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Introduction

 Definition:

A cryptographic protocol is defined as a series of steps and message 
exchanges between multiple entities in order to achieve a specific 
security objective

 Properties of a protocol (in general):
 Everyone involved in the protocol must know the protocol and all of the 

steps to follow in advance

 Everyone involved in the protocol must agree to follow it

 The protocol must be unambiguous, that is every step is well defined and 
there is no chance of misunderstanding

 The protocol must be complete, i.e. there is a specified action for every 
possible situation

 Additional property of a cryptographic protocol:
 It should not be possible to do or learn more than what is specified in the 

protocol
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Applications of Cryptographic Protocols

 Key exchange
 Authentication

 Data origin authentication
 Entity authentication

 Combined authentication and key exchange
 Secret splitting (all parts needed for reconstruction)
 Secret sharing (m out of n parts needed for reconstruction)
 Time-stamping
 Key escrow (ensuring that only an authorized entity can recover keys)
 Zero-Knowledge proofs (proof of knowledge of an information without 

revealing the information)
 Blind signatures (useful for privacy-preserving time-stamping services)
 Secure elections
 Electronic money

treated in 
this course
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Key Exchange

 The Diffie-Hellman protocol introduced in section 2.1.2 is our first 
example of a cryptographic protocol for key exchange

 Please note, that it does not realize any authentication:
 Neither Alice nor Bob know after a protocol run, with whom they have 

exchanged a key
 As this pure key exchange without authentication can not even guarantee 

privacy of a communication following the exchange, it has to be combined 
with authentication

 However, this separation of key exchange and authentication of the 
exchange has a big advantage, as it allows to guarantee the property of 
perfect forward secrecy (PFS):
 If a key exchange ensures PFS, then a compromise of one key in the future 

will not allow to compromise any data that has been protected with other 
keys exchanged before that compromise. 

 Example: imagine Alice and Bob both sign the data exchanged to compute 
sk with their private keys. Even the compromise of a private key in the future 
will not allow to decrypt recorded data that has been protected with sk.
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Data Origin Authentication

Definition:

Data origin authentication is the security service that enables entities 
to verify that a message has been originated by a particular entity and 
that it has not been altered afterwards

A synonym for this service is data integrity
 The relation of data integrity to cryptographic protocols is twofold:

 There are cryptographic protocols to ensure data integrity. As a rule they 
comprise just one protocol step and are, therefore, not very “exciting”:

 Example 1: assume, that everybody knows Alice’s public RSA key and 
can be sure to know really Alice’s key, then Alice can insure data 
integrity of her messages by encrypting them with her private key.

 Example 2: Alice can as well compute an MDC over her message and 
append the MDC encrypted with her private key to the message

 Data integrity of messages exchanged is often an important property in 
cryptographic protocols, so data integrity is a building block to 
cryptographic protocols
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Entity Authentication (1)

Definition:
Entity authentication is the security service, that enables  
communication partners to verify the identity of their peer entities.

 Entity authentication is the most fundamental security service, as all 
other security services build upon it

 In general it can be accomplished by various means:
 Knowledge: e.g. passwords
 Possession: e.g. physical keys or cards
 Immutable characteristic: e.g. biometric properties like fingerprint, etc.
 Location: evidence is presented that an entity is at a specific place 

(example: people check rarely the authenticity of agents in a bank)
 Delegation of authenticity: the verifying entity accepts, that somebody who 

is trusted has already established authentication
 In communication networks, direct verification of the above means is 

difficult or insecure which motivates the need for cryptographic 
protocols
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Entity Authentication (2)

 The main reason, why entity authentication is more than an exchange 
of (data-origin-) authentic messages is timeliness:
 Even if Bob receives authentic messages from Alice during a 

communication, he can not be sure, if:
 Alice is actually participating in the communication in this specific 

moment, or if
 Eve is replaying old messages from Alice

 This is of specific significance, when authentication is only performed at 
connection-setup time:

 Example: transmission of a (possibly encrypted) PIN when logging in
 Two principle means to ensure timeliness in cryptographic protocols:

 Timestamps (require more or less synchronized clocks)
 Random numbers (challenge-response exchanges)

 Most authentication protocols do also establish a secret session key 
for securing the session following the authentication exchange
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Entity Authentication (3)

 Two main categories of protocols for entity authentication:
 Arbitrated authentication: an arbiter, also called trusted third party (TTP) is 

directly involved in every authentication exchange
 Advantages:

– This allows two parties A and B to authenticate to each other without 
knowing any pre-established secret 

– Even if A and B do not know each other, symmetric cryptography can be 
used

 Drawbacks: 
– The TTP can become a bottleneck, availability of TTP is critical
– The TTP can monitor all authentication activity

 Direct authentication: A and B directly authenticate to each other
 Advantages: no online participation of a third party is required and no 

possible performance bottleneck is introduced
 Drawbacks: requires asymmetric cryptography or pre-established 

secret keys
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Some Notation... 

