Network Security

Chapter 5

Modification Check Values

TELEMATIK
 Rechnernetze

Motivation

I It is common practice in data communications to compute some kind of error detection code over messages, that enables the receiver to check if a message was altered during transmission

- Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)
- This leads to the wish of having a similar value that allows to check, if a message has been modified during transmission
But it is a big difference, if we assume that the message will be altered by more or less random errors or modified on purpose:
- If somebody wants to intentionally modify a message which is protected with a CRC value he can re-compute the CRC value after modification or modify the message in a way that it leads to the same CRC value
- So, a modification check value will have to fulfill some additional properties that will make it impossible for attackers to forge it
- Two main categories of modification check values:
- Modification Detection Code (MDC)
- Message Authentication Code (MAC)

- Definition: hash function

A hash function is a function h which has the following two properties:

- Compression: h maps an input x of arbitrary finite bit length, to an output $h(x)$ of fixed bit length n.
- Ease of computation: Given h and x it is easy to compute $h(x)$

Definition: cryptographic hash function
A cryptographic hash function h is a hash function which additionally satisfies among others the following properties:

- Pre-image resistance: for essentially all pre-specified outputs y, it is computationally infeasible to find an x such that $h(x)=y$
- $2^{\text {nd }}$ pre-image resistance: given x it is computationally infeasible to find any second input x^{\prime} with $x \neq x^{\prime}$ such that $h(x)=h\left(x^{\prime}\right)$
- Collision resistance: it is computationally infeasible to find any pair (x, x^{\prime}) with $x \neq x^{\prime}$ such that $h(x)=h\left(x^{\prime}\right)$
Cryptographic hash functions are used to compute modification detection codes (MDC)

TELEMATIK
 Rechnernetze

Message Authentication Codes (MAC)

- Definition: message authentication code
- A message authentication code algorithm is a family of functions h_{k} parameterized by a secret key k with the following properties:
- Compression: h_{k} maps an input x of arbitrary finite bitlength to an output $h_{k}(x)$ of fixed bitlength, called the MAC
- Ease of computation: given k, x and a known function family h_{k} the value $h_{k}(x)$ is easy to compute
- Computation-resistance: for every fixed, allowed, but unknown value of k, given zero or more text-MAC pairs $\left(x_{i}, h_{k}\left(x_{i}\right)\right)$ it is computationally infeasible to compute a text-MAC pair $\left(x, h_{k}(x)\right)$ for any new input $x \neq x_{i}$
] Please note that computation-resistance implies the property of key nonrecovery, that is k can not be recovered from pairs $\left(x_{i}, h_{k}\left(x_{i}\right)\right)$, but computation resistance can not be deduced from key non-recovery, as the key k need not always to be recovered to forge new MACs

A Simple Attack Against an Insecure MAC

- For illustrative purposes, consider the following MAC definition:

I Input: message $m=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with x_{i} being 64-bit values, and key k
Compute $\Delta(m):=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}$ with \oplus denoting bitwise exclusive-or

- Output: MAC $C_{k}(m):=E_{k}(\Delta(m))$ with $E_{k}(x)$ denoting DES encryption

The key length is 56 bit and the MAC length is 64 bit, so we would expect an effort of about 2^{55} operations to obtain the key k and break the MAC (= being able to forge messages).

- Unfortunately the MAC definition is insecure:
- Assume an attacker Eve who wants to forge messages exchanged between Alice and Bob obtains a message ($m, C_{k}(m)$) which has been "protected" by Alice using the secret key k shared with Bob
- Eve can construct a message m ' that yields the same MAC:
- Let $y_{1}, y_{2}, \ldots, y_{n-1}$ be arbitrary 64 -bit values
- Define $y_{n}:=y_{1} \oplus y_{2} \oplus \ldots \oplus y_{n-1} \oplus \Delta(m)$, and $m^{\prime}:=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
- When Bob receives (m ', $C_{k}(m)$) from Eve pretending to be Alice he will accept it as being originated by Alice as $C_{k}(m)$ is a valid MAC for m^{\prime}

