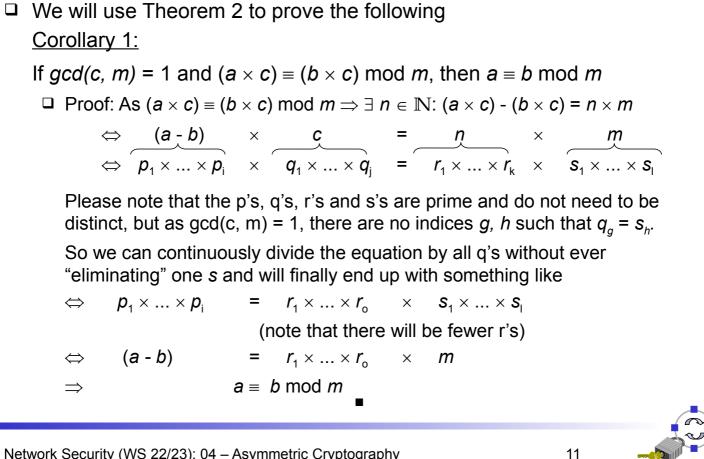
$$= q_1 \times q_2 \times \ldots \times q_s$$

The primes are not necessarily distinct, but the second factorization is not simply a reordering of the first one.

As p_1 divides *n* it also divides the product $q_1 \times q_2 \times ... \times q_s$. By repeated application of Theorem 1 we show that there is at least one q_i which is divisible by p_1 . If necessary reorder the q_i 's so that it is q_1 . As both p_1 and q_1 are prime they have to be equal. So we can divide by p_1 and we have that n / p_1 has a non-unique factorization.

10

TELEMATIK Some Mathematical Background (8)



Network Security (WS 22/23): 04 – Asymmetric Cryptography

Some Mathematical Background (9)

- \Box Let $\Phi(n)$ denote the number of positive integers less than n and relatively prime to n
 - □ Examples: $\Phi(4) = 2$, $\Phi(6) = 2$, $\Phi(7) = 6$, $\Phi(15) = 8$
 - □ If *p* is prime $\Rightarrow \Phi(p) = p 1$

```
Theorem 3 (Euler):
```

Let *n* and *b* be positive and relatively prime integers, i.e. gcd(n, b) = 1 $\Rightarrow b^{\Phi(n)} \equiv 1 \mod n$

Proof:

 \Box Let $t = \Phi(n)$ and $a_1, \dots a_t$ be the positive integers less than *n* which are relatively prime to n.

Define $r_1, ..., r_t$ to be the residues of $b \times a_1 \mod n, ..., b \times a_t \mod n$ that is to say: $b \times a_i \equiv r_i \mod n$.

□ Note that $i \neq j \Rightarrow r_i \neq r_j$. If this would not hold, we would have $b \times a_i \equiv b \times a_i \mod n$ and as gcd(b, n) = 1, Corollary 1 would imply $a_i \equiv a_i \mod n$ which can not be as *a*, and *a*, are by definition distinct integers between 0 and *n*

Some Mathematical Background (10)

Proof (continued):

- □ We also know that each r_i is relatively prime to n because any common divisor k of r_i and n, i.e. $n = k \times m$ and $r_i = p_i \times k$, would also have to divide a_i ,
- $\Box \text{ as } b \times a_i \equiv (p_i \times k) \mod (k \times m) \Longrightarrow \exists s \in \mathbb{N}: (b \times a_i) (p_i \times k) = s \times k \times m$ $\Leftrightarrow (b \times a_i) = s \times k \times m + (p_i \times k)$

Because *k* divides each of the summands on the right-hand side and *k* does not divide *b* by assumption (*n* and *b* are relatively prime), it would also have to divide a_i which is supposed to be relatively prime to n

- □ Thus $r_1, ..., r_t$ is a set of $\Phi(n)$ distinct integers which are relatively prime to n. This means that they are exactly the same as $a_1, ..., a_t$, except that they are in a different order. In particular, we know that $r_1 \times ... \times r_t = a_1 \times ... \times a_t$
- □ We now use the congruence

 $r_1 \times \ldots \times r_t \equiv b \times a_1 \times \ldots \times b \times a_t \mod n$

- $\Leftrightarrow \mathbf{r}_1 \times \ldots \times \mathbf{r}_t \equiv \mathbf{b}^t \times \mathbf{a}_1 \times \ldots \times \mathbf{a}_t \bmod \mathbf{n}$
- $\Leftrightarrow r_1 \times \ldots \times r_t \equiv b^t \times r_1 \times \ldots \times r_t \bmod n$
- □ As all r_i are relatively prime to n we can use Corollary 1 and divide by their product giving: $1 \equiv b^t \mod n \Leftrightarrow 1 \equiv b^{\Phi(n)} \mod n$

Network Security (WS 22/23): 04 – Asymmetric Cryptography

ound (mo zzizo). 04 – Asymmetric oryptography

Some Mathematical Background (11)

Let $m_1, ..., m_r$ be positive integers that are pairwise relatively prime, i.e. $\forall i \neq j$: $gcd(m_i, m_j) = 1$. Let $a_1, ..., a_r$ be arbitrary integers. Then there exists an integer *a* such that:

 $a \equiv a_1 \mod m_1$ $a \equiv a_2 \mod m_2$ \dots $a \equiv a_r \mod m_r$

Furthermore, *a* is unique modulo $M := m_1 \times ... \times m_r$

Proof:

TELEMATIK

- □ For all $i \in \{1, ..., r\}$ we define $M_i := (M / m_i)^{\Phi(m_i)}$
- □ As M_i is by definition relatively prime to m_i we can apply Theorem 3 and know that $M_i \equiv 1 \mod m_i$
- □ Since M_i is divisible by m_j for every $j \neq i$, we have $\forall j \neq i$: $M_i \equiv 0 \mod m_j$

Proof (continued):

□ We can now construct the solution by defining:

 $\mathbf{a} := \mathbf{a}_1 \times \mathbf{M}_1 + \mathbf{a}_2 \times \mathbf{M}_2 + \dots + \mathbf{a}_r \times \mathbf{M}_r$

 \Box The two arguments given above concerning the congruences of the M_i imply that *a* actually satisfies all of the congruences.