Notation Meaning

A

CAA

rA

tA

(m1, ..., mn)

A  B: m

KA, B

Name of A, analogous for B, E, TTP, CA

Certification Authority of A (explained later)

Random value chosen by A

Timestamp generated by A

Concatenation of messages m1, ..., mn

A sends message m to B

Secret key, only known to A and B

Notation of Cryptographic Protocols (1)
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Some Notation... 

Notation Meaning

+KA

-KA

{m}K

H(m)

A[m]

Cert-CKCA
(+KA)

 

CA<<A>>

Public key of A

Private key of A

Message m encrypted with key K, synonym for  E(K, m)

MDC over message m, computed with function H

Shorthand notation for (m, {H(m)}-KA
)

Certificate of CA for public key +KA of A, signed with

private certification key -CKCA  (explained later)

Shorthand notation for Cert-CKCA
(+KA) 

Notation of Cryptographic Protocols (2)
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The Needham-Schroeder Protocol (1)

 Invented in 1978 by Roger Needham and Michael Schroeder 
[Nee78a]

 The protocol relies on symmetric encryption and makes use of a 
trusted third party (TTP)

 Assume that TTP shares secret keys KA,TTP and KB,TTP with Alice and 
Bob, respectively:
 A generates a random number rA and sends the following message:

1.) A  TTP: (A, B, rA)

 TTP generates a session key KA,B for secure communication between A 
and B and answers to A:
2.) TTP  A: {rA, B, KA,B, {KA,B, A}KB,TTP

}KA,TTP

 A decrypts the message and extracts KA,B. She confirms that rA is identical 
to the number generated by her in the first step, thus she knows the reply 
is a fresh reply from TTP. Then she sends to B:

3.) A  B: {KA,B, A}KB,TTP
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The Needham-Schroeder Protocol (2)
 Needham-Schroeder protocol definition (continued):

 Bob decrypts the message and obtains KA,B. He then generates a random 
number rB and answers to Alice:

4.) B   A: {rB}KA,B  
 

 Alice decrypts the message, computes rB - 1 and answers with: 

5.) A   B: {rB-1}KA,B  
 

 Bob decrypts the message and verifies that it contains rB - 1

 Discussion:
 The exchange of rB and rB-1 is supposed to ensure that an attacker, trying to 

impersonate Alice, can not perform a full protocol run with replayed messages 
 However, as old session keys KA,B remain valid, an attacker, Eve, who manages to get 

to know a session key KA,B can later use this to impersonate as Alice:

1.) E  B: {KA,B, A}KB,TTP
 

2.) B   A: {rB}KA,B
      Eve has to intercept this message

3.) E   B: {rB-1}KA,B
 

So, even though she doesn’t know KA,TTP nor KB,TTP Eve impersonates as Alice!
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The Otway-Rees Protocol (1)

 The security problem described above as well as some others were 
addressed by Needham and Schroeder. Their solution [Nee87a] is 
essentially the same like the one proposed by Otway and Rees in the 
same journal [Otw87a]:
 Alice generates a message containing an index number iA, her name A, 

Bobs name B, and the same information plus an additional random 
number rA encrypted with the key KA,TTP she shares with TTP, and sends 
this message to Bob:
1.) A  B: (iA, A, B, {rA, iA, A, B}KA,TTP

 )

 Bob generates a random number rB, encrypts it together with iA, A, and B 
using the key KB,TTP he shares with TTP and sends the message to TTP:

2.) B  TTP: (iA, A, B, {rA, iA, A, B}KA,TTP
 , {rB, iA, A, B}KB,TTP

 )

 TTP generates a new session key KA,B and creates two encrypted 
messages, one for Alice and one for Bob, and sends them to Bob:

3.) TTP  B: (iA, {rA, KA,B}KA,TTP
 , {rB, KA,B}KB,TTP

 )
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The Otway-Rees Protocol (2)

 Otway-Rees protocol definition (continued):
 Bob decrypts his part of the message, verifies rB and sends Alice’s part of 

the message to her:

4.) B  A: (iA, {rA, KA,B}KA,TTP
 ) 

 Alice decrypts the message and checks if iA and rA have not changed 
during the exchange. If not, she can be sure that TTP has send her a fresh 
session key KA,B for communication with Bob. If she now uses this key in 
an encrypted communication with Bob, she can be sure of his authenticity.