Applications to Cryptographic Hash Functions and MACs

- Principal application which led original design:
- Message integrity:
- An MDC represents a digital fingerprint, which can be signed with a private key, e.g. using the RSA or ElGamal algorithm, and it is not possible to construct two messages with the same fingerprint so that a given signed fingerprint can not be re-used by an attacker
- A MAC over a message m directly certifies that the sender of the message possesses the secret key k and the message could not have been modified without knowledge of that key
- Other applications, which require some caution:
- Confirmation of knowledge
- Key derivation
- Pseudo-random number generation
- Depending on the application, further requirements may have to be met:
- Partial pre-image resistance: even if only a part of the input, say t bit, is unknown, it should take on the average 2^{t-1} operations to find these bits
- The Birthday Phenomenon:
- How many people need to be in a room such that the possibility that there are at least two people with the same birthday is greater than 0.5 ?
- For simplicity, we don't care about February, 29, and assume that each birthday is equally likely
ㅁ Define $P(n, k):=\operatorname{Pr}$ [at least one duplicate in k items, with each item able to take on of n equally likely values between 1 and n]
- Define $Q(n, k):=\operatorname{Pr}[$ no duplicate in k items, each item between 1 and $n]$

We are able to choose the first item from n possible values, the second item from $n-1$ possible values, etc.

- Hence, the number of different ways to choose k items out of n values with no duplicates is: $N=n \times(n-1) \times \ldots \times(n-k+1)=n!/(n-k)!$
The number of different ways to choose k items out of n values, with or without duplicates is: n^{k}
- So, $Q(n, k)=N / n^{k}=n!/\left((n-k)!\times n^{k}\right)$

TELEMATIK Rechnernetze

Attacks Based on the Birthday Phenomenon (2)

- We have: $P(n, k)=1-Q(n, k)=1-\frac{n!}{(n-k)!\times n^{k}}$

$$
\begin{aligned}
& =1-\frac{n \times(n-1) \times \ldots \times(n-k+1)}{n^{k}} \\
& =1-\left[\frac{n-1}{n} \times \frac{n-2}{n} \times \ldots \times \frac{n-k+1}{n}\right] \\
& =1-\left[\left(1-\frac{1}{n}\right) \times\left(1-\frac{2}{n}\right) \times \ldots \times\left(1-\frac{k-1}{n}\right)\right]
\end{aligned}
$$

We will use the following inequality: $(1-x) \leq e^{-x}$ for all $x \geq 0$

$$
\text { O So: } \begin{aligned}
P(n, k) & >1-\left[\left(e^{-1 / n}\right) \times\left(e^{-2 / n}\right) \times \ldots \times\left(e^{-(k-1) / n}\right)\right] \\
& =1-e^{-[(1 / n)+(2 / n)+\ldots+(k-1 / n)]} \\
& =1-e^{-k \times(k-1) / 2 n}
\end{aligned}
$$

Attacks Based on the Birthday Phenomenon (3)

In the last step, we used the equality: $1+2+\ldots+(k-1)=\left(k^{2}-k\right) / 2$

- Exercise: proof the above equality by induction

Let's go back to our original question: how many people k have to be in one room such that there are at least two people with the same birthday (out of $n=365$ possible) with probability $\geq 0,5$?

- So, we want to solve:

$$
\begin{aligned}
& \text { ve: } \quad 1 / 2=1-e^{-k \rtimes k-1) / 2 n} \\
& \Leftrightarrow \quad 2=e^{k \rtimes(k-1) / 2 n} \\
& \Leftrightarrow \ln (2)=\frac{k \times(k-1)}{2 n}
\end{aligned}
$$

- For large k we can approximate $k \times(k-1)$ by k^{2}, and we get:

$$
k=\sqrt{2 \ln (2) n} \approx 1.18 \sqrt{n}
$$

For $n=365$, we get $k=22.54$ which is quite close to the correct answer 23

TEEEMATIK
 Rechnernetze

Attacks Based on the Birthday Phenomenon (4)

. What does this have to do with MDCs?
We have shown, that if there are n possible different values, the number k of values one needs to randomly choose in order to obtain at least one pair of identical values, is on the order of \sqrt{n}

- Now, consider the following attack [Yuv79a]:
- Eve wants Alice to sign a message m1, Alice normally never would sign. Eve knows that Alice uses the function $\operatorname{MDC1}(m)$ to compute an MDC of m which has length r bit before she signs this MDC with her private key yielding her digital signature.
- First, Eve produces her message $m 1$. If she would now compute MDC1 $(m 1)$ and then try to find a second harmless message $m 2$ which leads to the same MDC her search effort in the average case would be on the order of $2^{(r-1)}$.
- Instead she takes any harmless message $m 2$ and starts producing variations $m 1$ ' and $m 2$ ' of the two messages, e.g. by adding <space> <backspace> combinations or varying with semantically identical words.

