
1
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Network Security
Chapter 7

Cryptographic Protocols

2
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Introduction

 Definition:

A cryptographic protocol is defined as a series of steps and message
exchanges between multiple entities in order to achieve a specific
security objective

 Properties of a protocol (in general):
 Everyone involved in the protocol must know the protocol and all of the

steps to follow in advance

 Everyone involved in the protocol must agree to follow it

 The protocol must be unambiguous, that is every step is well defined and
there is no chance of misunderstanding

 The protocol must be complete, i.e. there is a specified action for every
possible situation

 Additional property of a cryptographic protocol:
 It should not be possible to do or learn more than what is specified in the

protocol

3
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Applications of Cryptographic Protocols

 Key exchange
 Authentication

 Data origin authentication
 Entity authentication

 Combined authentication and key exchange
 Secret splitting (all parts needed for reconstruction)
 Secret sharing (m out of n parts needed for reconstruction)
 Time-stamping
 Key escrow (ensuring that only an authorized entity can recover keys)
 Zero-Knowledge proofs (proof of knowledge of an information without

revealing the information)
 Blind signatures (useful for privacy-preserving time-stamping services)
 Secure elections
 Electronic money

treated in
this course

4
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Key Exchange

 The Diffie-Hellman protocol introduced in section 2.1.2 is our first
example of a cryptographic protocol for key exchange

 Please note, that it does not realize any authentication:
 Neither Alice nor Bob know after a protocol run, with whom they have

exchanged a key
 As this pure key exchange without authentication can not even guarantee

privacy of a communication following the exchange, it has to be combined
with authentication

 However, this separation of key exchange and authentication of the
exchange has a big advantage, as it allows to guarantee the property of
perfect forward secrecy (PFS):
 If a key exchange ensures PFS, then a compromise of one key in the future

will not allow to compromise any data that has been protected with other
keys exchanged before that compromise.

 Example: imagine Alice and Bob both sign the data exchanged to compute
sk with their private keys. Even the compromise of a private key in the future
will not allow to decrypt recorded data that has been protected with sk.

5
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Data Origin Authentication

Definition:

Data origin authentication is the security service that enables entities
to verify that a message has been originated by a particular entity and
that it has not been altered afterwards

A synonym for this service is data integrity
 The relation of data integrity to cryptographic protocols is twofold:

 There are cryptographic protocols to ensure data integrity. As a rule they
comprise just one protocol step and are, therefore, not very “exciting”:

 Example 1: assume, that everybody knows Alice’s public RSA key and
can be sure to know really Alice’s key, then Alice can insure data
integrity of her messages by encrypting them with her private key.

 Example 2: Alice can as well compute an MDC over her message and
append the MDC encrypted with her private key to the message

 Data integrity of messages exchanged is often an important property in
cryptographic protocols, so data integrity is a building block to
cryptographic protocols

6
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Entity Authentication (1)

Definition:
Entity authentication is the security service, that enables
communication partners to verify the identity of their peer entities.

 Entity authentication is the most fundamental security service, as all
other security services build upon it

 In general it can be accomplished by various means:
 Knowledge: e.g. passwords
 Possession: e.g. physical keys or cards
 Immutable characteristic: e.g. biometric properties like fingerprint, etc.
 Location: evidence is presented that an entity is at a specific place

(example: people check rarely the authenticity of agents in a bank)
 Delegation of authenticity: the verifying entity accepts, that somebody who

is trusted has already established authentication
 In communication networks, direct verification of the above means is

difficult or insecure which motivates the need for cryptographic
protocols

7
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Entity Authentication (2)

 The main reason, why entity authentication is more than an exchange
of (data-origin-) authentic messages is timeliness:
 Even if Bob receives authentic messages from Alice during a

communication, he can not be sure, if:
 Alice is actually participating in the communication in this specific

moment, or if
 Eve is replaying old messages from Alice

 This is of specific significance, when authentication is only performed at
connection-setup time:

 Example: transmission of a (possibly encrypted) PIN when logging in
 Two principle means to ensure timeliness in cryptographic protocols:

 Timestamps (require more or less synchronized clocks)
 Random numbers (challenge-response exchanges)

 Most authentication protocols do also establish a secret session key
for securing the session following the authentication exchange

8
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Entity Authentication (3)

 Two main categories of protocols for entity authentication:
 Arbitrated authentication: an arbiter, also called trusted third party (TTP) is

directly involved in every authentication exchange
 Advantages:

– This allows two parties A and B to authenticate to each other without
knowing any pre-established secret

– Even if A and B do not know each other, symmetric cryptography can be
used

 Drawbacks:
– The TTP can become a bottleneck, availability of TTP is critical
– The TTP can monitor all authentication activity

 Direct authentication: A and B directly authenticate to each other
 Advantages: no online participation of a third party is required and no

possible performance bottleneck is introduced
 Drawbacks: requires asymmetric cryptography or pre-established

secret keys

9
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Some Notation...