 Discussion: 
 The index number iA prevents against replay attacks. However, this 

requires that TTP checks if iA is bigger than the last iA he received from 
Alice.

 As TTP will just generate the two messages if both parts of the message 
he receives contain the same index number iA and names A, B, Alice and 
Bob can be sure that both of them have authenticated to TTP during the 
protocol run. 



15
©  Dr.-Ing G. Schäfer

Network Security (WS 22/23): 07 – Cryptographic Protocols

Kerberos (1)

 Kerberos is an authentication and access control service for work-
station clusters that was designed at the MIT during the late 1980s 

 Design goals:
 Security: eavesdroppers or active attackers should not be able to obtain 

the necessary information to impersonate a user when accessing a service
 Reliability: as every use of a service requires prior authentication, Kerberos 

should be highly reliable and available
 Transparency: the authentication process should be transparent to the user 

beyond the requirement to enter a password
 Scalability: the system should be able to support a large number of clients 

and servers
 The underlying cryptographic primitive of Kerberos is symmetric 

encryption (Kerberos V. 4 uses DES, V. 5 allows other algorithms)
 A good tutorial on the reasoning beyond the Kerberos design is given 

in [Bry88a], that develops the protocol in a series of fictive dialogues
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Kerberos (2)

 The basic usage scenario of Kerberos is a user, Alice, who wants to 
access one or more different services, that are provided by different 
servers S1, S2, ... connected over an insecure network

 Kerberos deals with the following security aspects of this scenario:
 Authentication: Alice will authenticate to an authentication server (AS) who 

will provide a temporal permit  to demand access for services. This permit 
is called ticket-granting ticket (TicketTGS) and is comparable to a temporal 
passport.

 Access control: by presenting her TicketTGS Alice can demand a ticket 
granting server (TGS) to obtain access for a service provided by a specific 
server S1. The TGS decides if the access will be permitted and answers 
with a service granting ticket TicketS1 for server S1.

 Key exchange: the authentication server provides a session key for 
communication between Alice and TGS and the TGS provides a session 
key for communication between Alice and S1. The use of these session 
keys also serves for authentication purposes.
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Kerberos (3)

Kerberos

Authentication
Server

(user data)

Ticket Granting
Server

(access data)

1. Request TGT

2. TGT, Session Key

3. Request SGT
4. SGT, Session Key
5. Request Service

6. Service Authenticator
Server

Accessing a Service with Kerberos - Protocol Overview
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Kerberos Version 4 (4)

 The user logs on his workstation and requests to access a service:
 The workstation represents him in the Kerberos protocol and sends the 

first message to the authentication server AS, containing his name, the 
name of an appropriate ticket granting server TGS and a timestamp tA: 

1.) A  AS: (A, TGS, tA)

 The AS verifies, that A may authenticate itself to access services, 
generates the key KA out of A’s password (which is known to him), 
extracts the workstation address AddrA of the request, creates a ticket 
granting ticket TicketTGS and a session key KA,TGS, and sends the 
following message to A:

2.) AS  A: {KA,TGS, TGS, tAS, LifetimeTicketTGS, TicketTGS}KA
  

with TicketTGS = {KA,TGS, A, AddrA, TGS, tAS, LifetimeTicketTGS}KAS,TGS
   

 Upon receipt of this message, the workstation asks Alice to type in her 
password, computes the key KA from it, and uses this key to decrypt 
the message. If Alice does not provide her “authentic” password, the 
extracted values will be “garbage” and the rest of the protocol will fail
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Kerberos Version 4 (5)
 Alice creates a so-called authenticator and sends it together with the 

ticket-granting ticket and the name of server S1 to TGS:
3.) A  TGS: (S1, TicketTGS, AuthenticatorA,TGS) 

with AuthenticatorA,TGS = {A, AddrA, t’A}KA,TGS
 

 Upon receipt, TGS decrypts TicketTGS, extracts the key KA,TGS from it 
and uses this key to decrypt AuthenticatorA,TGS. If the name and 
address of the authenticator and the ticket are matching and the 
timestamp t’A is still fresh, it checks if A may access the service S1 and 
creates the following message:

