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Motivation

 It is common practice in data communications to compute some kind 
of error detection code over messages, that enables the receiver to 
check if a message was altered during transmission
 Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

 This leads to the wish of having a similar value that allows to check, if 
a message has been modified during transmission

 But it is a big difference, if we assume that the message will be altered 
by more or less random errors or modified on purpose:
 If somebody wants to intentionally modify a message which is protected 

with a CRC value he can re-compute the CRC value after modification or 
modify the message in a way that it leads to the same CRC value

 So, a modification check value will have to fulfill some additional 
properties that will make it impossible for attackers to forge it
 Two main categories of modification check values:

 Modification Detection Code (MDC)
 Message Authentication Code (MAC)
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Cryptographic Hash Functions

 Definition: hash function
 A hash function is a function h which has the following two properties:

 Compression: h maps an input x of arbitrary finite bit length, to an 
output h(x) of fixed bit length n.

 Ease of computation: Given h and x it is easy to compute h(x)

 Definition: cryptographic hash function
 A cryptographic hash function h is a hash function which additionally 

satisfies among others the following properties:
 Pre-image resistance: for essentially all pre-specified outputs y, it is 

computationally infeasible to find an x such that h(x) = y 
 2nd pre-image resistance: given x it is computationally infeasible to find 

any second input x’ with x  x’ such that h(x) = h(x’)
 Collision resistance: it is computationally infeasible to find any pair 

(x, x’) with x  x’ such that h(x) = h(x’)
 Cryptographic hash functions are used to compute modification detection 

codes (MDC)
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Message Authentication Codes (MAC)

 Definition: message authentication code
 A message authentication code algorithm is a family of functions hk 

parameterized by a secret key k with the following properties:
 Compression: hk maps an input x of arbitrary finite bitlength to an 

output hk(x) of fixed bitlength, called the MAC
 Ease of computation: given k, x and a known function family hk the 

value hk(x) is easy to compute
 Computation-resistance: for every fixed, allowed, but unknown value of 

k, given zero or more text-MAC pairs (xi, hk(xi)) it is computationally 
infeasible to compute a text-MAC pair (x, hk(x)) for any new input x  xi 

 Please note that computation-resistance implies the property of key non-
recovery, that is k can not be recovered from pairs (xi, hk(xi)), but 
computation resistance can not be deduced from key non-recovery, as the 
key k need not always to be recovered to forge new MACs
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A Simple Attack Against an Insecure MAC

 For illustrative purposes, consider the following MAC definition:
 Input: message m = (x1, x2, ..., xn) with xi being 64-bit values, and key k

 Compute (m) := x1  x2  ...  xn   with  denoting bitwise exclusive-or

 Output: MAC Ck(m) := Ek((m))  with Ek(x) denoting DES encryption

 The key length is 56 bit and the MAC length is 64 bit, so we would 
expect an effort of about 255 operations to obtain the key k and break 
the MAC (= being able to forge messages).

 Unfortunately the MAC definition is insecure:
 Assume an attacker Eve who wants to forge messages exchanged 

between Alice and Bob obtains a message (m, Ck(m)) which has been 
“protected” by Alice using the secret key k shared with Bob

 Eve can construct a message m’ that yields the same MAC:
 Let y1, y2, ..., yn-1 be arbitrary 64-bit values
 Define yn := y1  y2  ...  yn-1  (m), and m’ := (y1, y2, ..., yn)
 When Bob receives (m’, Ck(m)) from Eve pretending to be Alice he will 

accept it as being originated by Alice as Ck(m) is a valid MAC for m’
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Applications to Cryptographic Hash Functions and MACs

 Principal application which led original design:
 Message integrity:

 An MDC represents a digital fingerprint, which can be signed with a 
private key, e.g. using the RSA or ElGamal algorithm, and it is not 
possible to construct two messages with the same fingerprint so that a 
given signed fingerprint can not be re-used by an attacker

 A MAC over a message m directly certifies that the sender of the 
message possesses the secret key k and the message could not have 
been modified without knowledge of that key

 Other applications, which require some caution:
 Confirmation of knowledge
 Key derivation
 Pseudo-random number generation