I As we learned from the birthday phenomenon, she will just have to produce about $\sqrt{2^{r}}=2^{r / 2}$ variations of each of the two messages such that the probability that she obtains two messages $m 1$ ' and $m 2^{\prime}$ with the same MDC is at least 0.5

- As she has to store the messages together with their MDCs in order to find a match, the memory requirement of her attack is on the order of $2^{r / 2}$ and its computation time requirement is on the same order
- After she has found $m 1^{\prime}$ and $m 2^{\prime}$ with MDC1 $\left(m 1^{\prime}\right)=\operatorname{MDC1}\left(m 2^{\prime}\right)$ she asks Alice to sign $m 2^{\prime}$. Eve can then take this signature and claim that Alice signed $m 1^{\prime}$.
- Attacks following this method are called birthday attacks

Consider now, that Alice uses RSA with keys of length 2048 bit and a cryptographic hash function which produces MDCs of length 96 bit.

- Eves average effort to produce two messages $m 1^{\prime}$ and $m 2^{\prime}$ as described above is on the order of 2^{48}, which is feasible today. Breaking RSA keys of length 2048 bit is far out of reach with today's algorithms and technology.

TELEMATIK
 Rechnernetze

Overview of Commonly Used MDCs

- Cryptographic Hash Functions for creating MDCs:
- Message Digest 5 (MD5):
- Invented by R. Rivest
- Successor to MD4
- Secure Hash Algorithm 1 (SHA-1):
- Invented by the National Security Agency (NSA)
- The design was inspired by MD4
- Secure Hash Algorithm 2 (SHA-2 also SHA-256 \& SHA-512)
- Also designed by the National Security Agency (NSA)
- Also Merkle-Dåmgard-Contruction
- Larger block size \& more complex round function
- Secure Hash Algorithm 3 (SHA-3, Keccak)
- Winner of an open competition
- So-called Sponge construction
- Much more versatile than previous hash functions
- Message Authentication Codes (MACs):

DES-CBC-MAC:

- Uses the Data Encryption Standard in Cipher Block Chaining mode
- In general, the CBC-MAC construction can be used with any block cipher
- MACs constructed from MDCs:
- This very common approach raises some cryptographic concern as it makes some implicit but unverified assumptions about the properties of the MDC
- Authenticated Encryption with Associated Data (AEAD)
- Galois-Counter-Mode (GCM)

U Uses a block-cipher to encrypt and authenticate data
Fast in networking applications

- Sponge Wrap
- Uses a SHA-3 like hash function to encrypt and authenticate data

TELEMATIK Rechnernetze

Common Structure of Cryptographic Hash Functions (1)

. Like many of today's block ciphers follow the general structure of a Feistel network, many cryptographic hash functions in use today follow a common structure, the so-called Merkle-Dåmgard structure:
Let y be an arbitrary message. Usually, the length of the message is appended to the message and it is padded to a multiple of some block size b. Let $\left(y_{0}, y_{1}, \ldots, y_{L-1}\right)$ denote the resulting message consisting of L blocks of size b

- The general structure is as depicted below:

- $C V$ is a chaining value, with $C V_{0}:=I V$ and $M D C(y):=C V_{L}$
f is a specific compression function which compresses $(n+b)$ bit to n bit
- The hash function H can be summarized as follows:

$$
\begin{array}{ll}
C V_{0}=I V & =\text { initial } n \text {-bit value } \\
C V_{i}=f\left(C V_{i-1}, y_{i-1}\right) & 1 \leq i \leq L \\
H(y)=C V_{L} &
\end{array}
$$

It has been shown [Mer89a] that if the compression function f is collision resistant, then the resulting iterated hash function H is also collision resistant.
Cryptanalysis of cryptographic hash functions thus concentrates on the internal structure of the function f and finding efficient techniques to produce collisions for a single execution of f

- Primarily motivated by birthday attacks, a common minimum suggestion for n, the bitlength of the hash value, is 160 bit, as this implies an effort of order 2^{80} to attack which is considered infeasible today