4.) TGS  A: {KA,S1, S1, tTGS, TicketS1}KA,TGS
 

with TicketS1 = {KA,S1, A, AddrA, S1, tTGS, LifetimeTicketS1}KTGS,S1
  

 Alice decrypts the message and does now hold a session key for 
secure communication with S1. She now sends a message to S1 to 
show him her ticket and a new authenticator:

5.) A  S1: (TicketS1, AuthenticatorA,S1)

with AuthenticatorA,S1 = {A, AddrA, t’’A}KA,S1
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Kerberos Version 4 (6)

 Upon receipt, S1 decrypts the ticket with the key KTGS,S1 he shares with 
TGS and obtains the session key KA,S1 for secure communication with 
A. Using this key he checks the authenticator and responds to A:

6.) S1  A: {t’’A + 1}KA,S1

 By decrypting this message and checking the contained value, Alice 
can verify, that she is really communicating with S1, as only he 
(besides TGS) knows the key KTGS,S1 to decrypt TicketS1 which 
contains the session key KA,S1, and so only he is able to decrypt 
AuthenticatorA,S1 and to answer with t’’A + 1 encrypted with KA,S1 

 The protocol described above is the Kerberos Version 4 dialogue. 
 A number of deficiencies have been found in this protocol, so a new 

Version 5 of the protocol has been defined, which will be discussed later…
 Where is the problem, by the way?
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Multiple Domain Kerberos (1)

 Consider an organization with workstation clusters on two different 
sites, and imagine that user A of site 1 wants to use a server of site 2:
 If both sites do use their own Kerberos servers and user databases 

(containing passwords) then there are in fact two different domains, also 
called realms in Kerberos terminology.

 In order to avoid that user A has to be registered in both realms, Kerberos 
allows to perform an inter-realm authentication.

 Inter-realm authentication requires, that the ticket granting servers of 
both domains share a secret key KTGS1,TGS2 

 The basic idea is, that the TGS of another realm is viewed as a normal 
server for which the TGS of the local realm can hand out a ticket.

 After obtaining the ticket for the remote realm, Alice requests a service 
granting ticket from the remote TGS 

 However, this implies that remote realm has to trust the Kerberos 
authentication service of the home domain of a “visiting” user!

 Scalability problem: n realms require n  (n -1) / 2 secret keys!
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Multiple Domain Kerberos (2)

Kerberos

Authentication
Server

(user data)

Ticket Granting
Server

(access data)

1. Request TGT

2. TGT, Session Key

3. Request TGT
rem

4. TGT
rem, Session Key

5. Request SGT

6. SG
T, Session Key

Server

8.  S
e

rv ic e
 A

u th
e

n t ic a
t or

7.  R
e

q
ue

s t S
e r vi ce

Kerberos

Authentication
Server

(user data)

Ticket Granting
Server

(access data)

Realm 1

Realm 2
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Multiple Domain Kerberos (3)

 Messages exchanged during a multiple domain protocol run:
1.) A  AS1: (A, TGS1, tA)

2.) AS1  A: {KA,TGS1, TGS1, tAS, LifetimeTicketTGS1, TicketTGS1}KA
  

with TicketTGS1 = {KA,TGS1, A, AddrA, TGS1, tAS, LifetimeTicketTGS1}KAS,TGS1
  

3.) A  TGS1: (TGS2, TicketTGS1, AuthenticatorA,TGS1) 

with AuthenticatorA,TGS1 = {A, AddrA, t’A}KA,TGS1
 

4.) TGS1  A: {KA,TGS2, TGS2, tTGS1, TicketTGS2}KA,TGS1
 

with TicketTGS2 = {KA,TGS2, A, AddrA, TGS2, tTGS1, LifetimeTicketTGS2}KTGS1,TGS2
  

5.) A  TGS2: (S2, TicketTGS2, AuthenticatorA,TGS2)

with AuthenticatorA,TGS2 = {A, AddrA, t’’A}KA,TGS2
 

6.) TGS2  A: {KA,S2, S2, tTGS2, TicketS2}KA,TGS2
 

with TicketS2 = {KA,S2, A, AddrA, S2, tTGS2, LifetimeTicketS2}KTGS2,S2
  

7.) A  S2: (TicketS2, AuthenticatorA,S2)

with AuthenticatorA,S2 = {A, AddrA, t’’’A}KA,S2
 

8.) S2  A: {t’’’A + 1}KA,S2
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Kerberos Version 5 (1)

