
1
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Network Security
Chapter 6

Random Number Generation

2
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Tasks of Key Management (1)

 Generation:
 It is crucial to security, that keys are generated with a truly random or at

least a pseudo-random generation process (see below)
 Otherwise, an attacker might reproduce the key generation process and

easily find the key used to secure a specific communication
 Distribution:

 Distribution of some initial keys usually has to be performed manually / out
of band

 Session key distribution is generally performed during an authentication
exchange

 Examples: Diffie-Hellman, Otway-Rees, Kerberos, X.509
 Storage:

 Keys, especially authentication keys, should be securely stored:
 either encrypted with a hard-to-guess pass-phrase, or better
 in a secure device like a smart-card

3
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Tasks of Key Management (2)

 Revocation:
 If a key has been compromised, it should be possible to revoke that key,

so that it can no longer be misused (cf. X.509)
 Destruction:

 Keys that are no longer used (e.g. old session keys) should be safely
destroyed (cf. media security in lecture 1)

 Recovery:
 If a key has been lost (e.g. defect smart-card, floppy, accidentally erased)

it should be possible to recover it, in order to to avoid loss of data
 Key recovery is not to be mixed up with key escrow (see below):

 Escrow:
 Mechanisms and architectures that shall allow government agencies (and

only them) to obtain session keys in order to be able to eavesdrop on
communications / to read stored data for law enforcement purposes

 “If I can get my key back it’s key recovery,
 if you can get my key back it’s key escrow...” :o)

4
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Random and Pseudo-Random Number Generation (1)

 Definition:

A random bit generator is a device or algorithm, which outputs a
sequence of statistically independent and unbiased binary digits.

 Remark:
 A random bit generator can be used to generate uniformly distributed

random numbers, e.g. a random integer in the interval [0, n] can be
obtained by generating a random bit sequence of length lg n + 1 and
converting it into a number. If the resulting integer exceeds n it can be
discarded and the process is repeated until an integer in the desired range
has been generated.

 Definition:

A pseudo-random bit generator (PRBG) is a deterministic algorithm
which, given a truly random binary sequence of length k, outputs a
binary sequence of length m >> k which “appears” to be random.

The input to the PRBG is called the seed and the output is called a
pseudo-random bit sequence.

5
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Random and Pseudo-Random Number Generation (2)

 Remarks:
 The output of a PRBG is not random, in fact the number of possible output

sequences of length m is at most all small fraction 2k / 2m, as the PRBG
produces always the same output sequence for one (fixed) seed

 The motivation for using a PRBG is that it might be too expensive to
produce true random numbers of length m, e.g. by coin flipping, so just a
smaller amount of random bits is produced and then a pseudo-random bit
sequence is produced out of the k truly random bits

 In order to gain confidence in the “randomness” of a pseudo-random
sequence, statistical tests are conducted on the produced sequences

 Example:
 A linear congruential generator produces a pseudo-random sequence of

numbers y1, y2, ... According to the linear recurrence

yi = a  yi-1 + b mod q

with a, b, q being parameters characterizing the PRBG
 Unfortunately, this generator is predictable even when a, b and q are

unknown, and should, therefore, not be used for cryptographic purposes

6
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Random and Pseudo-Random Number Generation (3)

 Security requirements of PRBGs for use in cryptography:
 As a minimum security requirement the length k of the seed to a PRBG

should be large enough to make brute-force search over all seeds
infeasible for an attacker

 The output of a PRBG should be statistically indistinguishable from truly
random sequences

 The output bits should be unpredictable for an attacker with limited
resources, if he does not know the seed

 Definition:

A PRBG is said to pass all polynomial-time statistical tests, if no
deterministic polynomial-time algorithm can distinguish between an
output sequence of the generator and a truly random sequence of the
same length with probability significantly greater than 0.5
 Polynomial-time algorithm means, that the running time of the algorithm is

bound by a polynomial in the length m of the sequence

7
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Random and Pseudo-Random Number Generation (4)

 Definition:

A PRBG is said to pass the next-bit test, if there is no deterministic
polynomial-time algorithm which, on input of the first m bits of an
output sequence s, can predict the (m + 1)st bit sm+1 of the output
sequence with probability significantly greater than 0.5

 Theorem (universality of the next-bit test):

A PRBG passes the next-bit test


it passes all polynomial-time statistical tests
 For the proof, please see section 12.2 in [Sti95a]

 Definition:

A PRBG that passes the next-bit test – possibly under some plausible
but unproved mathematical assumption such as the intractability of the
factoring problem for large integers – is called a cryptographically
secure pseudo-random bit generator (CSPRBG)

8
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Random Number Generation (1)

 Hardware-based random bit generators are based on physical
phenomena, as:
 elapsed time between emission of particles during radioactive decay,
 thermal noise from a semiconductor diode or resistor,
 frequency instability of a free running oscillator,
 the amount a metal insulator semiconductor capacitor is charged during a

fixed period of time,
 air turbulence within a sealed disk drive which causes random fluctuations

in disk drive sector read latencies, and
 sound from a microphone or video input from a camera
 the state of an odd number of circular connected NOT gates

 A hardware-based random bit generator should ideally be enclosed in
some tamper-resistant device and thus shielded from possible
attackers

9
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Random Number Generation (2)

 Software-based random bit generators, may be based upon
processes as:
 the system clock,
 elapsed time between keystrokes or mouse movement,
 content of input- / output buffers
 user input, and
 operating system values such as system load and network statistics