Notation Meaning

A

CAA

rA

tA

(m1, ..., mn)

A B: m

KA, B

Name of A, analogous for B, E, TTP, CA

Certification Authority of A (explained later)

Random value chosen by A

Timestamp generated by A

Concatenation of messages m1, ..., mn

A sends message m to B

Secret key, only known to A and B

Notation of Cryptographic Protocols (1)

10
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Some Notation...

Notation Meaning

+KA

-KA

{m}K

H(m)

A[m]

Cert-CKCA
(+KA)

CA<<A>>

Public key of A

Private key of A

Message m encrypted with key K, synonym for E(K, m)

MDC over message m, computed with function H

Shorthand notation for (m, {H(m)}-KA
)

Certificate of CA for public key +KA of A, signed with

private certification key -CKCA (explained later)

Shorthand notation for Cert-CKCA
(+KA)

Notation of Cryptographic Protocols (2)

11
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

The Needham-Schroeder Protocol (1)

 Invented in 1978 by Roger Needham and Michael Schroeder
[Nee78a]

 The protocol relies on symmetric encryption and makes use of a
trusted third party (TTP)

 Assume that TTP shares secret keys KA,TTP and KB,TTP with Alice and
Bob, respectively:
 A generates a random number rA and sends the following message:

1.) A TTP: (A, B, rA)

 TTP generates a session key KA,B for secure communication between A
and B and answers to A:
2.) TTP A: {rA, B, KA,B, {KA,B, A}KB,TTP

}KA,TTP

 A decrypts the message and extracts KA,B. She confirms that rA is identical
to the number generated by her in the first step, thus she knows the reply
is a fresh reply from TTP. Then she sends to B:

3.) A B: {KA,B, A}KB,TTP

12
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

The Needham-Schroeder Protocol (2)
 Needham-Schroeder protocol definition (continued):

 Bob decrypts the message and obtains KA,B. He then generates a random
number rB and answers to Alice:

4.) B A: {rB}KA,B

 Alice decrypts the message, computes rB - 1 and answers with:

5.) A B: {rB-1}KA,B

 Bob decrypts the message and verifies that it contains rB - 1

 Discussion:
 The exchange of rB and rB-1 is supposed to ensure that an attacker, trying to

impersonate Alice, can not perform a full protocol run with replayed messages
 However, as old session keys KA,B remain valid, an attacker, Eve, who manages to get

to know a session key KA,B can later use this to impersonate as Alice:

1.) E B: {KA,B, A}KB,TTP

2.) B A: {rB}KA,B
 Eve has to intercept this message

3.) E B: {rB-1}KA,B

So, even though she doesn’t know KA,TTP nor KB,TTP Eve impersonates as Alice!

13
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

The Otway-Rees Protocol (1)

 The security problem described above as well as some others were
addressed by Needham and Schroeder. Their solution [Nee87a] is
essentially the same like the one proposed by Otway and Rees in the
same journal [Otw87a]:
 Alice generates a message containing an index number iA, her name A,

Bobs name B, and the same information plus an additional random
number rA encrypted with the key KA,TTP she shares with TTP, and sends
this message to Bob:
1.) A B: (iA, A, B, {rA, iA, A, B}KA,TTP

)

 Bob generates a random number rB, encrypts it together with iA, A, and B
using the key KB,TTP he shares with TTP and sends the message to TTP:

2.) B TTP: (iA, A, B, {rA, iA, A, B}KA,TTP
 , {rB, iA, A, B}KB,TTP

)

 TTP generates a new session key KA,B and creates two encrypted
messages, one for Alice and one for Bob, and sends them to Bob:

3.) TTP B: (iA, {rA, KA,B}KA,TTP
 , {rB, KA,B}KB,TTP

)

14
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

The Otway-Rees Protocol (2)

 Otway-Rees protocol definition (continued):
 Bob decrypts his part of the message, verifies rB and sends Alice’s part of

the message to her:

4.) B A: (iA, {rA, KA,B}KA,TTP
)

 Alice decrypts the message and checks if iA and rA have not changed
during the exchange. If not, she can be sure that TTP has send her a fresh
session key KA,B for communication with Bob. If she now uses this key in
an encrypted communication with Bob, she can be sure of his authenticity.

 Discussion:
 The index number iA prevents against replay attacks. However, this

requires that TTP checks if iA is bigger than the last iA he received from
Alice.