 Last standard from 2005 (RFC 4120) 
 Developed in response to weaknesses that became known to 

Kerberos v4
 Includes explicit checksums to verify that messages have not been altered
 Supports multiple ciphers (others than the insecure DES)

 Unified message format – Messages to authentications server and 
ticket granting server are very similar

 Flexible ASN.1 encoding of messages, allows later extension
 In the following only a simplified version is shown, way more features 

are standardized, e.g.:
 Client-to-Client mutual authentication
 Pre-authenticated Tickets
 Renewing Tickets
 Multidomain Kerberos
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Kerberos Version 5 (2)

 The authentication dialog in Kerberos version 5 is similar to version 4
 The Authentication Service Exchange: For initial contact the client A 

not only sends names and time stamps but also a nonce n, which 
helps to avoid replays if the time changed; it is also possible to claim 
multiple addresses

1.) A  AS: (A, TGS, tstart, tend, n, AddrA, …)

 The response includes a plaintext ticket and encrypted information:
2.) AS  A: (A, TicketTGS, {KA,TGS, LastRequest, n, texpire, tAS, tstart, tend, trenew, 

TGS, AddrA}KA
)

TicketTGS = (TGS, {KA,TGS, A, transited, tAS, tstart, tend, trenew, AddrA, 
restrictions}KAS,TGS

)

LastRequest indicates the last login to be presented to the user

transited contains the trust chain Multidomain Kerberos

restrictions for the user may be handed to the TGS and servers
texpire and tend contain different times to allow for renewing of tickets (in 
which the start and end time may simply be updated
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Kerberos Version 5 (3)

 The dialog to the TGS is harmonized with the initial dialog: It additionally 
contains tickets and an authenticator that proves that A knows KA,TGS

3.) A  TGS: (A, S1, tstart, tend, n’, AddrA, AuthenticatorA,TGS, Tickets,…)

with AuthenticatorA,TGS = { A, CheckSum, tA’, KA,TGS
’, Seq#,… }KA,TGS

Note: The authenticator contains a cryptographic checksum now! 
 The reply to A is entirely analog to message 2:

4.) TGS  A: (A, TicketS1, {KA,S1, LastRequest,  n’, texpire, tTGS, tstart, tend, 
trenew, S1, AddrA}KA,TGS

)
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Kerberos Version 5 (4)

 The exchange with the server is also similar to Version 4, but with the 
authenticator an explicit checksum possible:

5.) A  S1: (TicketS1, AuthenticatorA,S1)

with AuthenticatorA,S1 = {A, CheckSum, tA’’, KA,S1
’, Seq#, …}KA,S1

 

 Upon receipt, S1 decrypts the ticket with the key KTGS,S1 he shares with 
TGS and obtains the session key KA,S1 for secure communication with 
A. Using this key he checks the authenticator and responds to A:

6.) S1  A: {tS1, KA,S1
’, Seq#,…}KA,S1

 All in all the dialog fixes several potential vulnerabilities, while others 
remain:
 Sequence numbers and nonces allow for additional replay checking if time 

base changes
 Explicit checksums prevent modification of data within tickets 
 Central servers are still potential single-points-of-failure
 Still some time synchronization is required for initial exchanges
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Advanced methods for password authentication (1)

 All shown protocols have a common weakness: 
 Passwords must be easy to remember and easy to enter
➡ Low entropy
 Attackers may quick try all possible combinations
 Offline, using graphic cards, cloud computers, special hardware…
 Asymmetric situation

 Possible solutions: 
 Key derivation functions

 Make brute-force attacks more difficult by hashing extremely often
 Requires also effort by legitimate devices
 Only linear security gain
 Better functions use a lot of memory to render attacks with graphic 

cards and special hardware infeasible
 Password Authenticated Key Exchange (PAKE)

 Covered in the following

Network Security (WS 22/23): 07 – Cryptographic Protocols
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Advanced methods for password authentication (2)