□ To see that *a* is unique modulo *M*, let *b* be any other integer satisfying the *r* congruences. As $a \equiv c \mod n$ and $b \equiv c \mod n \Rightarrow a \equiv b \mod n$ $\forall i \in \{1, ..., r\}$: $a \equiv b \mod m_i$ we have

 $\Rightarrow \forall i \in \{1, ..., r\}: m_i \mid (a - b)$ \Rightarrow M | (a-b) as the *m*, are pairwise relatively prime \Leftrightarrow a = b mod M

Network Security (WS 22/23): 04 – Asymmetric Cryptography

TELEMATIK Some Mathematical Background (13) hnernetze

Lemma 2:

If gcd(m, n) = 1, then $\Phi(m \times n) = \Phi(m) \times \Phi(n)$

Proof:

- \Box Let *a* be a positive integer less than and relatively prime to $m \times n$. In other words, *a* is one of the integers counted by $\Phi(m \times n)$.
- \Box Consider the correspondence $a \rightarrow (a \text{ MOD } m, a \text{ MOD } n)$

The integer *a* is relatively prime to *m* and relatively prime to *n* (if not it would divide $m \times n$).

So, (a MOD m) is relatively prime to m and (a MOD n) is relatively prime to n as: $a = \lfloor a / m \rfloor \times m + (a \text{ MOD } m)$, so if there would be a common divisor of m and (a MOD m), this divisor would also divide a.

Thus every number a counted by $\Phi(m \times n)$ corresponds to a pair of two integers (a MOD m, a MOD n), the first one counted by $\Phi(m)$ and the second one counted by $\Phi(n)$.

15

TELEMATIK Some Mathematical Background (14) chnernetze

Proof (continued):

Because of the second part of Theorem 4, the uniqueness of the solution a modulo $(m \times n)$ to the simultaneous congruences:

 $a \equiv (a MOD m) mod m$ $a \equiv (a MOD n) mod n$

we can deduce, that distinct integers counted by $\Phi(m \times n)$ correspond to distinct pairs:

□ Too see this, suppose that a ≠ b counted by $\Phi(m \times n)$ does correspond to the same pair (a MOD m, a MOD n). This leads to a contradiction as b would also fulfill the congruences:

 $b \equiv (a MOD m) mod m$ $b \equiv (a MOD n) mod n$

but the solution to these congruences is unique modulo $(m \times n)$

Therefore, $\Phi(m \times n)$ is at most the number of such pairs:

 $\Phi(m \times n) \leq \Phi(m) \times \Phi(n)$

```
Network Security (WS 22/23): 04 – Asymmetric Cryptography
```

TELEMATIK Some Mathematical Background (15) hnernetze

Proof (continued):

 \Box Consider now a pair of integers (*b*, *c*), one counted by $\Phi(m)$ and the other one counted by $\Phi(n)$:

Using the first part of Theorem 4 we can construct a unique positive integer *a* less than and relatively prime to $m \times n$:

 $a \equiv b \mod m$ $a \equiv c \mod n$

So, the number of such pairs is at most $\Phi(m \times n)$:

 $\Phi(m \times n) \ge \Phi(m) \times \Phi(n)$

The RSA Public Key Algorithm (1)

- The RSA algorithm was invented in 1977 by R. Rivest, A. Shamir and L. Adleman [RSA78] and is based on Theorem 3.
- Let p, q be distinct large primes and n = p × q. Assume, we have also two integers e and d such that:

 $d \times e \equiv 1 \mod \Phi(n)$

□ Let *M* be an integer that represents the message to be encrypted, with *M* positive, smaller than and relatively prime to *n*.

Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35
 So "HELLO" would be encoded as 1714212124.
 If necessary, break M into blocks of smaller messages: 17142 12124

- \Box To encrypt, compute: $E = M^e$ MOD n
 - □ This can be done efficiently using the *square-and-multiply algorithm*
- □ To decrypt, compute: $M' = E^d \text{ MOD } n$

□ As $d \times e \equiv 1 \mod \Phi(n)$ $\Rightarrow \exists k \in \mathbb{Z}$: $(d \times e) - 1 = k \times \Phi(n)$ $\Leftrightarrow (d \times e) = k \times \Phi(n) + 1$ we have: $M' \equiv E^d \equiv M^{(e \times d)} \equiv M^{(k \times \Phi(n) + 1)} \equiv 1^k \times M \equiv M \mod n$

Network Security (WS 22/23): 04 – Asymmetric Cryptography

The RSA Public Key Algorithm (2)

- □ As $(d \times e) = (e \times d)$ the operation also works in the opposite direction, that means you can encrypt with *d* and decrypt with *e*
 - □ This property allows to use the same keys *d* and *e* for:
 - Receiving messages that have been encrypted with one's public key
 - Sending messages that have been signed with one's private key
- □ To set up a key pair for RSA:
 - \square Randomly choose two primes *p* and *q* (of 100 to 200 digits each)
 - □ Compute $n = p \times q$, $\Phi(n) = (p 1) \times (q 1)$ (Lemma 2)
 - □ Randomly choose *e*, so that $gcd(e, \Phi(n)) = 1$
 - □ With the extended euclidean algorithm compute *d* and *c*, such that: $e \times d + \Phi(n) \times c = 1$, note that this implies, that $e \times d \equiv 1 \mod \Phi(n)$
 - □ The public key is the pair (*e*, *n*)
 - □ The private key is the pair (*d*, *n*)

20

The RSA Public Key Algorithm (3)

- □ The security of the scheme lies in the difficulty of factoring $n = p \times q$ as it is easy to compute $\Phi(n)$ and then *d*, when *p* and *q* are known
- □ This class will not teach why it is difficult to factor large *n*'s, as this would require to dive deep into mathematics
 - If p and q fulfill certain properties, the best known algorithms are exponential in the number of digits of n
 - Please be aware that if you choose p and q in an "unfortunate" way, there might be algorithms that can factor more efficiently and your RSA encryption is not at all secure:
 - Therefore, *p* and *q* should be about the same bitlength and sufficiently large
 - -(p q) should not be too small
 - If you want to choose a small encryption exponent, e.g. 3, there might be additional constraints, e.g. gcd(p 1, 3) = 1 and gcd(q 1, 3) = 1
 - The security of RSA also depends on the primes generated being truly random (like every key creation method for any algorithm)
 - Moral: If you are to implement RSA by yourself, ask a mathematician or better a cryptographer to check your design