 Depending on the application, further requirements may have to be 
met:
 Partial pre-image resistance: even if only a part of the input, say t bit, is 

unknown, it should take on the average 2t -1 operations to find these bits
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Attacks Based on the Birthday Phenomenon (1)

 The Birthday Phenomenon:
 How many people need to be in a room such that the possibility that there 

are at least two people with the same birthday is greater than 0.5?
 For simplicity, we don’t care about February, 29, and assume that each 

birthday is equally likely
 Define P(n, k) := Pr[at least one duplicate in k items, with each item

able to take on  of n equally likely values 
between 1 and n] 

 Define Q(n, k) := Pr[no duplicate in k items, each item between 1 and n]
 We are able to choose the first item from n possible values, the second item 

from n - 1 possible values, etc.
 Hence, the number of different ways to choose k items out of n values with 

no duplicates is: N = n  (n - 1)  ...  (n - k + 1) = n! / (n - k)!
 The number of different ways to choose k items out of n values, with or 

without duplicates is: nk

 So, Q(n, k) = N / nk = n! / ((n - k)!  nk)
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Attacks Based on the Birthday Phenomenon (2)

 We have:

 We will use the following inequality: (1 - x)  e-x for all x  0

 So:
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Attacks Based on the Birthday Phenomenon (3)

 In the last step, we used the equality: 1 + 2 + ... + (k - 1) = (k2 - k) / 2
 Exercise: proof the above equality by induction

 Let’s go back to our original question: how many people k have to be 
in one room such that there are at least two people with the same  
birthday (out of n = 365 possible) with probability  0,5?
 So, we want to solve: 

 For large k we can approximate k  (k - 1) by k2, and we get:

 For n = 365, we get k = 22.54 which is quite close to the correct answer 23
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Attacks Based on the Birthday Phenomenon (4)

 What does this have to do with MDCs?
 We have shown, that if there are n possible different values, the 

number k of values one needs to randomly choose in order to obtain 
at least one pair of identical values, is on the order of 

 Now, consider the following attack [Yuv79a]:
 Eve wants Alice to sign a message m1, Alice normally never would sign. 

Eve knows that Alice uses the function MDC1(m) to compute an MDC of m 
which has length r bit before she signs this MDC with her private key 
yielding her digital signature.

 First, Eve produces her message m1. If she would now compute 
MDC1(m1) and then try to find a second harmless message m2 which 
leads to the same MDC her search effort in the average case would be on 
the order of 2(r - 1). 

 Instead she takes any harmless message m2 and starts producing 
variations m1’ and m2’ of the two messages, e.g. by adding <space> 
<backspace> combinations or varying with semantically identical words.

n
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Attacks Based on the Birthday Phenomenon (5)

 As we learned from the birthday phenomenon, she will just have to 
produce about                 variations of each of the two messages such 
that the probability that she obtains two messages m1’ and m2’ with 
the same MDC is at least 0.5

 As she has to store the messages together with their MDCs in order to 
find a match, the memory requirement of her attack is on the order of
      and its computation time requirement is on the same order

 After she has found m1’ and m2’ with MDC1(m1’) = MDC1(m2’) she 
asks Alice to sign m2’. Eve can then take this signature and claim that 
Alice signed m1’.

 Attacks following this method are called birthday attacks
 Consider now, that Alice uses RSA with keys of length 2048 bit and a 

cryptographic hash function which produces MDCs of length 96 bit.
 Eves average effort to produce two messages m1’ and m2’ as described 

above is on the order of 248, which is feasible today. Breaking RSA keys of 
length 2048 bit is far out of reach with today's algorithms and technology.

222
rr 

22
r
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Overview of Commonly Used MDCs

 Cryptographic Hash Functions for creating MDCs:
 Message Digest 5 (MD5):

 Invented by R. Rivest
 Successor to MD4

 Secure Hash Algorithm 1 (SHA-1):
 Invented by the National Security Agency (NSA)
 The design was inspired by MD4

 Secure Hash Algorithm 2 (SHA-2 also SHA-256 & SHA-512)
 Also designed by the National Security Agency (NSA)
 Also Merkle-Dåmgard-Contruction
 Larger block size & more complex round function

 Secure Hash Algorithm 3 (SHA-3, Keccak)
 Winner of an open competition
 So-called Sponge construction
 Much more versatile than previous hash functions
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Overview of Commonly Used MACs