 As TTP will just generate the two messages if both parts of the message
he receives contain the same index number iA and names A, B, Alice and
Bob can be sure that both of them have authenticated to TTP during the
protocol run.

15
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Kerberos (1)

 Kerberos is an authentication and access control service for work-
station clusters that was designed at the MIT during the late 1980s

 Design goals:
 Security: eavesdroppers or active attackers should not be able to obtain

the necessary information to impersonate a user when accessing a service
 Reliability: as every use of a service requires prior authentication, Kerberos

should be highly reliable and available
 Transparency: the authentication process should be transparent to the user

beyond the requirement to enter a password
 Scalability: the system should be able to support a large number of clients

and servers
 The underlying cryptographic primitive of Kerberos is symmetric

encryption (Kerberos V. 4 uses DES, V. 5 allows other algorithms)
 A good tutorial on the reasoning beyond the Kerberos design is given

in [Bry88a], that develops the protocol in a series of fictive dialogues

16
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Kerberos (2)

 The basic usage scenario of Kerberos is a user, Alice, who wants to
access one or more different services, that are provided by different
servers S1, S2, ... connected over an insecure network

 Kerberos deals with the following security aspects of this scenario:
 Authentication: Alice will authenticate to an authentication server (AS) who

will provide a temporal permit to demand access for services. This permit
is called ticket-granting ticket (TicketTGS) and is comparable to a temporal
passport.

 Access control: by presenting her TicketTGS Alice can demand a ticket
granting server (TGS) to obtain access for a service provided by a specific
server S1. The TGS decides if the access will be permitted and answers
with a service granting ticket TicketS1 for server S1.

 Key exchange: the authentication server provides a session key for
communication between Alice and TGS and the TGS provides a session
key for communication between Alice and S1. The use of these session
keys also serves for authentication purposes.

17
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Kerberos (3)

Kerberos

Authentication
Server

(user data)

Ticket Granting
Server

(access data)

1. Request TGT

2. TGT, Session Key

3. Request SGT
4. SGT, Session Key
5. Request Service

6. Service Authenticator
Server

Accessing a Service with Kerberos - Protocol Overview

18
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Kerberos Version 4 (4)

 The user logs on his workstation and requests to access a service:
 The workstation represents him in the Kerberos protocol and sends the

first message to the authentication server AS, containing his name, the
name of an appropriate ticket granting server TGS and a timestamp tA:

1.) A AS: (A, TGS, tA)

 The AS verifies, that A may authenticate itself to access services,
generates the key KA out of A’s password (which is known to him),
extracts the workstation address AddrA of the request, creates a ticket
granting ticket TicketTGS and a session key KA,TGS, and sends the
following message to A:

2.) AS A: {KA,TGS, TGS, tAS, LifetimeTicketTGS, TicketTGS}KA

with TicketTGS = {KA,TGS, A, AddrA, TGS, tAS, LifetimeTicketTGS}KAS,TGS

 Upon receipt of this message, the workstation asks Alice to type in her
password, computes the key KA from it, and uses this key to decrypt
the message. If Alice does not provide her “authentic” password, the
extracted values will be “garbage” and the rest of the protocol will fail

19
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Kerberos Version 4 (5)
 Alice creates a so-called authenticator and sends it together with the

ticket-granting ticket and the name of server S1 to TGS:
3.) A TGS: (S1, TicketTGS, AuthenticatorA,TGS)

with AuthenticatorA,TGS = {A, AddrA, t’A}KA,TGS

 Upon receipt, TGS decrypts TicketTGS, extracts the key KA,TGS from it
and uses this key to decrypt AuthenticatorA,TGS. If the name and
address of the authenticator and the ticket are matching and the
timestamp t’A is still fresh, it checks if A may access the service S1 and
creates the following message:

4.) TGS A: {KA,S1, S1, tTGS, TicketS1}KA,TGS

with TicketS1 = {KA,S1, A, AddrA, S1, tTGS, LifetimeTicketS1}KTGS,S1

 Alice decrypts the message and does now hold a session key for
secure communication with S1. She now sends a message to S1 to
show him her ticket and a new authenticator:

5.) A S1: (TicketS1, AuthenticatorA,S1)

with AuthenticatorA,S1 = {A, AddrA, t’’A}KA,S1

20
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Kerberos Version 4 (6)

 Upon receipt, S1 decrypts the ticket with the key KTGS,S1 he shares with
TGS and obtains the session key KA,S1 for secure communication with
A. Using this key he checks the authenticator and responds to A:

6.) S1 A: {t’’A + 1}KA,S1

 By decrypting this message and checking the contained value, Alice
can verify, that she is really communicating with S1, as only he
(besides TGS) knows the key KTGS,S1 to decrypt TicketS1 which
contains the session key KA,S1, and so only he is able to decrypt
AuthenticatorA,S1 and to answer with t’’A + 1 encrypted with KA,S1

 The protocol described above is the Kerberos Version 4 dialogue.
 A number of deficiencies have been found in this protocol, so a new

Version 5 of the protocol has been defined, which will be discussed later…
 Where is the problem, by the way?