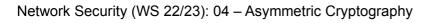
Network Security (WS 22/23): 04 – Asymmetric Cryptography

Diffie-Hellman Key Exchange (1)

- The Diffie-Hellman key exchange was first published in the landmark paper [DH76], which also introduced the fundamental idea of asymmetric cryptography
- □ The DH exchange in its basic form enables two parties A and B to agree upon a *shared secret* using a public channel:
 - Public channel means, that a potential attacker E (E stands for eavesdropper) can read all messages exchanged between A and B
 - It is important, that A and B can be sure, that the attacker is not able to alter messages, as in this case he might launch a *man-in-the-middle attack*
 - The mathematical basis for the DH exchange is the problem of finding discrete logarithms in finite fields
 - The DH exchange is *not* an asymmetric encryption algorithm, but is nevertheless introduced here as it goes well with the mathematical flavor of this lecture... :o)

Some More Mathematical Background (1)

- Definition: *finite groups*
 - □ A group (S, \oplus) is a set S together with a binary operation \oplus for which the following properties hold:
 - Closure: For all $a, b \in S$, we have $a \oplus b \in S$
 - Identity: There is an element e ∈ S, such that e ⊕ a = a ⊕ e = a for all a ∈ S
 - Associativity: For all $a, b, c \in S$, we have $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - Inverses: For each a ∈ S, there exists a unique element b ∈ S, such that a ⊕ b = b ⊕ a = e
 - □ If a group (S, \oplus) satisfies the commutative law $\forall a, b \in S$: $a \oplus b = b \oplus a$ then it is called an *Abelian group*
 - If a group (S, ⊕) has only a finite set of elements, i.e. |S| < ∞, then it is called a *finite group*



Some More Mathematical Background (2)

□ Examples:

 $\Box (\mathbb{Z}_n, +_n)$

- with $\mathbb{Z}_n := \{[0]_n, [1]_n, ..., [n-1]_n\}$
- where $[a]_n := \{b \in \mathbb{Z} \mid b \equiv a \mod n\}$ and
- +_n is defined such that $[a]_n$ +_n $[b]_n$ = $[a + b]_n$

is a finite abelian group

For the proof see the table showing the properties of modular arithmetic \square ($\mathbb{Z}_{n}^{*}, \times_{n}$)

- with $\mathbb{Z}_{n}^{*} := \{ [a]_{n} \in \mathbb{Z}_{n} \mid gcd(a, n) = 1 \}$, and
- \times_n is defined such that $[a]_n \times_n [b]_n = [a \times b]_n$

is a finite Abelian group. Please note that \mathbb{Z}_n^* just contains those elements of \mathbb{Z}_n that have a multiplicative inverse modulo *n*

For the proof see the properties of modular arithmetic

■ Example: $\mathbb{Z}_{15}^* = \{[1]_{15}, [2]_{15}, [4]_{15}, [7]_{15}, [8]_{15}, [11]_{15}, [13]_{15}, [14]_{15}\}$, as $1 \times 1 \equiv 1 \mod 15$, $2 \times 8 \equiv 1 \mod 15$, $4 \times 4 \equiv 1 \mod 15$, $7 \times 13 \equiv 1 \mod 15$, $11 \times 11 \equiv 1 \mod 15$, $14 \times 14 \equiv 1 \mod 15$

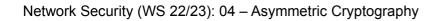
□ If it is clear that we are talking about $(\mathbb{Z}_n, +_n)$ or $(\mathbb{Z}_n^*, \times_n)$ we often represent equivalence classes $[a]_n$ by their representative elements aand denote $+_n$ and \times_n by + and \times , respectively.

Definition: *finite fields*

- □ A *field* (S, \oplus , \otimes) is a set S together with two operations \oplus , \otimes such that
 - (S, ⊕) and (S \ {e_⊕}, ⊗) are commutative groups, i.e. only the identity element concerning the operation ⊕ does not need to have an inverse regarding the operation ⊗
 - For all $a, b, c \in S$, we have $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$
- □ If $|S| < \infty$ then (S, \oplus, \otimes) is called a *finite field*

□ Example:

 \Box (\mathbb{Z}_p , +_{*p*}, ×_{*p*}) is a finite field for each prime *p*



Recherorize Some More Mathematical Background (4)

- Definition: *primitive root, generator*
 - □ Let (S, •) be a group, $g \in S$ and $g^a := g \bullet g \bullet ... \bullet g$ (a times with $a \in \mathbb{Z}^+$) Then g is called a *primitive root* or *generator* of (S, •)

$$\Leftrightarrow \{g^a \mid 1 \le a \le |S|\} = S$$

- □ Examples:
 - □ 1 is a primitive root of $(\mathbb{Z}_n, +_n)$
 - **□** 3 is a primitive root of $(\mathbb{Z}_{7}^{*}, \times_{7})$
- Not all groups do have primitive roots and those who have are called cyclic groups
- □ <u>Theorem 5:</u>

 $(\mathbb{Z}_{n}^{*}, \times_{n})$ does have a primitive root $\Leftrightarrow n \in \{2, 4, p, 2 \times p^{e}\}$ where p is an odd prime and $e \in \mathbb{Z}^{+}$

□ For the proof see [Niv80a]

26

Some More Mathematical Background (5)

□ <u>Theorem 6:</u>

If (S, \bullet) is a group and $b \in S$ then (S', \bullet) with $S' = \{b^a \mid a \in \mathbb{Z}^+\}$ is also a group.