TELEMATIK
 Rechnernetze

The Message Digest 5 (1)

MD5 follows the common structure outlined before (e.g. [Riv92a]):
The message y is padded by a " 1 " followed by 0 to 511 " 0 " bits such that the length of the resulting message is congruent 448 modulo 512
The length of the original message is added as a 64-bit value resulting in a message that has length which is an integer multiple of 512 bit
This new message is divided into blocks of length $b=512$ bit
The length of the chaining value is $n=128$ bit

- The chaining value is "structured" as four 32-bit registers A, B, C, D
- Initialization: A :=0x 01234567 B := $0 \times 89 \mathrm{AB}$ CD EF
$C:=0 x$ FE DC BA $98 \quad \mathrm{D}:=0 \times 76543210$
- Each block of the message y_{i} is processed with the chaining value $C V_{i}$ with the function f which is internally realized by 4 rounds of 16 steps each
- Each round uses a similar structure and makes use of a table T containing 64 constant values of 32-bit each,
- Each of the four rounds uses a specific logical function g

- The function g is one of four different logical functions
- $y_{i}[k]$ denotes the $k^{\text {th }} 32$-bit word of message block i
- $\left.T_{j}\right]$ is the $j^{\text {th }}$ entry of table t with j incremented modulo 64 every step
- CLS_{s} denotes cyclical left shift by s bits with s following some schedule

The Message Digest 5 (3)

- The MD5-MDC over a message is the content of the chaining value CV after processing the final message block
- Security of MD5:

E Every bit of the 128-bit hash code is a function of every input bit

- In 1996 H . Dobbertin published an attack that allows to generate a collision for the function f (realized by the 64 steps described above).
- Took until 2004 before a first collision was found [WLYF04]
- By now it is possible to generate collisions within seconds on general purpose hardware [KI06]

- MD5 must not be considered if collision resistance is required!

- This is often the case!
- Examples: Two postscripts with different texts but equal hashes [LD05], Certificates one for an assured domain and one for an own certificate authority [LWW05], Any message that is extendable [KK06]
The resistance against preimage attacks is with $2^{123.4}$ calculations still o.k [SA09]

- Also SHA-1 follows the common structure as described above:

SHA-1 works on 512-bit blocks and produces a 160-bit hash value

- As its design was also inspired by the MD4 algorithm, its initialization is basically the same like that of MD5:
- The data is padded, a length field is added and the resulting message is processed as blocks of length 512 bit
- The chaining value is structured as five 32-bit registers A, B, C, D, E
- Intialization: $A=0 \times 67452301 \quad B=0 \times \mathrm{EF} \mathrm{CD}$ AB 89
$C=0 x 98 \mathrm{BA} D C \mathrm{FE} D=0 x 10325476$
E = 0x C3 D2 E1 F0
- The values are stored in big-endian format
- Each block y_{i} of the message is processed together with $C V_{i}$ in a module realizing the compression function f in four rounds of 20 steps each.
- The rounds have a similar structure but each round uses a different primitive logical function $f_{1}, f_{2}, f_{3}, f_{4}$
- Each step makes use of a fixed additive constant K_{t}, which remains unchanged during one round

TELEMATIK Rechnernetze

The Secure Hash Algorithm SHA-1 (2) - One Step

- $t \in\{0, \ldots, 15\} \quad \Rightarrow W_{\mathrm{t}}:=y_{i}[\mathrm{t}]$
$\mathrm{t} \in\{16, \ldots, 79\} \quad \Rightarrow W_{t}:=\mathrm{CLS}_{1}\left(W_{t-16} \oplus W_{t-14} \oplus W_{t-8} \oplus W_{t-3}\right)$
- After step 79 each register $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ is added modulo 2^{32} with the value of the corresponding register before step 0 to compute $C V_{i+1}$
- The SHA-1-MDC over a message is the content of the chaining value CV after processing the final message block
- Comparison between SHA-1 and MD5:
- Speed: SHA-1 is about 25% slower than MD5 (CV is about 25% bigger)
- Simplicity and compactness: both algorithms are simple to describe and implement and do not require large programs or substitution tables
- Security of SHA-1:
- As SHA-1 produces MDCs of length 160 bit, it is expected to offer better security against brute-force and birthday attacks than MD5
- Some inherent weaknesses of Merkle-Dåmgard constructions, e.g. [KK06], apply
- In February 2005, X. Wang et. al. published an attack that allows to find a collision with an effort of 2^{69} that was improved to 2^{63} in the months to follow and published in [WYY05a]
- Research continued (e.g. [Man11]), and in February 2017 the first actual collision was found (demonstrated with altered PDF document)