 Password Authenticated Key Exchange (PAKE) - Fundamental idea
 Perform a key exchange with asymmetric cryptography
 Authenticate peers with a password using a Zero Knowledge Proof
 Peers are only able to tell that passwords matched or not
 No further information to perform efficient bruteforce searches on

 Would require solving difficult problems, e.g. some sort of DH problem
 Renders offline attacks infeasible

 Online attacks possible, but may be discovered

Network Security (WS 22/23): 07 – Cryptographic Protocols
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PAKE schemes: EKE (1)

 A simple first protocol is Encrypted Key Exchange (EKE) [BM92]
 Dialog starts with A generating a single use private/public key pair and 

sending the public key +Kar encrypted with the password KA,B to B

1.) A  B: A, { +Kar } KA,B

 B choses a symmetric session key Kr and sends it encrypted with the 
public key and the password back to A
2.) B  A: {{ Kr } +Kar

 } KA,B

 A and B now share a common session key and proof knowledge about 
it by exchanging nonces
3.) A  B: { rA } Kr

4.) B  A: { rA, rB} Kr

5.) A  B: { rB } Kr

 After this step it is assured that both must have known KA,B and there 
has been no man-in-the-middle attack

Network Security (WS 22/23): 07 – Cryptographic Protocols
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PAKE schemes: EKE (2) – Security discussion

 Resistance against offline attacks depends on +Kar being 
indistinguishable from random numbers
 What does this mean for ECC?
 For RSA authors suggest e being encrypted, n being send in plaintext

 n has no small prime factors and is therefore distinguishable from 
random numbers

 Still insecure against man-in-the-middle attacks as attackers may 
choose n with special properties (e.g. p – 1 and q – 1 divisible by 3)

 Answer from B is distinguishable from random numbers
 Details can be found in [Par97] or [SR14]

 Does not offer perfect forward secrecy…

 But there is another protocol by the authors called DH-EKE

Network Security (WS 22/23): 07 – Cryptographic Protocols
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PAKE schemes: DH-EKE (1)

 DH-EKE is basically DH exchange with clever authentication

 A sends DH exchange encrypted with the password KA,B 

1.) A  B: { gra mod p } KA,B

 B answers with his part of the DH exchange (encrypted with the 
password KA,B) and uses the session key KS = gra·rb mod p to send an 
encrypted nonce cb

2.) B  A: { grb mod p } KA,B 
{ cb } Ks

 Both parties proof their knowledge of KS 

3.) A  B: { ca || cb } Ks

4.) B  A: { ca } Ks

Network Security (WS 22/23): 07 – Cryptographic Protocols
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PAKE schemes: DH-EKE (2) – Security discussion

 Again encrypted data must be indistinguishable from random data
 The value p must be chosen wisely, i.e., s.t. p - 1 is close to 28·n for 

sufficiently large natural numbers n
 To easily prevent small group attacks (p – 1) / 2 should also be prime
 ECC is still difficult to realize

 Offers perfect forward secrecy

 All in all nice scheme, but used to be patented
 No wide adaptation
 Led to the development of numerous different schemes

Network Security (WS 22/23): 07 – Cryptographic Protocols
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PAKE schemes: SRP (1)

 Most widely available protocol today: Secure Remote Password (SRP)
 Multiple versions: Here SRP-6a [Wu02]

 Initialization:
 Server B chooses a random number sA,B

 calculates x = H(sA,B || username || password) and v = gx mod p

 Users are authenticated by (username, sA,B, v)

 Server does not need store the password ➡ ︎cannot easily be obtained if 
server is compromised!

 Server can also not use these values to impersonate user at other servers
 Property is called augmented PAKE scheme
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PAKE schemes: SRP (2) - Dialogue

 A initiates connection by sending its username
1.) A  B: A

 B answers with chosen cryptographic parameters and a verifier v that 
is “blinded” by a DH exchange
2.) B  A: p, g, sA,B, (H(g || p) · v + grb) mod p

 A calculates the common session key by KS = (YB - H(g || p)·gx)ra+u·x 
mod p, with u = H(YA || YB), and sends back its part of the DH 
exchange and a verification that it knows KS

3.) A  B: gra mod p, H(YA, YB, KS)

 B calculates KS´= (YAvu)rb mod p and proofs knowledge

4.) B  A: H(YA, H(YA, YB, KS), KS´) 

 KS´ and KS match if there has been no man-in-the-middle attack
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PAKE schemes: SRP (3) - Discussion