- □ For the proof refer to [Cor90a] section 33.3
- □ As $S' \subseteq S$, (S', •) is called a *subgroup* of (S, •)
- □ If *b* is a primitive root of (S, \bullet) then S' = S
- Definition: order of a group and of an element
 - □ Let (S, •) be a group, $e \in S$ its identity element and $b \in S$ any element of S:
 - Then |S| is called the *order* of (S, \bullet)
 - Let c ∈ Z⁺ be the smallest element so that b^c = e (if such a c exists, if not set c = ∞). Then c is called the *order* of b.

Network Security (WS 22/23): 04 – Asymmetric Cryptography

Some More Mathematical Background (6)

□ <u>Theorem 7 (Lagrange):</u>

If *G* is a finite group and *H* is a subgroup of *G*, then |H| divides |G|. Hence, if $b \in G$ then the order of *b* divides |G|.

□ <u>Theorem 8:</u>

If *G* is a cyclic finite group of order *n* and *d* divides *n* then *G* has exactly $\Phi(d)$ elements of order *d*. In particular, *G* has $\Phi(n)$ elements of order *n*.

- □ Theorems 5, 7, and 8 are the basis of the following algorithm that finds a cyclic group \mathbb{Z}_{p}^{*} and a primitive root *g* of it:
 - Choose a large prime q such that p = 2q + 1 is prime.
 - As *p* is prime, Theorem 5 states that \mathbb{Z}_{p}^{*} is cyclic.
 - The order of \mathbb{Z}_{p}^{*} is $2 \times q$ and $\Phi(2 \times q) = \Phi(2) \times \Phi(q) = q 1$ as q is prime.
 - So, the odds of randomly choosing a primitive root are $(q 1) / 2q \approx 1 / 2$
 - In order to efficiently test, if a randomly chosen g is a primitive root, we just have to test if g² ≡ 1 mod p or g^q ≡ 1 mod p. If not, then its order has to be |Z^{*}_p|, as Theorem 7 states that the order of g has to divide |Z^{*}_p|

Some More Mathematical Background (7)

- Definition: *discrete logarithm*
 - □ Let *p* be prime, *g* be a primitive root of $(\mathbb{Z}_{p}^{*}, \times_{p})$ and *c* be any element of \mathbb{Z}_{p}^{*} . Then there exists *z* such that: $g^{z} \equiv c \mod p$
 - z is called the *discrete logarithm* of c modulo p to the base g
 - □ Example 6 is the discrete logarithm of 1 modulo 7 to the base 3 as $3^6 \equiv 1 \mod 7$
 - The calculation of the discrete logarithm z when given g, c, and p is a computationally difficult problem and the asymptotical runtime of the best known algorithms for this problem is exponential in the bitlength of p

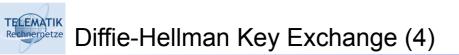
Network Security (WS 22/23): 04 - Asymmetric Cryptography

Diffie-Hellman Key Exchange (2)

- If Alice (A) and Bob (B) want to agree on a shared secret s and their only means of communication is a public channel, they can proceed as follows:
 - \Box A chooses a prime *p*, a primitive root *g* of \mathbb{Z}_{p}^{*} , and a random number *q*:
 - A and B can agree upon the values p and g prior to any communication, or A can choose p and g and send them with his first message
 - A computes v = g^q MOD p and sends to B: {p, g, v}
 - B chooses a random number *r*:
 - B computes w = g^r MOD p and sends to A: {p, g, w} (or just {w})
 - □ Both sides compute the common secret:
 - A computes $s = w^q \text{ MOD } p$
 - B computes $s' = v^r \text{ MOD } p$
 - As $g^{(q \times r)} \text{ MOD } p = g^{(r \times q)} \text{ MOD } p$ it holds: s = s'
 - □ An attacker Eve who is listening to the public channel can only compute the secret *s*, if she is able to compute either *q* or *r* which are the discrete logarithms of *v*, *w* modulo *p* to the base *g*

- □ If the attacker Eve is able to alter messages on the public channel, she can launch a *man-in-the-middle attack:*
 - \Box Eve generates to random numbers q' and r':
 - Eve computes v' = g^{q'} MOD p and w' = g^{r'} MOD p
 - When A sends {p, g, v} she intercepts the message and sends to B: {p, g, v'}
 - When B sends {p, g, w} she intercepts the message and sends to A: {p, g, w'}
 - □ When the supposed "shared secret" is computed we get:
 - A computes $s_1 = w'^q \text{ MOD } p = v^r \text{ MOD } p$ the latter computed by E
 - B computes $s_2 = v'' \text{ MOD } p = w^{q'} \text{ MOD } p$ the latter computed by E
 - So, in fact A and E have agreed upon a shared secret s₁ as well as E and B have agreed upon a shared secret s₂
 - If the "shared secret" is now used by A and B to encrypt messages to be exchanged over the public channel, E can intercept all the messages and decrypt / re-encrypt them before forwarding them between A and B.

Network Security (WS 22/23): 04 - Asymmetric Cryptography



- □ Two countermeasures against the man-in-the-middle attack:
 - □ The shared secret is *"authenticated"* after it has been agreed upon
 - We will treat this in the section on key management
 - A and B use a so-called *interlock protocol* after agreeing on a shared secret:
 - For this they have to exchange messages that E has to relay before she can decrypt / re-encrypt them
 - The content of these messages has to be checkable by A and B
 - This forces E to invent messages and she can be detected
 - One technique to prevent E from decrypting the messages is to split them into two parts and to send the second part before the first one.
 - If the encryption algorithm used inhibits certain characteristics E can not encrypt the second part before she receives the first one.
 - As A will only send the first part after he received an answer (the second part of it) from B, E is forced to invent two messages, before she can get the first parts.
- □ Remark: In practice the number *g* does not necessarily need to be a primitive root of p, it is sufficient if it generates a large subgroup of \mathbb{Z}_{p}^{*}

The ElGamal Algorithm (1)