TELEMATIK Rechnernetze

The Secure Hash Algorithm SHA-2 family (1)

- In 2001, the NIST published a new standard FIPS PUB 180-2 containing new variants, called SHA-256, SHA-384, and SHA-512 [NISTO2] with 256,384 , and 512 bits output
- SHA-224 was added in 2004
- SHA-224 and SHA-384 are truncated versions of SHA-256 and SHA512 with different initialization values
- SHA-2 uses also Merkle-Dåmgard construction with a block size of 512 bits (SHA-256) and 1024 bits (SHA-512)
- The internal state is organized in 8 registers of 32 bit (SHA-256) and 64 bit (SHA-512)
- 64 rounds (SHA-256) or 80 rounds (SHA-512)

ㅁ $\mathrm{t} \in\{0, \ldots, 15\} \quad \Rightarrow W_{\mathrm{t}}:=y_{i}[\mathrm{t}]$
$\mathrm{t} \in\{16, \ldots, \mathrm{r}\} \quad \Rightarrow W_{t}:=W_{t-16} \oplus \sigma_{0}\left(W_{t-15}\right) \oplus W_{t-7} \oplus \sigma_{1}\left(W_{t-2}\right)$

- K_{t} is the fractional part of the cube root of the $\mathrm{t}^{\text {th }}$ prime number
- The ROTR and σ functions XOR different shifts of the input value
- Ch and Maj are logic combinations of the input values

TELEMATIK Rechnernetze

The Secure Hash Algorithm SHA-2 family (3)

All-in-all design very similar to SHA-1

- Due to size and more complicated round functions about 3050 percent slower than SHA-1 (varies for 64-bit and 32-bit systems!)
- Security discussion:
- Already in 2004 it was discovered that a simplified version of the algorithm (with XOR instead of addition and symmetric constants) generates highly correlated output [GH04]
- For round-reduced versions of SHA-2 pre-image attacks exists that are faster than brute-force, but highly impractical (e.g. [AGM09])
Even though size and complexity do not allow for attacks currently the situation is uncomfortable
Led to the need for a new SHA-3 standard

Security concerns about SHA-1 and SHA-2 led to an open competition by the NIST which started in 2007

- 5 finalists without notable weaknesses

October 2012: NIST announces Keccak to become SHA-3

- 4 European inventors

One is Joan Daemen, who co-designed AES

- SHA-3 is very fast, especially in hardware

Very well documented and analyzable

TELEMATIK Rechnernetze

The Secure Hash Algorithm SHA-3 (2)

Keccak is based on a so-called sponge construction instead of the previous Merkle-Dåmgard constructs
Versatile design to implement nearly all symmetric cryptographic functions (however only the hashing is standardized)

- Usually works in 2 phases
- "Absorbing" information of arbitrary length into 1600 bit of internal state
] "Squeezing" (i.e. outputting) hashed-data of arbitrary length (only 224, 256, 384, and 512 bits standardized)
- The internal state is organized in 2 registers
- One register of the size r is "public": input data is XORed to it in absorbing phase, output data is derived from it in squeezing phase
- The register of size c is "private"; in- and output does not affect it directly

In Keccak the size of the registers is 1600 bits (i.e. $c+r=1600$ bits)
The size of c is twice as large as the output block length
Both registers are initialized with " 0 "
\square The hashing occurs due a function f that reads the registers and outputs a new state

Phase 1: Absorbing

Phase 2: Squeezing

Absorbing phase: $k+1$ input blocks of size r are mixed to the state

- Squeezing phase: I + 1 output blocks of size r are generated (often only one)
- The last input and output block may be padded or cropped

SHA-3 (4) - The function f

Obviously, the security of a sponge construction depends on the security of f

- In Keccak uses 24 rounds of 5 different sub-functions $(\theta, \rho, \pi, \chi, \mathrm{l})$ to implement f
- Sub-functions operate on a "three-dimensional" bit array a[5][5][w] with w is chosen in correspondence with the size r and c
- All operations are performed over $\operatorname{GF}\left(2^{n}\right)$