 Message Authentication Codes (MACs):
 DES-CBC-MAC:

 Uses the Data Encryption Standard in Cipher Block Chaining mode 
 In general, the CBC-MAC construction can be used with any block 

cipher
 MACs constructed from MDCs:

 This very common approach raises some cryptographic concern as it 
makes some implicit but unverified assumptions about the properties 
of the MDC

 Authenticated Encryption with Associated Data (AEAD)
 Galois-Counter-Mode (GCM)

 Uses a block-cipher to encrypt and authenticate data
 Fast in networking applications

 Sponge Wrap
 Uses a SHA-3 like hash function to encrypt and authenticate 

data
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Common Structure of Cryptographic Hash Functions (1)

 Like many of today’s block ciphers follow the general structure of a 
Feistel network, many cryptographic hash functions in use today 
follow a common structure, the so-called Merkle-Dåmgard structure:
 Let y be an arbitrary message. Usually, the length of the message is 

appended to the message and it is padded to a multiple of some block size 
b. Let (y0, y1, ..., yL-1) denote the resulting message consisting of L blocks 
of size b 

 The general structure is as depicted below:

 CV is a chaining value, with CV0 := IV and MDC(y) := CVL 
 f is a specific compression function which compresses (n + b) bit to n bit

f

y0

CV0

n

b

f

y1

CV1

n

b

f

yL-1

CVL-1

n

b

CVLCV2

n
...

n
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Common Structure of Cryptographic Hash Functions (2)

 The hash function H can be summarized as follows:

    CV0 = IV = initial n-bit value

    CVi = f(CVi-1, yi-1) 1  i  L

    H(y) = CVL 
 It has been shown [Mer89a] that if the compression function f is 

collision resistant, then the resulting iterated hash function H is also 
collision resistant.

 Cryptanalysis of cryptographic hash functions thus concentrates on 
the internal structure of the function f and finding efficient techniques 
to produce collisions for a single execution of f 

 Primarily motivated by birthday attacks, a common minimum 
suggestion for n, the bitlength of the hash value, is 160 bit, as this 
implies an effort of order 280 to attack which is considered infeasible 
today
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The Message Digest 5 (1)

 MD5 follows the common structure outlined before (e.g. [Riv92a]):
 The message y is padded by a “1” followed by 0 to 511 “0” bits such that 

the length of the resulting message is congruent 448 modulo 512
 The length of the original message is added as a 64-bit value resulting in a 

message that has length which is an integer multiple of 512 bit
 This new message is divided into blocks of length b = 512 bit
 The length of the chaining value is n = 128 bit

 The chaining value is “structured” as four 32-bit registers A, B, C, D
 Initialization:  A := 0x 01 23 45 67   B := 0x 89 AB CD EF
          C := 0x FE DC BA 98   D := 0x 76 54 32 10

 Each block of the message yi is processed with the chaining value CVi with 
the function f which is internally realized by 4 rounds of 16 steps each
 Each round uses a similar structure and makes use of a table T 

containing 64 constant values of 32-bit each, 
 Each of the four rounds uses a specific logical function g 
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The Message Digest 5 (2) - Structure of One Step

 The function g is one of four different logical functions
 yi[k] denotes the kth 32-bit word of message block i 
 T[j] is the jth entry of table t with j incremented modulo 64 every step
 CLSs denotes cyclical left shift by s bits with s following some schedule

A B C D

g

A B C D

yi[k]

T[j]

CLSs

+

+

+

+
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The Message Digest 5 (3)

 The MD5-MDC over a message is the content of the chaining value 
CV after processing the final message block

 Security of MD5:
 Every bit of the 128-bit hash code is a function of every input bit
 In 1996 H. Dobbertin published an attack that allows to generate a 

collision for the function f (realized by the 64 steps described above).
 Took until 2004 before a first collision was found [WLYF04]
 By now it is possible to generate collisions within seconds on general 

purpose hardware [Kl06]
 MD5 must not be considered if collision resistance is required!