- The ElGamal algorithm can be used for both, encryption and digital signatures (see also [ElG85a])
- Like the DH exchange it is based on the difficulty of computing discrete logarithms in finite fields
- In order to set up a key pair:
 - □ Choose a large prime *p*, a generator *g* of the multiplicative group \mathbb{Z}_{p}^{*} and a random number *v* such that $1 \le v \le p 2$. Calculate: $y = g^{v} \mod p$
 - \Box The public key is (*y*, *g*, *p*)
 - □ The private key is *v*
- □ To sign a message *m*:
 - □ Choose a random number *k* such that *k* is relatively prime to p 1.
 - $\Box \quad \text{Compute } r = g^k \mod p$
 - With the Extended Euclidean Algorithm compute k⁻¹, the inverse of k mod (p 1)
 - $\Box \quad Compute \ s = k^{-1} \times (m v \times r) \mod (p 1)$
 - \Box The signature over the message is (*r*, *s*)

Network Security (WS 22/23): 04 – Asymmetric Cryptography

The ElGamal Algorithm (2)

- \Box To verify a signature (*r*, *s*) over a message *m*:
 - $\Box \quad \text{Confirm that } y^r \times r^s \text{ MOD } p = g^m \text{ MOD } p$
 - Proof: We need the following
 - Lemma 3:

Let p be prime and g be a generator of \mathbb{Z}_{p}^{*} .

- Then $i \equiv j \mod (p 1) \Rightarrow g^i \equiv g^j \mod p$ Proof:
 - $i \equiv j \mod (p 1) \Rightarrow \text{ there exists } k \in \mathbb{Z}^+ \text{ such that } (i j) = (p 1) \times k$ $- So, g^{(i - j)} = g^{(p - 1) \times k} \equiv 1^k \equiv 1 \mod p, \text{ because of Theorem 3 (Euler)}$ $⇒ g^i \equiv g^j \mod p$

• So as
$$s \equiv k^{-1} \times (m - v \times r)$$
 $mod (p - 1)$
 $\Leftrightarrow k \times s \equiv m - v \times r$ $mod (p - 1)$
 $\Leftrightarrow m \equiv v \times r + k \times s$ $mod (p - 1)$
 $\Rightarrow g^m \equiv g^{(v \times r + k \times s)}$ $mod (p - 1)$
 $\Rightarrow g^m \equiv g^{(v \times r + k \times s)}$ $mod p$ with Lemma 3
 $\Leftrightarrow g^m \equiv g^{(v \times r)} \times g^{(k \times s)}$ $mod p$

- □ Security of ElGamal signatures:
 - As the private key v is needed to be able to compute s, an attacker would have to compute the discrete logarithm of y modulo p to the basis g in order to forge signatures
 - It is crucial to the security, that a new random number k is chosen for every message, because an attacker can compute the secret v if he gets two messages together with their signatures based on the same k (see [Men97a], Note 11.66.ii)
 - In order to prevent an attacker to be able to create a message M with a matching signature, it is necessary not to sign directly the message M as explained before, but to sign a cryptographic hash value m = h(M) of it (these will be treated soon, see also [Men97a], Note 11.66.iii)



35

Network Security (WS 22/23): 04 - Asymmetric Cryptography

The ElGamal Algorithm (4)

- \Box To encrypt a message *m* using the public key (*y*, *g*, *p*):
 - □ Choose a random $k \in \mathbb{Z}^+$ with k
 - $\Box \quad \text{Compute } r = g^k \text{ MOD } p$
 - $\Box \quad \text{Compute } s = m \times y^k \text{ MOD } p$
 - \Box The ciphertext is (*r*, *s*), which is twice as long as *m*
- \Box To decrypt the message (*r*, *s*) using *v*:
 - □ Use the private key v to compute $r^{(p-1-v)}$ MOD $p = r^{(-v)}$ MOD p
 - □ Recover *m* by computing $m = r^{(-v)} \times s \text{ MOD } p$
 - Proof:

 $\mathbf{r}^{(-\mathbf{v})} \times \mathbf{s} \equiv \mathbf{r}^{(-\mathbf{v})} \times \mathbf{m} \times \mathbf{y}^{\mathbf{k}} \equiv \mathbf{g}^{(-\mathbf{v}\mathbf{k})} \times \mathbf{m} \times \mathbf{y}^{\mathbf{k}} \equiv \mathbf{g}^{(-\mathbf{v} \times \mathbf{k})} \times \mathbf{m} \times \mathbf{g}^{(\mathbf{v} \times \mathbf{k})} \equiv \mathbf{m} \bmod \mathbf{p}$

- □ Security:
 - The only known means for an attacker to recover *m* is to compute the discrete logarithm *v* of *y* modulo *p* to the basis *g*
 - □ For every message a new random *k* is needed ([Men97a], Note 8.23.ii)

Elliptic Curve Cryptography (1)

TELEMATIK Rechnernetze

- □ The algorithms presented so far have been invented for the multiplicative group $(\mathbb{Z}_{p}^{*}, \times_{p})$ and the field $(\mathbb{Z}_{p}, +_{p}, \times_{p})$, respectively
- It has been found during the 1980's that they can be generalized and be used with other groups and fields as well
- □ The main motivation for this generalization is:
 - A lot of mathematical research in the area of primality testing, factorization and computation of discrete logarithms has led to techniques that allow to solve these problems in a more efficient way, if certain properties are met:
 - When the RSA-129 challenge was given in 1977 it was expected that it will take some 40 quadrillion years to factor the 129-digit number (≈ 428 bit)
 - In 1994 it took 8 months to factor it by a group of computers networked over the Internet, calculating for about 5000 MIPS-years
 - Advances in factoring algorithms allowed 2009 to factor a 232-digit number (768 bit) in about 1500 AMD64-years [KAFL10]
 - \Rightarrow the key length has to be increased (currently about 2048 bit)

Network Security (WS 22/23): 04 – Asymmetric Cryptography

Elliptic Curve Cryptography (2)

- □ Motivation (continued):
 - □ Some of the more efficient techniques do rely on specific properties of the algebraic structures $(\mathbb{Z}_{p}^{*}, \times_{p})$ and $(\mathbb{Z}_{p}, +_{p}, \times_{p})$
 - Different algebraic structures may therefore provide the same security with shorter key lengths
- A very promising structure for cryptography can be obtained from the group of points on an elliptic curve over a finite field
 - The mathematical operations in these groups can be efficiently implemented both in hardware and software
 - The discrete logarithm problem is believed to be hard in the general class obtained from the group of points on an elliptic curve over a finite field