Each of the sub-functions ensures certain properties, e.g.,
Fast diffusion of changed bits throughout the state (θ)
\square Long term diffusion (π)
Ensuring that f becomes non-linear (χ)
Round-specific substitution (l)

- θ is executed first to ensure that secret and public state mix quickly before applying other sub-functions

- Currently no notable weaknesses exist in SHA-3

Best known pre-image attacks work with up to 8-round function fonly
To protect against internal collisions 11 rounds are supposed to be enough
In comparison to SHA-1 and SHA-2 additional security properties are guaranteed as internal state is never made public

Prevents attacks were arbitrary information is added to a valid secret message
Drovides Chosen Target Forced Prefix (CTFP) preimage resistance [KK06], i.e. it is not possible to construct a message $m=P \| S$, where P is fixed and S is arbitrary chosen, s.t., $H(m)=y$

- For Merkle-Dåmgard constructions this is only as hard as collision resistance
No fast way to generate multi-collisions quickly [Jou04]

TELEMATIK Rechnernetze

Cipher Block Chaining Message Authentication Codes (1)

a A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last ciphertext block or a part of it as the MAC:

$\ldots \quad \mathrm{K} \rightarrow \underbrace{\mathrm{C}_{\mathrm{D}-1}^{\mathrm{C}_{\mathrm{n}}}}_{\substack{\text { Encrypt }}}$

- This MAC needs not to be signed any further, as it has already been produced using a shared secret K
- However, it is not possible to say who exactly has created a MAC, as everybody (sender, receiver) who knows the secret key K can do so
- This scheme works with any block cipher (DES, IDEA, ...)
- Security of CBC-MAC:

As an attacker does not know K, a birthday attack is much more difficult to launch (if not impossible)
Attacking a CBC-MAC requires known (message, MAC) pairs
This allows for shorter MACs
A CBC-MAC can optionally be strengthened by agreeing upon a second key $\mathrm{K}^{\prime} \neq \mathrm{K}$ and performing a triple encryption on the last block:

$$
\text { MAC }:=E\left(K, D\left(K^{\prime}, E\left(K, C_{n-1}\right)\right)\right)
$$

- This doubles the key space while adding only little computing effort
- The construction is not secure, when message lengths vary!
- There have also been some proposals to create MDCs from symmetric block ciphers with setting the key to a fixed (known) value:
- Because of the relatively small block size of 64 bit of most common block ciphers, these schemes offer insufficient security against birthday attacks
- As symmetric block ciphers require more computing effort than dedicated cryptographic hash functions, these schemes are relatively slow

- Reason to construct MACs from MDCs Cryptographic hash functions generally execute faster than symmetric block ciphers
- Basic idea: "mix" a secret key K with the input and compute an MDC
- The assumption that an attacker needs to know K to produce a valid MAC nevertheless raises some cryptographic concern (at least for Merkle-Dåmgard hash functions):
The construction $H(K \| m)$ is not secure (see note 9.64 in [Men97a])
- The construction $H(m \| K)$ is not secure (see note 9.65 in [Men97a])
- The construction $H(K\|p\| m \| K)$ with p denoting an additional padding field does not offer sufficient security (see note 9.66 in [Men97a])
- The most used construction is: $H\left(K \oplus p_{1} \| H\left(K \oplus p_{2} \| m\right)\right)$

Key is padded with 0 's to fill up the key to one input block of the cryptographic hash function
Two different constant patterns p_{1} and p_{2} XORed to the padded key

- This scheme seems to be secure (see note 9.67 in [Men97a])

It has been standardized in RFC 2104 [Kra97a] and is called HMAC

U Usually it data is not authenticated or encrypted but encrypted AND authenticated (blocks $\mathrm{P}_{0} \ldots \mathrm{P}_{\mathrm{n}}$)
\square Sometimes additional data needs to be authenticated (e.g. packet headers), in the following denoted $A_{0} \ldots A_{m}$
\square Led to the development of AEAD modes of operation

- Examples are

Galois/Counter Mode (GCM)
Counter with CBC-MAC (CCM)

- Offset Codebook Mode (OCM)

S SpongeWrap - a method to use Keccak for AEAD operation

TELEMATIK Rechnernetze

Galois/Counter Mode (GCM) [MV04]