 Secure scheme
 Mutual authentication between server and client
 Augmentation increases security in client/server scenarios
 No support for ECC as it requires field arithmetic

 Patented, but free to use

 Support for TLS, IPsec, …
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X.509 – Introduction

 X.509 is an international recommendation of ITU-T and is part of the 
X.500-series defining directory services:
 The first version of X.509 was standardized in 1988
 A second version standardized 1993 resolved some security concerns
 A third version of X.509 is currently maintained by IETF in RFC 4211

 X.509 defines a framework for provision of authentication services, 
comprising:
 Certification of public keys and certificate handling:

 Certificate format
 Certificate hierarchy 
 Certificate revocation lists

 Three different dialogues for direct authentication:
 One-way authentication, requires synchronized clocks
 Two-way mutual authentication, still requires synchronized clocks
 Three-way mutual authentication entirely based on random numbers
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X.509 – Public Key Certificates (1)

Version
Certificate

Serial Number
Algorithm ID
Parameters
Issuer Name
Not Before
Not After

Subject Name
Algorithm ID
Parameters

Key
Issuer Unique ID

Subject Unique ID
Extensions
Signature

Signature
Algorithm

Period of
Validity

Subject’s
Public 

Key Info

V
ersion 1

V
ersion 2

V
ersion 3

All Versions

 A public key certificate is 
some sort of  passport, 
certifying that a public key 
belongs to a specific name

 Certificates are issued by 
certification authorities (CA)

 If all users know for sure the 
public key of the CA, every 
user can check every 
certificate issued by this CA

 Certificates can avoid 
online-participation of a TTP 

 The security of the private 
key of the CA is crucial to 
the security of all users!
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X.509 – Public Key Certificates (2)

 Notation of a certificate binding a public key +KA to user A issued by 
certification authority CA using its private key -CKCA:

 Cert-CKCA
(+KA) = CA[V, SN, AI, CA, TCA, A, +KA] 

with: V = version number
SN = serial number

AI = algorithm identifier of signature algorithm used 

CA = name of certification authority

TCA = period of validity of this certificate

A = name to which the public key in this certificate is bound

+KA = public key to be bound to a name

 The shorthand notation CA[m] stands for (m, {H(m)}-CKCA) 

 Another shorthand notation for Cert-CKCA
(+KA) is CA<<A>>
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X.509 – Certificate Chains & Certificate Hierarchy (1)

 Consider now two users Alice and Bob, living in different countries, 
who want to communicate securely:
 Chances are quite high, that their public keys are certified by different CAs
 Let’s call Alice’s certification authority CA and Bob’s CB
 If Alice does not trust or even know CB then Bob’s certificate CB<<B>> is 

useless to her, the same applies in the other direction
 A solution to this problem is constructing certificate chains: 

 Imagine for a moment that CA and CB know and trust each other
 A real world example for this concept is the mutual trust between 

countries considering their passport issuing authorities
 If CA certifies CB’s public key with a certificate CA<<CB>> and CB 

certifies CA’s public key with a certificate CB<<CA>>, then A and B can 
check their certificates by checking a certificate chain:

 Upon being presented CB<<B>> Alice tries to look up if there is a 
certificate CA<<CB>> 

 She then checks the chain: CA<<CB>>, CB<<B>>  
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X.509 – Certificate Chains & Certification Hierarchy (2)

 Certificate chains need not to be limited to a length of two certificates:
 CA<<CC>>, CC<<CD>>, CD<<CE>>, CE<<CG>>, CG<<G>

would permit Alice to check the certificate of user G issued by CG even if 
she just knows and trusts her own certification authority CA

 In fact, A’s trust in the key +KG is established by a chain of trust between 
certification authorities 

 However, if Alice is presented CG<<G>>, it is not obvious which 
certificates she needs for checking it

 X.509 therefore suggests that authorities are arranged in a 
certification hierarchy, so that navigation is straightforward:

CD

CECC

CBCA CF CHCG
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X.509 – Certificate Chains & Certification Hierarchy (3)

 Remaining issue: 
 Certification paths may become rather long
 Compromise of single intermediate certificate suffices to break security

 Leads to two developments
 Cross-certification:

 Allows to sign root certificates among each other
 But also allow “shortcuts” in the certificate forest
 Makes navigation more complex, but potentially multipath verification