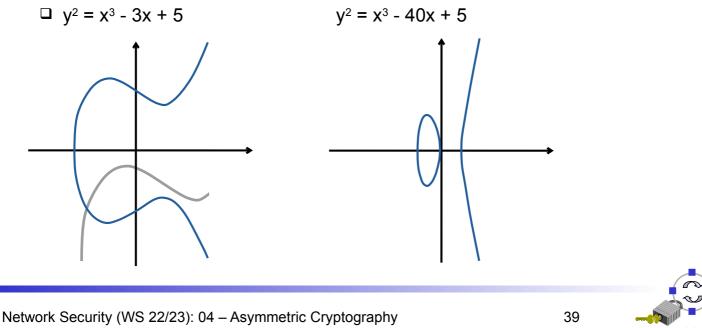
Foundations of ECC - Group Elements

Algebraic group consisting of

TELEMATIK

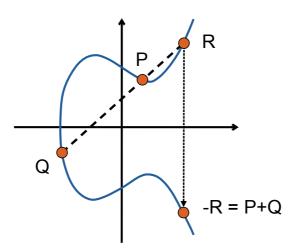
Rechnernetze

- □ Points on Weierstrass' Equation: $y^2 = x^3 + ax + b$
- □ Additional point O in "infinity"
- □ May be calculated over \mathbb{R} , but in cryptography \mathbb{Z}_p and GF(2ⁿ) are used
- $\hfill\square$ Already in $\mathbb R$ arguments influence form significantly:



Foundations of ECC - Point Addition

- □ Addition of elements = Addition of points on the curve
- Geometric interpretation:
 - Each point P: (x,y) has an inverse -P: (x,-y)
 - A line through two points P and Q usually intersects with a third point R
 - □ Generally, sum of two points P and Q equals –R



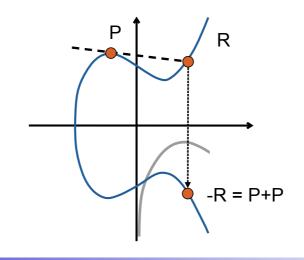
Foundations of ECC - Point Addition (Special cases)

- \Box The additional point O is the neutral element, i.e., P + O = P
- □ P + (-P):

TELEMATIK

If the inverse point is added to P, the line and curve intersect in "infinity"
 By definition: P + (-P) = O

P + P: The sum of two identical points P is the inverse of the intersecting point with the tangent through P:



Network Security (WS 22/23): 04 – Asymmetric Cryptography

TELEMATIK Rechnernetze

Foundations of ECC - Algebraic Addition

- □ If one of the summands is O, the sum is the other summand
- □ If the summands are inverse to each other the sum is O
- □ For the more general cases the slope of the line is:

$$\alpha = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{for } P \neq -Q \land P \neq Q \\ \frac{3x_P^2 + a}{2y_P} & \text{for } P = Q \end{cases}$$

□ Result of point addition, where (x_r, y_r) is already the reflected point (-R)

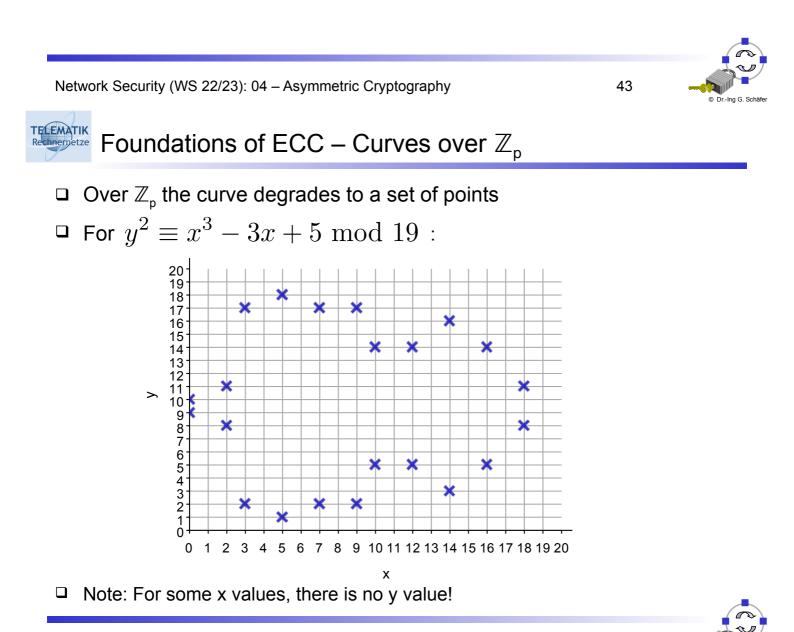
$$x_r = \alpha^2 - x_p - x_q$$
$$y_r = \alpha(x_p - x_r) - y_p$$

Foundations of ECC - Multiplication

- Multiplication of natural number *n* and point *P* performed by multiple repeated additions
- Numbers are grouped into powers of 2 to achieve logarithmic runtime, e.g.
 25P = P + 8P + 16P
- □ This is possible if and only if the n is known!

TELEMATIK

- □ If n is unknown for nP = Q, a logarithm has to be solved, which is possible if the coordinate values are chosen from \mathbb{R}
- □ For \mathbb{Z}_p and GF(2ⁿ) the discrete logarithm problem for elliptic curves has to be solved, which cannot be done efficiently!
- Note: it is not defined how two points are multiplied, but only a natural number n and point P



Network Security (WS 22/23): 04 - Asymmetric Cryptography

Foundations of ECC – Calculate the y-values in \mathbb{Z}_{p}

- □ In general a little bit more problematic: determine the y-values for a given x (as its square value is calculated) by $y^2 \equiv f(x) \mod p$
- \square Hence p is often chosen s.t. $p \equiv 3 \mod 4$
- □ Then y is calculated by $y_1 \equiv f(x)^{\frac{p+1}{4}} \mod p$ and $y_2 \equiv -f(x)^{\frac{p+1}{4}} \mod p$ if and only if a solution exists at all
- □ Short proof:
 - \square From the Euler Theorem 3 we know that $f(x)^{p-1} \equiv 1 \mod p$
 - □ Thus the square root must be 1 or -1 $f(x)^{\frac{p-1}{2}} \equiv \pm 1 \mod p$
 - $\Box \text{ Case 1: } f(x)^{\frac{p-1}{2}} \equiv 1 \mod p$
 - Multiply both sides by f(x): $f(x)^{\frac{p+1}{2}} \equiv f(x) \equiv y^2 \mod p$
 - As p + 1 is divisible by 4 we can take the square root so that $f(x)^{\frac{p+1}{4}} \equiv y \mod p$
 - Case 2: In this case no solution exists for the given x value (as shown by Euler)