21
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Multiple Domain Kerberos (1)

 Consider an organization with workstation clusters on two different
sites, and imagine that user A of site 1 wants to use a server of site 2:
 If both sites do use their own Kerberos servers and user databases

(containing passwords) then there are in fact two different domains, also
called realms in Kerberos terminology.

 In order to avoid that user A has to be registered in both realms, Kerberos
allows to perform an inter-realm authentication.

 Inter-realm authentication requires, that the ticket granting servers of
both domains share a secret key KTGS1,TGS2

 The basic idea is, that the TGS of another realm is viewed as a normal
server for which the TGS of the local realm can hand out a ticket.

 After obtaining the ticket for the remote realm, Alice requests a service
granting ticket from the remote TGS

 However, this implies that remote realm has to trust the Kerberos
authentication service of the home domain of a “visiting” user!

 Scalability problem: n realms require n (n -1) / 2 secret keys!

22
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Multiple Domain Kerberos (2)

Kerberos

Authentication
Server

(user data)

Ticket Granting
Server

(access data)

1. Request TGT

2. TGT, Session Key

3. Request TGT
rem

4. TGT
rem, Session Key

5. Request SGT

6. SG
T, Session Key

Server

8. S
e

rv ic e
 A

u th
e

n t ic a
t or

7. R
e

q
ue

s t S
e r vi ce

Kerberos

Authentication
Server

(user data)

Ticket Granting
Server

(access data)

Realm 1

Realm 2

23
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Multiple Domain Kerberos (3)

 Messages exchanged during a multiple domain protocol run:
1.) A AS1: (A, TGS1, tA)

2.) AS1 A: {KA,TGS1, TGS1, tAS, LifetimeTicketTGS1, TicketTGS1}KA

with TicketTGS1 = {KA,TGS1, A, AddrA, TGS1, tAS, LifetimeTicketTGS1}KAS,TGS1

3.) A TGS1: (TGS2, TicketTGS1, AuthenticatorA,TGS1)

with AuthenticatorA,TGS1 = {A, AddrA, t’A}KA,TGS1

4.) TGS1 A: {KA,TGS2, TGS2, tTGS1, TicketTGS2}KA,TGS1

with TicketTGS2 = {KA,TGS2, A, AddrA, TGS2, tTGS1, LifetimeTicketTGS2}KTGS1,TGS2

5.) A TGS2: (S2, TicketTGS2, AuthenticatorA,TGS2)

with AuthenticatorA,TGS2 = {A, AddrA, t’’A}KA,TGS2

6.) TGS2 A: {KA,S2, S2, tTGS2, TicketS2}KA,TGS2

with TicketS2 = {KA,S2, A, AddrA, S2, tTGS2, LifetimeTicketS2}KTGS2,S2

7.) A S2: (TicketS2, AuthenticatorA,S2)

with AuthenticatorA,S2 = {A, AddrA, t’’’A}KA,S2

8.) S2 A: {t’’’A + 1}KA,S2

24
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Kerberos Version 5 (1)

 Last standard from 2005 (RFC 4120)
 Developed in response to weaknesses that became known to

Kerberos v4
 Includes explicit checksums to verify that messages have not been altered
 Supports multiple ciphers (others than the insecure DES)

 Unified message format – Messages to authentications server and
ticket granting server are very similar

 Flexible ASN.1 encoding of messages, allows later extension
 In the following only a simplified version is shown, way more features

are standardized, e.g.:
 Client-to-Client mutual authentication
 Pre-authenticated Tickets
 Renewing Tickets
 Multidomain Kerberos

25
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Kerberos Version 5 (2)

 The authentication dialog in Kerberos version 5 is similar to version 4
 The Authentication Service Exchange: For initial contact the client A

not only sends names and time stamps but also a nonce n, which
helps to avoid replays if the time changed; it is also possible to claim
multiple addresses

1.) A AS: (A, TGS, tstart, tend, n, AddrA, …)

 The response includes a plaintext ticket and encrypted information:
2.) AS A: (A, TicketTGS, {KA,TGS, LastRequest, n, texpire, tAS, tstart, tend, trenew,