- Popular AEAD mode
- NIST standard, part of IEEE 802.1AE, IPsec, TLS, SSH etc.
- Free of patents
- Mainly used in networking applications for its high speed
- Extremely efficient in hardware

Processor support on newer x86 CPUs
Time intensive tasks may be pre-calculated and parallelized

- No need for padding
- Uses conventional block cipher with 128 bit block size (e.g. AES)
- Calculates MAC by multiplications and additions in GF(2^{128}) over the irreducible polynomial $x^{128}+x^{7}+x^{2}+x+1$
- Requires only $\mathrm{n}+1$ block cipher calls per packet ($\mathrm{n}=$ length of encrypted and authenticated data)
- Galois field arithmetic defined over terms (e.g. $a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$)

Coefficients are elements of the field \mathbb{Z}_{2}, i.e. either 0 or 1
O Often only the coefficients are stored, so $x^{4}+x^{2}+x^{1}$ becomes 0×16

- Addition in $\mathrm{GF}\left(2^{\mathrm{n}}\right)$ is simply the addition of terms
- As equal coefficients map to 0 , just XOR the values!
- Extreme fast in hard- and software!
- Multiplication in $\operatorname{GF}\left(2^{\text {n }}\right)$ is polynomial multiplication and a subsequent modulo division by an irreducible polynomial of degree n
- Irreducible polynomials are not divisible without remainder by any other polynomial except "1", somewhat like prime numbers in GF
C Can be implemented by a series of shift and XOR operations
Very fast in hardware or on newer Intel CPUs (with CLMUL Operations)
Modulo operation could be performed like in a regular CRC calculation

- Addition Example:
$\square x^{3}+x+1 \oplus x^{2}+x=x^{3}+x^{2}+1 \leftrightarrow 0 x 0 B$ XOR $0 x 06=0 x 0 D$
- Multiplication Example (over $x^{4}+x+1$):
- $x^{3}+x+1 \bullet x^{2}+x=x^{5}+x^{3}+x^{2} \oplus x^{4}+x^{2}+x$ MOD $x^{4}+x+1=$ $x^{5}+x^{4}+x^{3}+x$ MOD $x^{4}+x+1=x^{3}+x^{2}+x+1$
- Elements of $\operatorname{GF}\left(2^{n}\right)$ (except for 1 and the irreducible polynomial) may be a generator for the group
E Example for x and the polynomial $x^{4}+x+1: x, x^{2}, x^{3}, x+1, x^{2}+x, x^{3}+x^{2}$, $x^{3}+x+1, x^{2}+1, x^{3}+x, x^{2}+x+1, x^{3}+x^{2}+x, x^{3}+x^{2}+x+1, x^{3}+x^{2}+1, x^{3}+1,1, x$,

Other concepts of finite groups also apply, e.g., every element has a multiplicative inverse element
May be found by an adapted version of the Extended Euclidian Algorithm

- I_{0} is initialized with the IV and a padding, or a hash of the IV (if it is not 96 bits)
- $\bullet H$ is $G F\left(2^{128}\right)$ multiplication with $H=E\left(K, 0^{128}\right)$
- Input blocks A_{m} and P_{n} are padded to 128 bits
- $A_{m} \& C_{n}$ are truncated to original size before output
- The last authentication uses 64 bit encoded bit lengths of A and C

TELEMATIK
 Rechnernetze

Galois/Counter Mode (GCM) (3) - Security

- Fast mode, but needs some care:
- Proven to be secure (under preconditions, e.g. used block cipher is not distinguishable from random numbers), but construction is fragile:
- IVs MUST NOT be reused, otherwise streams can be XORed and the XOR of the streams can be recovered, may lead to an instant recovery of the secret value "H"
- H has a possible weak value 0^{128}, in this case authentication will not work and if IVs of a length other than 96 bits are used, C_{0} will always be the same!
Some other keys generate hash keys with a low order, which must be avoided... [Saa11]
- Successful forgery attempts may leak information about H, thus short MAC lengths MUST be avoided or risk-managed [Dwo07]
- The achieved security is only $2^{\text {t-k }}$ not 2^{t} (for MAC length t and number of blocks 2^{k}) as blocks may be modified to make to only change parts of the MAC [Fer05]