Network Security (WS 22/23): 04 - Asymmetric Cryptography

- Due to the discrete structure point mathematical operations do not have a geometric interpretation any more, but
- $\hfill\square$ Algebraic addition similar to addition over $\mathbb R$
- □ If the inverse point is added to P, the line and "curve" still intersect in "infinity"
- □ All x- and y-values are calculated mod p
- Division is replaced by multiplication with the inverse element of the denominator
 - Use the Extended Euclidean Algorithm with w and p to derive the inverse -w
- Algebraic multiplication of a natural number *n* and a point *P* is also performed by repeated addition of summands of the power of 2
- The discrete logarithm problem is to determine a natural number *n* in *nP* = Q for two known points *P* and *Q*

Foundations of ECC – Size of generated groups

- □ Please note that the order of a group generated by a point on a curve over \mathbb{Z}_p is not p-1!
- □ Determining the exact order is not easy, but can be done in logarithmic time by Schoofs algorithm [Sch85] (requires much more mathematical background than desired here)
- □ But Hasse's theorem on elliptic curves states that the group size n must lay between:
- \Box p + 1 2 \sqrt{p} ≤ n ≤ p + 1 + 2 \sqrt{p}
- □ As mentioned before: Generating rather large groups is sufficient

Network Security (WS 22/23): 04 – Asymmetric Cryptography

TELEMATIK hnernetze

TELEMATIK Rechnernetze

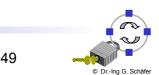
Foundations of ECC - ECDH

- □ The Diffie-Hellman-Algorithm can easily be adapted to elliptic curves
- □ If Alice (A) and Bob (B) want to agree on a shared secret s:
 - □ A and B agree on a cryptographically secure elliptic curve and a point *P* on that curve
 - □ A chooses a random number *q*:
 - A computes Q = q P and transmits Q to Bob
 - B chooses a random number r:
 - B computes R = r P and transmits P to Alice
 - □ Both sides compute the common secret:
 - A computes S = q R
 - B computes S' = r Q
 - As q r P = r q P the secret point S = S'
- □ Attackers listening to the public channel can only compute S, if able to compute either q or r which are the discrete logarithms of Q and R for the point P

- Adapting ElGamal for elliptic curves is rather straight forward for the encryption routine
- □ To set up a key pair:

TELEMATIK

- Choose an elliptic curve over a finite field, a point *G* that generates a large group, and a random number *v* such that 1 < *v* < *n*, where *n* denotes to the size of the induced group, Calculate: Y = vG
- □ The public key is (*Y*, *G*, *curve*)
- \Box The private key is v

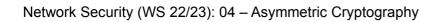


Network Security (WS 22/23): 04 – Asymmetric Cryptography

- □ To encrypt a message:
 - □ Choose a random $k \in \mathbb{Z}^+$ with k < n 1, compute R = kG
 - □ Compute S = M + kY, where M is a point derived by the message
 - Problem: Interpreting the message m as a x coordinate of M is not sufficient, as the y value does not have to exist
 - Solution from [Ko87]: Choose a constant c (e.g. 100) check if cm is the x coordinate of a valid point, if not try cm+1, then cm+2 and so on
 - To decode m: take the x value of M and do an integer division by c (receiver has to know c too)
 - □ The ciphertext are the points (*R*, *S*)
 - Twice as long as *m*, if stored in so-called *compressed form*, i.e. only x coordinates are stored and a single bit, indicating whether the larger or smaller corresponding y-coordinate shall be used
- □ To decrypt a message:
 - □ Derive M by calculating S vR
 - $\square \text{ Proof: } S vR = M + kY vR = M + kvG vkG = M + O = M$

Foundations of ECC – EC version of ElGamal Algorithm (II)

- □ To sign a message:
 - □ Choose a random $k \in \mathbb{Z}^+$ with k < n 1, compute R = kG
 - □ Compute $s = k^{-1}(m + rv) \mod n$, where r is the x-value of R
 - \Box The signature are (*r*, *s*), again about as twice as long as *n*
- □ To verify a signed message:
 - □ Check if the point $P = ms^{-1}G + rs^{-1}Y$ has the x-coordinate r
 - Note: s⁻¹ is calculated by the Extended Euclidian Algorithm with the input s and n (the order of the group)
 - □ Proof: $ms^{-1}G + rs^{-1}Y = ms^{-1}G + rs^{-1}vG = (m+rv)(s^{-1})G = (ks)(s^{-1})G = kG = R$
- □ Security discussion:
 - \Box As in the original version of ElGamal it is crucial to not use k twice
 - Messages should not be signed directly
 - Further checks may be required, i.e., G must not be O, a valid point on the curve etc. (see [NIST09] for further details)

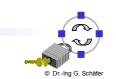


Foundations of ECC – Security (I)

- □ The security heavily depends on the chosen curve and point:
- □ The discriminant of the curve must not be zero, i.e., $4a^3 + 27b^2 \neq 0 \mod p$ otherwise the curve is degraded (a so called *singular curve*)
- Menezes et. al. have found a sub-exponential algorithm for so-called supersingular elliptic curves but this does not work in the general case [Men93a]
- □ The constructed algebraic groups should have as many elements a possible
- This class will not go into more details of elliptic curve cryptography as this requires way more mathematics than desired for this course... :o)
- For non-cryptographers it is best to depend on predefined curves, e.g., [LM10] or [NIST99] and standards such as ECDSA
- Many publications choose parameters a and b such that they are provably chosen by a random process (e.g. publish x for h(x) = a and y for h(y) = b);
 Shall ensure that the curves do not contain a cryptographic weakness that only the authors knows about