TGS, AddrA}KA
)

TicketTGS = (TGS, {KA,TGS, A, transited, tAS, tstart, tend, trenew, AddrA,
restrictions}KAS,TGS

)

LastRequest indicates the last login to be presented to the user

transited contains the trust chain Multidomain Kerberos

restrictions for the user may be handed to the TGS and servers
texpire and tend contain different times to allow for renewing of tickets (in
which the start and end time may simply be updated

26
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Kerberos Version 5 (3)

 The dialog to the TGS is harmonized with the initial dialog: It additionally
contains tickets and an authenticator that proves that A knows KA,TGS

3.) A TGS: (A, S1, tstart, tend, n’, AddrA, AuthenticatorA,TGS, Tickets,…)

with AuthenticatorA,TGS = { A, CheckSum, tA’, KA,TGS
’, Seq#,… }KA,TGS

Note: The authenticator contains a cryptographic checksum now!
 The reply to A is entirely analog to message 2:

4.) TGS A: (A, TicketS1, {KA,S1, LastRequest, n’, texpire, tTGS, tstart, tend,
trenew, S1, AddrA}KA,TGS

)

27
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Kerberos Version 5 (4)

 The exchange with the server is also similar to Version 4, but with the
authenticator an explicit checksum possible:

5.) A S1: (TicketS1, AuthenticatorA,S1)

with AuthenticatorA,S1 = {A, CheckSum, tA’’, KA,S1
’, Seq#, …}KA,S1

 Upon receipt, S1 decrypts the ticket with the key KTGS,S1 he shares with
TGS and obtains the session key KA,S1 for secure communication with
A. Using this key he checks the authenticator and responds to A:

6.) S1 A: {tS1, KA,S1
’, Seq#,…}KA,S1

 All in all the dialog fixes several potential vulnerabilities, while others
remain:
 Sequence numbers and nonces allow for additional replay checking if time

base changes
 Explicit checksums prevent modification of data within tickets
 Central servers are still potential single-points-of-failure
 Still some time synchronization is required for initial exchanges

28
© Dr.-Ing G. Schäfer

Advanced methods for password authentication (1)

 All shown protocols have a common weakness:
 Passwords must be easy to remember and easy to enter
➡ Low entropy
 Attackers may quick try all possible combinations
 Offline, using graphic cards, cloud computers, special hardware…
 Asymmetric situation

 Possible solutions:
 Key derivation functions

 Make brute-force attacks more difficult by hashing extremely often
 Requires also effort by legitimate devices
 Only linear security gain
 Better functions use a lot of memory to render attacks with graphic

cards and special hardware infeasible
 Password Authenticated Key Exchange (PAKE)

 Covered in the following

Network Security (WS 22/23): 07 – Cryptographic Protocols

29
© Dr.-Ing G. Schäfer

Advanced methods for password authentication (2)

 Password Authenticated Key Exchange (PAKE) - Fundamental idea
 Perform a key exchange with asymmetric cryptography
 Authenticate peers with a password using a Zero Knowledge Proof
 Peers are only able to tell that passwords matched or not
 No further information to perform efficient bruteforce searches on

 Would require solving difficult problems, e.g. some sort of DH problem
 Renders offline attacks infeasible

 Online attacks possible, but may be discovered

Network Security (WS 22/23): 07 – Cryptographic Protocols

30
© Dr.-Ing G. Schäfer

PAKE schemes: EKE (1)

 A simple first protocol is Encrypted Key Exchange (EKE) [BM92]
 Dialog starts with A generating a single use private/public key pair and

sending the public key +Kar encrypted with the password KA,B to B

1.) A B: A, { +Kar } KA,B

 B choses a symmetric session key Kr and sends it encrypted with the
public key and the password back to A
2.) B A: {{ Kr } +Kar

 } KA,B

 A and B now share a common session key and proof knowledge about
it by exchanging nonces
3.) A B: { rA } Kr

4.) B A: { rA, rB} Kr

5.) A B: { rB } Kr

 After this step it is assured that both must have known KA,B and there
has been no man-in-the-middle attack

Network Security (WS 22/23): 07 – Cryptographic Protocols

31
© Dr.-Ing G. Schäfer

PAKE schemes: EKE (2) – Security discussion

 Resistance against offline attacks depends on +Kar being
indistinguishable from random numbers
 What does this mean for ECC?
 For RSA authors suggest e being encrypted, n being send in plaintext

 n has no small prime factors and is therefore distinguishable from
random numbers

 Still insecure against man-in-the-middle attacks as attackers may
choose n with special properties (e.g. p – 1 and q – 1 divisible by 3)