- By using SHA-3 it is also possible to implement an AEAD construct [BDP11a]
Construction is very simple and comparably easy to understand
- Uses so-called duplex mode for sponge functions, where data write and read operations are interleaved
- Does not require padding of data to a specific block size
- Cannot be parallelized
- Security:

Not widely used yet, but several aspects proven to be as secure as SHA-3 in standardized mode

- If the authenticated data A does not contain a unique IV the same key stream will be generated (allows the recovery of one block of XORed encrypted data)

TELEMATIK Rechnernetze

 SpongeWrap - Operation

- Simplified version, where key and MAC length must be smaller than block-size
- Paddings with a single " 0 " or " 1 " bit ensure that different data blocks types are well separated

[Kra97a]	H. Krawczyk, M. Bellare, R. Canetti. HMAC: Keyed-Hashing for Message Authentication. Internet RFC 2104, February 1997.
[Mer89a]	R. Merkle. One Way Hash Functions and DES. Proceedings of Crypto '89, Springer, 1989.
[Men97a]	A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone. Handbook of Applied Cryptography, CRC Press Series on Discrete Mathematics and Its Applications, Hardcover, 816 pages, CRC Press, 1997.
[NIST02]	National Institute of Standards and Technology (NIST). Secure Hash Standard. Federal Information Processing Standards Publication (FIPS PUB), 180-2, 2002.
[Riv92a]	R. L. Rivest. The MD5 Message Digest Algorithm. Internet RFC 1321, April 1992.
[Rob96a]	M. Robshaw. On Recent Results for MD2, MD4 and MD5. RSA Laboratories' Bulletin, No. 4, November 1996.
[WYY05a]X. Wang, Y. L. Yin, H. Yu. Finding collisions in the full SHA-1. In Advances in Cryptology - CRYPTO'05, pages 18-36, 2005.	
[Yuv79a]	G. Yuval. How to Swindle Rabin. Cryptologia, July 1979.

Additional References

[WLYF04] X. Wang, D. Feng, X. Lai, H. Yu. Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD. IACR Eprint archive, 2004.
[LWW05] A. Lenstra, X. Wang, B. de Weger. Colliding X. 509 Certificates. Cryptology ePrint Archive: Report 2005/067. 2005.
[LD05] S. Lucks, M. Daum. The Story of Alice and her Boss. In Rump session of Eurocrypt'05. 2005.
[KI06] V. Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute (extended abstract), Cryptology ePrint Archive: Report 2006/105, 2006.
[SA09] Y. Sasaki, K. Aoki. Finding Preimages in Full MD5 Faster Than Exhaustive Search. Advances in Cryptology - EUROCRYPT'09. 2009
[Man11] M. Manuel. Classification and Generation of Disturbance Vectors for Collision Attacks against SHA-1. Journal Designs, Codes and Cryptography. Volume 59, Issue 1-3, pages 247-263, 2011.
[GH04] H. Gilbert, H. Handschuh. Security Analysis of SHA-256 and Sisters. Lecture Notes in Computer Science, 2004, Volume 3006/2004, pages 175-193. 2004.
[AGM09] K. Aoki, J. Guo, K. Matusiewicz, V. Sasaki, L. Wang. Preimages for Step-Reduced SHA-2. Advances in Cryptology - ASIACRYPT 2009. pages 578-597, 2009.
[KK06] J. Kelsey, T. Kohno. Herding Hash Functions and the Nostradamus Attack. Advances in Cryptology - EUROCRYPT'06. 2006.
[Jou04] A. Joux: Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. CRYPTO 2004: pages 306-316. 2004.

Additional References

[MV04] D. McGrew, J. Viega. The Security and Performance of the Galois/Counter Mode (GCM) of Operation (Full Version). http://eprint.iacr.org/2004/193.
[Fer05] N. Ferguson. Authentication weaknesses in GCM. 2005.
[Dwo07] M. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D. 2007
[Saa11] M. Saarinen. GCM, GHASH and Weak Keys. Cryptology ePrint Archive, Report 2011/202, http://eprint.iacr.org/2011/202, 2011.
[BDP07] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. Sponge Functions. Ecrypt Hash Workshop 2007.
[BDP11a] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. Cryptographic sponge functions. Research report. Version 0.1. 2011
[BDP11b] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. The Keccak reference. Research report. Version 3.0. 2011