 This is often the case!
 Examples: Two postscripts with different texts but equal hashes 

[LD05], Certificates one for an assured domain and one for an own 
certificate authority [LWW05], Any message that is extendable [KK06]

 The resistance against preimage attacks is with 2123.4 calculations still o.k 
[SA09]
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The Secure Hash Algorithm SHA-1 (1)

 Also SHA-1 follows the common structure as described above:
 SHA-1 works on 512-bit blocks and produces a 160-bit hash value
 As its design was also inspired by the MD4 algorithm, its initialization is 

basically the same like that of MD5:
 The data is padded, a length field is added and the resulting message 

is processed as blocks of length 512 bit
 The chaining value is structured as five 32-bit registers A, B, C, D, E
 Intialization:   A = 0x 67 45 23 01  B = 0x EF CD AB 89
          C = 0x 98 BA DC FE  D = 0x 10 32 54 76 
          E = 0x C3 D2 E1 F0

 The values are stored in big-endian format
 Each block yi of the message is processed together with CVi in a module 

realizing the compression function f in four rounds of 20 steps each.
 The rounds have a similar structure but each round uses a different 

primitive logical function f1, f2, f3, f4 
 Each step makes use of a fixed additive constant Kt, which remains 

unchanged during one round
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The Secure Hash Algorithm SHA-1 (2) - One Step

 t{0, ..., 15}  Wt := yi[t]   
t{16, ..., 79}  Wt := CLS1(Wt-16  Wt-14  Wt-8  Wt-3)

 After step 79 each register A, B, C, D, E is added modulo 232 with the 
value of the corresponding register before step 0 to compute CVi+1 

f(t DIV 20)

yi[k]
CLS5

Wt

K(t DIV 20)

A B C D E

A B C D E

CLS30

+

+

+

+



21
©  Dr.-Ing G. Schäfer

Network Security (WS 23/24): 05 – Modification Check Values

The Secure Hash Algorithm SHA-1 (3)

 The SHA-1-MDC over a message is the content of the chaining value 
CV after processing the final message block

 Comparison between SHA-1 and MD5:
 Speed: SHA-1 is about 25% slower than MD5 (CV is about 25% bigger)
 Simplicity and compactness: both algorithms are simple to describe and 

implement and do not require large programs or substitution tables
 Security of SHA-1:

 As SHA-1 produces MDCs of length 160 bit, it is expected to offer better 
security against brute-force and birthday attacks than MD5

 Some inherent weaknesses of Merkle-Dåmgard constructions, e.g. [KK06], 
apply

 In February 2005, X. Wang et. al. published an attack that allows to find a 
collision with an effort of 269 that was improved to 263 in the months to 
follow and published in [WYY05a]

 Research continued (e.g. [Man11]), and in February 2017 the first actual 
collision was found (demonstrated with altered PDF document)
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The Secure Hash Algorithm SHA-2 family (1)

 In 2001, the NIST published a new standard  FIPS PUB 180-2 
containing new variants, called SHA-256, SHA-384, and SHA-512 
[NIST02] with 256, 384, and 512 bits output
 SHA-224 was added in 2004

 SHA-224 and SHA-384 are truncated versions of SHA-256 and SHA-
512 with different initialization values

 SHA-2 uses also Merkle-Dåmgard construction with a block size of 
512 bits (SHA-256) and 1024 bits (SHA-512)

 The internal state is organized in 8 registers of 32 bit (SHA-256) and 
64 bit (SHA-512)

 64 rounds (SHA-256) or 80 rounds (SHA-512) 
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The Secure Hash Algorithm SHA-2 (2) - One Step

 t{0, ..., 15}  Wt := yi[t]   
t{16, ..., r}  Wt := Wt-16  𝜎0(Wt-15)  Wt-7  𝜎1(Wt-2)

 Kt is the fractional part of the cube root of the tth prime number
 The ROTR and  functions XOR different shifts of the input value𝜎
 Ch and Maj are logic combinations of the input values

yi[k]

Wt

Kt

A B C D E F G H

MajROTR
0 ROTR

1

A B C D E F G H

Ch

+++

+

+

+
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The Secure Hash Algorithm SHA-2 family (3)

 All-in-all design very similar to SHA-1
 Due to size and more complicated round functions about 30-

50 percent slower than SHA-1 (varies for 64-bit and 32-bit 
systems!)