 Answer from B is distinguishable from random numbers
 Details can be found in [Par97] or [SR14]

 Does not offer perfect forward secrecy…

 But there is another protocol by the authors called DH-EKE

Network Security (WS 22/23): 07 – Cryptographic Protocols

32
© Dr.-Ing G. Schäfer

PAKE schemes: DH-EKE (1)

 DH-EKE is basically DH exchange with clever authentication

 A sends DH exchange encrypted with the password KA,B

1.) A B: { gra mod p } KA,B

 B answers with his part of the DH exchange (encrypted with the
password KA,B) and uses the session key KS = gra·rb mod p to send an
encrypted nonce cb

2.) B A: { grb mod p } KA,B
{ cb } Ks

 Both parties proof their knowledge of KS

3.) A B: { ca || cb } Ks

4.) B A: { ca } Ks

Network Security (WS 22/23): 07 – Cryptographic Protocols

33
© Dr.-Ing G. Schäfer

PAKE schemes: DH-EKE (2) – Security discussion

 Again encrypted data must be indistinguishable from random data
 The value p must be chosen wisely, i.e., s.t. p - 1 is close to 28·n for

sufficiently large natural numbers n
 To easily prevent small group attacks (p – 1) / 2 should also be prime
 ECC is still difficult to realize

 Offers perfect forward secrecy

 All in all nice scheme, but used to be patented
 No wide adaptation
 Led to the development of numerous different schemes

Network Security (WS 22/23): 07 – Cryptographic Protocols

34
© Dr.-Ing G. Schäfer

PAKE schemes: SRP (1)

 Most widely available protocol today: Secure Remote Password (SRP)
 Multiple versions: Here SRP-6a [Wu02]

 Initialization:
 Server B chooses a random number sA,B

 calculates x = H(sA,B || username || password) and v = gx mod p

 Users are authenticated by (username, sA,B, v)

 Server does not need store the password ➡ ︎cannot easily be obtained if
server is compromised!

 Server can also not use these values to impersonate user at other servers
 Property is called augmented PAKE scheme

Network Security (WS 22/23): 07 – Cryptographic Protocols

35
© Dr.-Ing G. Schäfer

PAKE schemes: SRP (2) - Dialogue

 A initiates connection by sending its username
1.) A B: A

 B answers with chosen cryptographic parameters and a verifier v that
is “blinded” by a DH exchange
2.) B A: p, g, sA,B, (H(g || p) · v + grb) mod p

 A calculates the common session key by KS = (YB - H(g || p)·gx)ra+u·x
mod p, with u = H(YA || YB), and sends back its part of the DH
exchange and a verification that it knows KS

3.) A B: gra mod p, H(YA, YB, KS)

 B calculates KS´= (YAvu)rb mod p and proofs knowledge

4.) B A: H(YA, H(YA, YB, KS), KS´)

 KS´ and KS match if there has been no man-in-the-middle attack

Network Security (WS 22/23): 07 – Cryptographic Protocols

YB

YA

36
© Dr.-Ing G. Schäfer

PAKE schemes: SRP (3) - Discussion

 Secure scheme
 Mutual authentication between server and client
 Augmentation increases security in client/server scenarios
 No support for ECC as it requires field arithmetic

 Patented, but free to use

 Support for TLS, IPsec, …

Network Security (WS 22/23): 07 – Cryptographic Protocols

37
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

X.509 – Introduction

 X.509 is an international recommendation of ITU-T and is part of the
X.500-series defining directory services:
 The first version of X.509 was standardized in 1988
 A second version standardized 1993 resolved some security concerns
 A third version of X.509 is currently maintained by IETF in RFC 4211

 X.509 defines a framework for provision of authentication services,
comprising:
 Certification of public keys and certificate handling:

 Certificate format
 Certificate hierarchy
 Certificate revocation lists

 Three different dialogues for direct authentication:
 One-way authentication, requires synchronized clocks
 Two-way mutual authentication, still requires synchronized clocks
 Three-way mutual authentication entirely based on random numbers

38
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

X.509 – Public Key Certificates (1)

Version
Certificate

Serial Number
Algorithm ID
Parameters
Issuer Name
Not Before
Not After

Subject Name
Algorithm ID
Parameters

Key
Issuer Unique ID

Subject Unique ID
Extensions
Signature

Signature
Algorithm

Period of
Validity

Subject’s
Public

Key Info

V
ersion 1

V
ersion 2

V
ersion 3

All Versions

 A public key certificate is
some sort of passport,
certifying that a public key
belongs to a specific name

 Certificates are issued by
certification authorities (CA)

 If all users know for sure the
public key of the CA, every
user can check every
certificate issued by this CA

 Certificates can avoid
online-participation of a TTP

 The security of the private
key of the CA is crucial to
the security of all users!

