

Network Security

Chapter 2 Basics of Cryptography

- Overview Cryptographic Algorithms
- Attacking Cryptography
- Properties of Encryption Algorithms
- Classification of Encryption Algorithms

Network Security (WS 23/24): 02 - Basics of Cryptography

1

Cryptographic Algorithms: Overview

- During this course two main applications of cryptographic algorithms are of principal interest:
 - Encryption of data: transforms plaintext data into ciphertext in order to conceal its' meaning
 - Signing of data: computes a check value or digital signature to a given plain- or ciphertext, that can be verified by some or all entities being able to access the signed data
- □ Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- Principal categories of cryptographic algorithms:
 - □ Symmetric cryptography using 1 key for en-/decryption or signing/checking
 - Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
 - □ *Cryptographic hash functions* using 0 keys (the "key" is not a separate input but "appended" to or "mixed" with the data).

Attacking Cryptography (1): Cryptanalysis

- Cryptanalysis is the process of attempting to discover the plaintext and / or the key
- □ Types of cryptanalysis:
 - Ciphertext only: specific patterns of the plaintext may remain in the ciphertext (frequencies of letters, digraphs, etc.)
 - □ Known ciphertext / plaintext pairs
 - □ Chosen plaintext or chosen ciphertext
 - Differential cryptanalysis & linear cryptanalysis
 - □ Newer development: related key analysis
- □ Cryptanalysis of public key cryptography:
 - ☐ The fact that one key is publicly exposed may be exploited
 - Public key cryptanalysis is more aimed at breaking the cryptosystem itself and is closer to pure mathematical research than to classical cryptanalysis
 - ☐ Important directions:
 - Computation of discrete logarithms
 - Factorization of large integers

Network Security (WS 23/24): 02 - Basics of Cryptography

Attacking Cryptography (2): Brute Force Attack

- ☐ The *brute force attack* tries every possible key until it finds an intelligible plaintext:
 - Every cryptographic algorithm can in theory be attacked by brute force
 - ☐ On average, half of all possible keys will have to be tried

Average Time Required for Exhaustive Key Search							
Key Size [bit]	Number of keys	Time required at 1 encryption / μs	Time required at 10 ⁶ encryption / μs				
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ μs = 1142 years	10.01 hours				
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24} \text{ years}$	5.4 x 10 ¹⁸ years				
256	$2^{256} = 1.2 \times 10^{77}$	$2^{255} \mu s = 3.7 \times 10^{63} \text{ years}$	3.7 x 10 ⁵⁷ years				

Attacking Cryptography (3): How large is large?

Reference Numbers Comparing Relative Magnitudes

Reference		Мас	ınitude
Seconds in a year		≈ 3	x 10 ⁷
Seconds since creation of solar system		≈ 2	x 10 ¹⁷
Clock cycles per year (50 MHz computer)		≈ 1.6	x 10 ¹⁵
Binary strings of length 64	2 ⁶⁴	≈ 1.8	x 10 ¹⁹
Binary strings of length 128	2 ¹²⁸	≈ 3.4	x 10 ³⁸
Binary strings of length 256	2 ²⁵⁶	≈ 1.2	x 10 ⁷⁷
Number of 75-digit prime numbers		≈ 5.2	x 10 ⁷²
Electrons in the universe		≈ 8.37	x 10 ⁷⁷

© Pr. Ing G. Schäfer

Network Security (WS 23/24): 02 - Basics of Cryptography

5

Important Properties of Encryption Algorithms

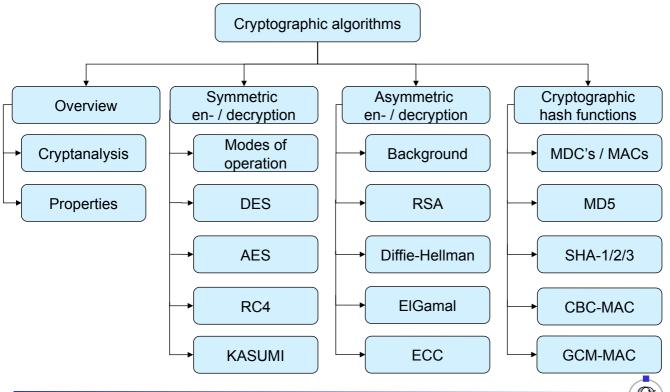
Consider, a sender is encrypting plaintext messages P_1 , P_2 , ... to ciphertext messages C_1 , C_2 , ...

Then the following properties of the encryption algorithm are of special interest:

- □ *Error propagation* characterizes the effects of bit-errors during transmission of ciphertext to reconstructed plaintext P₁′, P₂′, ...
 - Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit
- Synchronization characterizes the effects of lost ciphertext data units to the reconstructed plaintext
 - □ Some encryption algorithms can not recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages
 - Other algorithms do automatically re-synchronize after 0 to n (n depending on the algorithm) ciphertext bits

Classification of Encryption Algorithms: Three Dimensions

- ☐ The type of operations used for transforming plaintext to ciphertext:
 - □ *Substitution*, which maps each element in the plaintext (bit, letter, group of bits or letters) into another element
 - ☐ *Transposition,* which re-arranges elements in the plaintext
- ☐ The number of keys used:
 - □ *Symmetric ciphers*, which use the same key for en- / decryption
 - ☐ Asymmetric ciphers, which use different keys for en- / decryption
- ☐ The way in which the plaintext is processed:
 - ☐ Stream ciphers work on bit streams and encrypt one bit after another:
 - Many stream ciphers are based on the idea of linear feedback shift registers, and there have been detected vulnerabilities of a lot of algorithms of this class, as there exists a profound mathematical theory on this subject.
 - Most stream ciphers do not propagate errors but are sensible to loss of synchronization.
 - □ Block ciphers work on blocks of width b with b depending on the specific algorithm.


Network Security (WS 23/24): 02 - Basics of Cryptography

7

Cryptographic Algorithms - Outline