 Certificate pinning:
 Allows applications, e.g., web browsers, to learn that peers use 

certificates only from a certain CA
 Used by Google Chrome for example, after man-in-the-middle attacks 

on google.com became known
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X.509 – Certificate Revocation

 Consider now that the private key of Alice is compromised, e.g. 
because Eve broke into her computer read her private key from a file 
and cracked the password she used to protect the private key:

 If Alice detects the compromise of her private key, she would definitely 
like to ask for revocation of the corresponding public key certificate

 If the certificate is not revoked, then Eve could continue to impersonate 
Alice up to the end of the certificate’s validity period

 An even worse situation occurs, when the private key of a certification 
authority is compromised:

 This implies, that all certificates signed with this key have to be revoked!
 Certificate revocation is realized by maintaining certificate revocation 

lists (CRL):
 CRLs are stored in the X.500 directory, or extensions may point to URL
 When checking a certificate, it has also to be checked that the certificate 

has not yet been revoked (search for the certificate in the CRL)

Certificate revocation is a relatively slow and expensive operation
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X.509 – Authentication Protocols (1)

 One-way authentication:
 If only Alice wants to authenticate herself to Bob she sends the following 

message to Bob:
1.) (A[tA, rA, B, sgnDataA, {KA,B}+KB

], CA<<A>>)

with sgnDataA representing optional data to be signed by A, 
 {KA,B}+KB

 being an optional session key encrypted with Bob’s public key,
and CA<<A>> being optional as well

 Upon reception of this message, Bob verifies with +KCA the contained 
certificate, extracts Alice’s public key, checks Alice’s signature of the 
message and the timeliness of the message (tA), and optionally decrypts the 
contained session key KA,B Alice has proposed 

 Two-way authentication:
 If mutual authentication is desired, then Bob creates a similar message: 

2.) (B[tB, rB, A, rA, sgnDataB, {KB,A}+KA
], CA<<B>>)

the contained timestamp tB is not really required, as Alice can check if
the signed message contains the random number rA     
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X.509 – Authentication Protocols (2)

 Three-way authentication:
 If Alice and Bob are not sure if they have synchronous clocks, Alice sends 

the following message to Bob:

3.) A[rB]

 So, the timeliness of Alice’s participation in the authentication dialogue is 
proven by signing the “fresh” random number rB 

 Note on the signature algorithm:
 As obvious from the use of certificates, X.509 suggests to sign the 

authentication messages using asymmetric cryptography
 However, the authentication protocol itself can also be deployed using 

symmetric cryptography:
 In this case, A and B need to have agreed upon a secret authentication 

key AKA,B prior to any protocol run, and 
 the messages are signed by appending a MAC computed with that key.
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Formal Validation of Cryptographic Protocols (1)

 As we have seen from the the Needham-Schroeder protocol, the 
security of a cryptographic protocol is not obvious to assess:
 There are many more examples of protocol flaws in cryptographic 

protocols, which sometimes were discovered not until years after the 
publication of the protocol

 An early version of the X.509 standard contained a flaw which was 
similar to the flaw in the Needham-Schroeder protocol

 This motivates the need for formal methods for analyzing the properties of 
cryptographic protocols

 Categories of formal validation methods for cryptographic protocols:
 General approaches for analysis of specific protocol properties:

 Examples: finite-state-machine based approaches, first-order 
predicate calculus, general purpose specification languages 

 Main Drawback: security differs significantly from correctness as for 
the later one does not need to assume malicious manipulation
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Formal Validation of Cryptographic Protocols (2)

 Categories of formal validation methods for cryptographic protocols:
 Expert system based approaches:

 Knowledge of human experts is formalized into deductive rules that 
can be used by a protocol designer to investigate different scenarios

 Main drawback: not well suited to find flaws in cryptographic protocols 
that are based on unknown attacking techniques

 Algebraic approaches: 
 Cryptographic protocols are specified as algebraic systems 
 Analysis is conducted by examining algebraic term-rewriting properties 

of the model and inspecting if the model can attain certain desirable or 
undesirable states

 Specific logic based approaches:
 Approaches of this class define a set of predicates and a mapping of 

messages exchanged during a protocol run into to a set of formula
 A generic set of rules allows then to analyze the knowledge and belief 

that is obtained by the peer entities of a cryptographic protocol during 
a protocol run (quite successful approach: GNY logic [GNY90a])
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