 Ideally, multiple sources of randomness should be “mixed”, e.g. by
concatenating their values and computing a cryptographic hash value
for the combined value, in order to avoid that an attacker might guess
the random value
 If, for example, only the system clock is used as a random source, than an

attacker might guess random-numbers obtained from that source of
randomness if he knows about when they were generated

10
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Random Number Generation (3)

 De-skewing:
 Consider a random generator that produces biased but

uncorrelated bits, e.g. it produces 1’s with probability p  0.5 and
0’s with probability 1 - p, where p is unknown but fixed

 The following technique can be used to obtain a random sequence
that is uncorrelated and unbiased:

 The output sequence of the generator is grouped into pairs of
bits

 All pairs 00 and 11 are discarded
 For each pair 10 the unbiased generator produces a 1 and for

each pair 01 it produces a 0
 Another practical (although not provable) de-skewing technique is

to pass sequences whose bits are correlated or biased through a
cryptographic hash function such as MD5 or SHA-1

11
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Statistical Tests for Random Numbers

 The following tests allow to check, if a generated random or pseudo-
random sequence inhibits certain statistical properties:
 Monobit Test: Are there equally many 1’s like 0’s?
 Serial Test (Two-Bit Test): Are there equally many 00-, 01-, 10-, 11-pairs?
 Poker Test: Are there equally many sequences ni of length q having the

same value with q such that m / q  5  (2q)
 Runs Test: Are the numbers of runs (sequences containing only either 0’s

or 1’s) of various lengths as expected for random numbers?
 Autocorrelation Test: Are there correlations between the sequence and

(non-cyclic) shifted versions of it?
 Maurer’s Universal Test: Can the sequence be compressed?
 NIST SP 800-22: Standardized test suite, includes above & more

advanced tests

 The above descriptions just give the basic ideas of the tests. For a
more detailed and mathematical treatment, please refer to sections
5.4.4 and 5.4.5 in [Men97a]

12
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Secure Pseudo-Random Number Generation (1)

 There are a number of algorithms, that use cryptographic hash
functions or encryption algorithms for generation of cryptographically
secure pseudo random numbers
 Although these schemes can not be proven to be secure, they seem

sufficient for most practical situations
 One such approach is the ANSI X9.17 generator:

 Input: a random and secret 64-bit seed s, integer m, and 3-DES key K
 Output: m pseudo-random 64-bit strings y1, y2, ... Ym

1.) q = E(K, Date_Time)
2.) For i from 1 to m do

2.1) xi = E(K, (q  s)

2.2) s = E(K, (xi  q)

3.) Return(x1, x2, ... xm)

 This method is a U.S. Federal Information Processing Standard (FIPS)
approved method for pseudo-randomly generating keys and initialization
vectors for use with DES

13
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Secure Pseudo-Random Number Generation (2)

 The RSA-PRBG is a CSPRBG under the assumption that the RSA
problem is intractable:
 Output: a pseudo-random bit sequence z1, z2, ..., zk of length k

1.) Setup procedure:
Generate two secret primes p, q suitable for use with RSA
Compute n = p  q and  = (p - 1)  (q - 1)
Select a random integer e such that 1 < e <  and gcd(e, ) = 1

2.) Select a random integer y0 (the seed) such that y0  [1, n]

3.) For i from 1 to k do

3.1) yi = (yi-1)e mod n

3.2) zi = the least significant bit of yi

 The efficiency of the generator can be slightly improved by taking the last j
bits of every yi, with j = c  lg(lg(n)) and c is a constant

 However, for a given bit-length m of n, a range of values for the constant c
such that the algorithm still yields a CSPRBG has not yet been determined

14
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Secure Pseudo-Random Number Generation (3)

 The Blum-Blum-Shub-PRBG is a CSPRBG under the assumption that
the integer factorization problem is intractable:
 Output: a pseudo-random bit sequence z1, z2, ..., zk of length k

1.) Setup procedure:

Generate two large secret and distinct primes p, q
such that p, q are each congruent 3 modulo 4 and let n = p  q

2.) Select a random integer s (the seed) such that s  [1, n - 1]
such that gcd(s, n) = 1 and let y0 = s2 mod n

3.) For i from 1 to k do

3.1) yi = (yi-1)2 mod n

3.2) zi = the least significant bit of yi

 The efficiency of the generator can be improved using the same method
as for the RSA generator with similar constraints on the constant c

15
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

Secure Pseudo-Random Number Generation (4)

 Dual Elliptic Curve Deterministic Random Bit Generator:
 Based on the intractability of the elliptic curve discrete logarithm problem
 Simplified version:

 State t is multiplied with a generator P, the x-value of the new point
becomes t’

 Multiplied with a different point Q r bits of output can be generated,
number of bits depend on curve (ranging between 240 and 504 bits)

 Part of NIST 800-90A standard
 Security:

 It has been shown that if P is chosen to be eQ for a constant e then
attackers can derive the state t

 We do not know how the predefined points P and Q in NIST 800-90A
are derived, so be careful 

t ●P ●Qx value x value r bits

16
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 06 – Random Number Generation

CSPRNG security is a big thing!

 In September 2006 Debian was accidentally modified that only the
process ID was used to feed the OpenSSL CSPRNG
 Only 32,768 possible values!
 Was not discovered until May 2008

 A scan of about 23 million TLS and SSH hosts showed that
 At least 0.34% of the hosts shared keys because of faulty RNGs
 0.50% of the scanned TLS could be compromised because of low

randomness
 and 1.06% of the SSH hosts…

 Supervise your CSPRNG!
 Do not generate random numbers right after booting your system
 Use blocking RNGs, i.e. those that do not continue until having enough

entropy