 The security depends on the length of *p* Key lengths with comparable strengths according to [NIST12]:

Symmetric Algorithms	RSA	ECC
112	2048	224-255
128	3072	256-383
192	7680	384-511
256	15360	> 512



53

Network Security (WS 22/23): 04 - Asymmetric Cryptography

Foundations of ECC – Security (III)

- □ The security also heavily depends on the implementation!
 - The different cases (e.g. with O) in ECC calculation may be observable, i.e., power consumption and timing differences
 - Attackers might deduct side-channel attacks, as in OpenSSL 0.9.80 [BT11]
 - Attacker may deduce the bit length of a value k in kP by measuring the time required for the square and multiply algorithm
 - Algorithm was aborted early in OpenSSL when no further bits where set to "1"
 - Attackers might try to generate invalid points to derive facts about the used key as in OpenSSL 0.9.8g, leading to a recovery of a full 256-bit ECC key after only 633 queries [BBP12]
- Lesson learned: Do not do it on your own, unless you have to and know what you are doing!

- □ As mentioned earlier it is possible to construct cryptographic elliptic curves over $G(2^n)$, which may be faster in hardware implementations
 - We refrained from details as this would not have brought many different insights!
- Elliptic curves and similar algebraic groups are an active field of research and allow other advanced applications e.g.:
 - So-called Edwards Curves are currently discussed, as they seem more robust against side-channel attacks (e.g. [BLR08])
 - Bilinear pairings allow
 - Programs to verify that they belong to the same group, without revealing their identity (Secret handshakes, e.g. [SM09])
 - Public keys to be structured, e.g. use "Alice" as public key for Alice (Identity based encryption, foundations in [BF03])
- Before deploying elliptic curve cryptography in a product, make sure to not violate patents, as there are still many valid ones in this field!

Network Security (WS 22/23): 04 - Asymmetric Cryptography

55

Recharged te Conclusion

TELEMATIK

Rechnernetze

- □ Asymmetric cryptography allows to use two different keys for:
 - Encryption / Decryption
 - Signing / Verifying
- □ The most practical algorithms that are still considered to be secure are:
 - □ RSA, based on the difficulty of factoring and solving discrete logarithms
 - Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
 - ElGamal, like DH based on the difficulty of computing discrete logarithms
- As their security is entirely based on the difficulty of certain mathematical problems, algorithmic advances constitute their biggest threat
- Practical considerations:
 - Asymmetric cryptographic operations are about magnitudes slower than symmetric ones
 - □ Therefore, they are often not used for encrypting / signing bulk data
 - Symmetric techniques are used to encrypt / compute a cryptographic hash value and asymmetric cryptography is just used to encrypt a key / hash value

Recommendational References

[Bre88a]	D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.
[Cor90a]	T. H. Cormen, C. E. Leiserson, R. L. Rivest. <i>Introduction to Algorithms.</i> The MIT Press, 1990.
[DH76]	W. Diffie, M. E. Hellman. <i>New Directions in Cryptography.</i> IEEE Transactions on Information Theory, IT-22, pp. 644-654, 1976.
[EIG85a]	T. ElGamal. <i>A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms.</i> IEEE Transactions on Information Theory, Vol.31, Nr.4, pp. 469-472, July 1985.
[Kob87a]	N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.
[Men93a]	A. J. Menezes. <i>Elliptic Curve Public Key Cryptosystems</i> . Kluwer Academic Publishers, 1993.
[Niv80a]	I. Niven, H. Zuckerman. <i>An Introduction to the Theory of Numbers.</i> John Wiley & Sons, 4 th edition, 1980.
[RSA78]	R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital Signatures

and Public Key Cryptosystems. Communications of the ACM, February 1978.

Network Security (WS 22/23): 04 - Asymmetric Cryptography

57

TELEMATIK Rechnernetze

Additional References

- [KAFL10] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos, P. Gaudry, A. Kruppa, P. Montgomery, D. Osvik, H. Te Riele, A.Timofeev, P. Zimmermann. *Factorization of a 768-bit RSA modulus*. In Proceedings of the 30th annual conference on Advances in cryptology (CRYPTO'10), 2010.
- [LM10] M. Lochter, J. Merkle. *Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation*, IETF Request for Comments: 5639, 2010.
- [NIST99] NIST. Recommended Elliptic Curves for Federal Government Use. 1999.
- [NIST12] NIST. Recommendation for Key Management: Part 1: General (Revision 3). NIST Special Publication 800-57. 2012.
- [Ko87] N. Koblitz. *Elliptic Curve Cryptosystems.* Mathematics of Computation, Vol. 48, No. 177 (Jan., 1987), pp. 203-209. 1987.
- [BBP12] B.B. Brumley, M. Barbosa, D. Page, F. Vercauteren. *Practical realisation and elimination of an ECC-related software bug attack.* Cryptology ePrint Archive: Report 2011/633 and CT-RSA Pages 171-186. 2012.
- [BT11] B.B. Brumley, N. Tuveri. Remote timing attacks are still practical. Proceedings of the 16th European conference on Research in computer security (ESORICS'11). Pages 355-371. 2011.

Additional References

TELEMATIK

Rechnernetze

- [BLR08] D. Bernstein, T. Lange, R. Rezaeian Farashahi. *Binary Edwards Curves.* Cryptographic Hardware and Embedded Systems (CHES). Pages 244-265. 2008.
- [NIST09] NIST. Digital Signature Standard (DSS). FIPS PUB 186-3. 2009.
- [SM09] A. Sorniotti, R. Molva. *A provably secure secret handshake with dynamic controlled matching.* Computers & Security, 2009.
- [BF03] D. Boneh, M. Franklin. *Identity-Based Encryption from the Weil Pairing.* SIAM J. of Computing, Vol. 32, No. 3, Pages 586-615, 2003.
- [Sch85] R. Schoof. *Elliptic Curves over Finite Fields and the Computation of Square Roots mod p.* Math. Comp., 44(170). Pages 483–494. 1985.