 Security discussion:
 Already in 2004 it was discovered that a simplified version of the 

algorithm (with XOR instead of addition and symmetric constants) 
generates highly correlated output [GH04]

 For round-reduced versions of SHA-2 pre-image attacks exists that 
are faster than brute-force, but highly impractical (e.g. [AGM09])

 Even though size and complexity do not allow for attacks currently 
the situation is uncomfortable

 Led to the need for a new SHA-3 standard



25
©  Dr.-Ing G. Schäfer

Network Security (WS 23/24): 05 – Modification Check Values

The Secure Hash Algorithm SHA-3 (1)

 Security concerns about SHA-1 and SHA-2 led to an open 
competition by the NIST which started in 2007

 5 finalists without notable weaknesses

 October 2012: NIST announces Keccak to become SHA-3
 4 European inventors 

 One is Joan Daemen, who co-designed AES
 SHA-3 is very fast, especially in hardware
 Very well documented and analyzable 
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The Secure Hash Algorithm SHA-3 (2)
 Keccak is based on a so-called sponge construction instead of the 

previous Merkle-Dåmgard constructs
 Versatile design to implement nearly all symmetric cryptographic functions 

(however only the hashing is standardized)
 Usually works in 2 phases

 “Absorbing” information of arbitrary length into 1600 bit of internal state
 “Squeezing” (i.e. outputting) hashed-data of arbitrary length (only 224, 

256, 384, and 512 bits standardized)
 The internal state is organized in 2 registers

 One register of the size r is “public”: input data is XORed to it in absorbing 
phase, output data is derived from it in squeezing phase

 The register of size c is “private”; in- and output does not affect it directly
 In Keccak the size of the registers is 1600 bits (i.e. c + r = 1600 bits)
 The size of c is twice as large as the output block length
 Both registers are initialized with “0”

 The hashing occurs due a function f that reads the registers and 
outputs a new state
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SHA-3 (3) – Sponge Construction

 Absorbing phase: k + 1 input blocks of size r are mixed to the state
 Squeezing phase: l + 1 output blocks of size r are generated (often 

only one)
 The last input and output block may be padded or cropped

y[k]

Phase 1: Absorbing

z[0]

Phase 2: Squeezing

z[1]

z[l]

f

+

f

y[0] +

0 0

f

f

f

f
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SHA-3 (4) – The function f

 Obviously, the security of a sponge construction depends on the 
security of f

 In Keccak uses 24 rounds of 5 different sub-functions (θ, ρ, π, , ) to 𝜒 ɩ
implement f

 Sub-functions operate on a “three-dimensional” bit array a[5][5][w] with 
w is chosen in correspondence with the size r and c

 All operations are performed over GF(2n)
 Each of the sub-functions ensures certain properties, e.g., 

 Fast diffusion of changed bits throughout the state (θ)
 Long term diffusion (π)
 Ensuring that f becomes non-linear ( )𝜒
 Round-specific substitution ( )ɩ

 θ is executed first to ensure that secret and public state mix quickly 
before applying other sub-functions
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SHA-3 (5) – Security
 Currently no notable weaknesses exist in SHA-3

 Best known pre-image attacks work with up to 8-round function f only
 To protect against internal collisions 11 rounds are supposed to be 

enough
 In comparison to SHA-1 and SHA-2 additional security 

properties are guaranteed as internal state is never made 
public
 Prevents attacks were arbitrary information is added to a valid secret 

message
 Provides Chosen Target Forced Prefix (CTFP) preimage resistance 

[KK06], i.e. it is not possible to construct a message m = P || S, 
where P is fixed and S is arbitrary chosen, s.t., H(m) = y
 For Merkle-Dåmgard constructions this is only as hard as 

collision resistance
 No fast way to generate multi-collisions quickly [Jou04]
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Cipher Block Chaining Message Authentication Codes (1)

 A CBC-MAC is computed by encrypting a message in CBC Mode and 
taking the last ciphertext block or a part of it as the MAC:

 This MAC needs not to be signed any further, as it has already been 
produced using a shared secret K
 However, it is not possible to say who exactly has created a MAC, as 

everybody (sender, receiver) who knows the secret key K can do so
 This scheme works with any block cipher (DES, IDEA, ...)