39
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

X.509 – Public Key Certificates (2)

 Notation of a certificate binding a public key +KA to user A issued by
certification authority CA using its private key -CKCA:

 Cert-CKCA
(+KA) = CA[V, SN, AI, CA, TCA, A, +KA]

with: V = version number
SN = serial number

AI = algorithm identifier of signature algorithm used

CA = name of certification authority

TCA = period of validity of this certificate

A = name to which the public key in this certificate is bound

+KA = public key to be bound to a name

 The shorthand notation CA[m] stands for (m, {H(m)}-CKCA)

 Another shorthand notation for Cert-CKCA
(+KA) is CA<<A>>

40
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

X.509 – Certificate Chains & Certificate Hierarchy (1)

 Consider now two users Alice and Bob, living in different countries,
who want to communicate securely:
 Chances are quite high, that their public keys are certified by different CAs
 Let’s call Alice’s certification authority CA and Bob’s CB
 If Alice does not trust or even know CB then Bob’s certificate CB<> is

useless to her, the same applies in the other direction
 A solution to this problem is constructing certificate chains:

 Imagine for a moment that CA and CB know and trust each other
 A real world example for this concept is the mutual trust between

countries considering their passport issuing authorities
 If CA certifies CB’s public key with a certificate CA<<CB>> and CB

certifies CA’s public key with a certificate CB<<CA>>, then A and B can
check their certificates by checking a certificate chain:

 Upon being presented CB<> Alice tries to look up if there is a
certificate CA<<CB>>

 She then checks the chain: CA<<CB>>, CB<>

41
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

X.509 – Certificate Chains & Certification Hierarchy (2)

 Certificate chains need not to be limited to a length of two certificates:
 CA<<CC>>, CC<<CD>>, CD<<CE>>, CE<<CG>>, CG<<G>

would permit Alice to check the certificate of user G issued by CG even if
she just knows and trusts her own certification authority CA

 In fact, A’s trust in the key +KG is established by a chain of trust between
certification authorities

 However, if Alice is presented CG<<G>>, it is not obvious which
certificates she needs for checking it

 X.509 therefore suggests that authorities are arranged in a
certification hierarchy, so that navigation is straightforward:

CD

CECC

CBCA CF CHCG

42
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

X.509 – Certificate Chains & Certification Hierarchy (3)

 Remaining issue:
 Certification paths may become rather long
 Compromise of single intermediate certificate suffices to break security

 Leads to two developments
 Cross-certification:

 Allows to sign root certificates among each other
 But also allow “shortcuts” in the certificate forest
 Makes navigation more complex, but potentially multipath verification

 Certificate pinning:
 Allows applications, e.g., web browsers, to learn that peers use

certificates only from a certain CA
 Used by Google Chrome for example, after man-in-the-middle attacks

on google.com became known

43
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

X.509 – Certificate Revocation

 Consider now that the private key of Alice is compromised, e.g.
because Eve broke into her computer read her private key from a file
and cracked the password she used to protect the private key:

 If Alice detects the compromise of her private key, she would definitely
like to ask for revocation of the corresponding public key certificate

 If the certificate is not revoked, then Eve could continue to impersonate
Alice up to the end of the certificate’s validity period

 An even worse situation occurs, when the private key of a certification
authority is compromised:

 This implies, that all certificates signed with this key have to be revoked!
 Certificate revocation is realized by maintaining certificate revocation

lists (CRL):
 CRLs are stored in the X.500 directory, or extensions may point to URL
 When checking a certificate, it has also to be checked that the certificate

has not yet been revoked (search for the certificate in the CRL)

Certificate revocation is a relatively slow and expensive operation

44
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

X.509 – Authentication Protocols (1)

 One-way authentication:
 If only Alice wants to authenticate herself to Bob she sends the following

message to Bob:
1.) (A[tA, rA, B, sgnDataA, {KA,B}+KB

], CA<<A>>)

with sgnDataA representing optional data to be signed by A,
 {KA,B}+KB

 being an optional session key encrypted with Bob’s public key,
and CA<<A>> being optional as well

 Upon reception of this message, Bob verifies with +KCA the contained
certificate, extracts Alice’s public key, checks Alice’s signature of the
message and the timeliness of the message (tA), and optionally decrypts the
contained session key KA,B Alice has proposed

 Two-way authentication:
 If mutual authentication is desired, then Bob creates a similar message:

2.) (B[tB, rB, A, rA, sgnDataB, {KB,A}+KA
], CA<>)

the contained timestamp tB is not really required, as Alice can check if
the signed message contains the random number rA

45
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

X.509 – Authentication Protocols (2)

 Three-way authentication:
 If Alice and Bob are not sure if they have synchronous clocks, Alice sends

the following message to Bob:

3.) A[rB]

 So, the timeliness of Alice’s participation in the authentication dialogue is
proven by signing the “fresh” random number rB

 Note on the signature algorithm:
 As obvious from the use of certificates, X.509 suggests to sign the

authentication messages using asymmetric cryptography
 However, the authentication protocol itself can also be deployed using

symmetric cryptography:
 In this case, A and B need to have agreed upon a secret authentication

key AKA,B prior to any protocol run, and
 the messages are signed by appending a MAC computed with that key.

46
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Formal Validation of Cryptographic Protocols (1)

 As we have seen from the the Needham-Schroeder protocol, the
security of a cryptographic protocol is not obvious to assess:
 There are many more examples of protocol flaws in cryptographic

protocols, which sometimes were discovered not until years after the
publication of the protocol

 An early version of the X.509 standard contained a flaw which was
similar to the flaw in the Needham-Schroeder protocol

 This motivates the need for formal methods for analyzing the properties of
cryptographic protocols

 Categories of formal validation methods for cryptographic protocols:
 General approaches for analysis of specific protocol properties:

 Examples: finite-state-machine based approaches, first-order
predicate calculus, general purpose specification languages

 Main Drawback: security differs significantly from correctness as for
the later one does not need to assume malicious manipulation

47
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Formal Validation of Cryptographic Protocols (2)

 Categories of formal validation methods for cryptographic protocols:
 Expert system based approaches:

 Knowledge of human experts is formalized into deductive rules that
can be used by a protocol designer to investigate different scenarios

 Main drawback: not well suited to find flaws in cryptographic protocols
that are based on unknown attacking techniques

 Algebraic approaches:
 Cryptographic protocols are specified as algebraic systems
 Analysis is conducted by examining algebraic term-rewriting properties

of the model and inspecting if the model can attain certain desirable or
undesirable states

 Specific logic based approaches:
 Approaches of this class define a set of predicates and a mapping of

messages exchanged during a protocol run into to a set of formula
 A generic set of rules allows then to analyze the knowledge and belief

that is obtained by the peer entities of a cryptographic protocol during
a protocol run (quite successful approach: GNY logic [GNY90a])

48
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Additional References (I)

[BM92] BELLOVIN, S.; MERRITT, M.: Encrypted Key Exchange: Password-Based
Protocols Secure Against Dictionary Attacks. In: IEEE Computer Society
Symposium on Research in Security and Privacy, 1992, S. 72–84

[Bry88] BRYANT, R.: Designing an Authentication System: A Dialogue in Four Scenes.
1988. – Project Athena, Massachusetts Institute of Technology, Cambridge, USA

[GNY90] GONG, L.; NEEDHAM, R. M.; YAHALOM, R.: Reasoning About Belief in
Cryptographic Protocols. In: Symposium on Research in Security and Privacy
IEEE Computer Society, IEEE Computer Society Press, May 1990, pp. 234–248

[KNT94] KOHL, J.; NEUMAN, B.; TS’O, T.: The Evolution of the Kerberos Authentication
Service. In: BRAZIER, F.; JOHANSEN, D. (Eds): Distributed Open Systems,
IEEE Computer Society Press, 1994

[NS78] NEEDHAM, R. M.; SCHROEDER, M. D.: Using Encryption for Authentication in
Large Networks of Computers. In: Communications of the ACM 21, December
1978, No. 12, pp. 993–999

[NS87] NEEDHAM, R.; SCHROEDER, M.: Authentication Revisited. In: Operating
Systems Review 21, 1987

[NYH+05] NEUMAN, C.; YU, T.; HARTMAN, S. ; RAEBURN, K.: The Kerberos Network
Authentication Service (V5). 2005. – RFC 4120, IETF, Status: Standard,
https://tools.ietf.org/html/rfc4120

49
© Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Additional References (II)

[OR87] OTWAY, D.; REES, O.: Efficient and Timely Mutual Authentication. In: Operating
Systems Review 21, 1987

[Pat97] PATEL, S.: Number Theoretic Attacks On Secure Password Schemes. In: IEEE
Symposium on Security and Privacy, 1997, S. 236–247

[Sch05] SCHAAD, J.: Internet X.509 Public Key Infrastructure Certificate Request
Message Format (CRMF). September 2005. – RFC 4211, IETF, Status:
Proposed Standard, https://tools.ietf.org/html/rfc4211