C1 C2 Cn

MAC (16 to b bits)

K

y2

K

yn

K...

y1

+ +Cn-1

Encrypt Encrypt Encrypt
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Cipher Block Chaining Message Authentication Codes (2)

 Security of CBC-MAC:
 As an attacker does not know K, a birthday attack is much more difficult to 

launch (if not impossible)
 Attacking a CBC-MAC requires known (message, MAC) pairs
 This allows for shorter MACs
 A CBC-MAC can optionally be strengthened by agreeing upon a second 

key K’ K and performing a triple encryption on the last block:

MAC := E(K, D(K’, E(K, Cn-1)))
 This doubles the key space while adding only little computing effort
 The construction is not secure, when message lengths vary!

 There have also been some proposals to create MDCs from 
symmetric block ciphers with setting the key to a fixed (known) value:
 Because of the relatively small block size of 64 bit of most common block 

ciphers, these schemes offer insufficient security against birthday attacks
 As symmetric block ciphers require more computing effort than dedicated 

cryptographic hash functions, these schemes are relatively slow

32
©  Dr.-Ing G. Schäfer

Network Security (WS 23/24): 05 – Modification Check Values

Constructing a MAC from an MDC

 Reason to construct MACs from MDCs Cryptographic hash functions 
generally execute faster than symmetric block ciphers 

 Basic idea: “mix” a secret key K with the input and compute an MDC
 The assumption that an attacker needs to know K to produce a valid 

MAC nevertheless raises some cryptographic concern (at least for 
Merkle-Dåmgard hash functions):
 The construction H(K || m) is not secure (see note 9.64 in [Men97a])
 The construction H(m || K) is not secure (see note 9.65 in [Men97a])
 The construction H(K || p || m || K) with p denoting an additional padding 

field does not offer sufficient security (see note 9.66 in [Men97a])
 The most used construction is: H(K ⊕ p1 || H(K ⊕ p2 || m)) 

 Key is padded with 0’s to fill up the key to one input block of the 
cryptographic hash function

 Two different constant patterns p1 and p2 XORed to the padded key
 This scheme seems to be secure (see note 9.67 in [Men97a])
 It has been standardized in RFC 2104 [Kra97a] and is called HMAC
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Authenticated Encryption with Associated Data (AEAD) Modes

 Usually it data is not authenticated or encrypted but 
encrypted AND authenticated (blocks P0…Pn)

 Sometimes additional data needs to be authenticated (e.g. 
packet headers), in the following denoted A0…Am

 Led to the development of AEAD modes of operation
 Examples are

 Galois/Counter Mode (GCM)
 Counter with CBC-MAC (CCM)
 Offset Codebook Mode (OCM)
 SpongeWrap – a method to use Keccak for AEAD operation
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Galois/Counter Mode (GCM) [MV04]

 Popular AEAD mode 
 NIST standard, part of IEEE 802.1AE, IPsec, TLS, SSH etc.
 Free of patents
 Mainly used in networking applications for its high speed

 Extremely efficient in hardware
 Processor support on newer x86 CPUs
 Time intensive tasks may be pre-calculated and parallelized
 No need for padding

 Uses conventional block cipher with 128 bit block size (e.g. AES)
 Calculates MAC by multiplications and additions in GF(2128) over the 

irreducible polynomial x128+x7+x2+x+1
 Requires only n + 1 block cipher calls per packet (n = length of 

encrypted and authenticated data)
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Small Excursion: Calculation Operations in GF(2n) (I)

 Galois field arithmetic defined over terms (e.g. a3x3+a2x2+a1x+a0)

 Coefficients are elements of the field ℤ2, i.e. either 0 or 1
 Often only the coefficients are stored, so x4+x2+x1 becomes 0x16
 Addition in GF(2n) is simply the addition of terms

 As equal coefficients map to 0, just XOR the values!
 Extreme fast in hard- and software!

 Multiplication in GF(2n) is polynomial multiplication and a subsequent 
modulo division by an irreducible polynomial of degree n
 Irreducible polynomials are not divisible without remainder by any other 

polynomial except “1”, somewhat like prime numbers in GF
 Can be implemented by a series of shift and XOR operations
 Very fast in hardware or on newer Intel CPUs (with CLMUL Operations)
 Modulo operation could be performed like in a regular CRC calculation
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Small Excursion: Calculation Operations in GF(2n) (II)

 Addition Example:
 x3+x+1  x⊕ 2+x = x3+x2+1 ↔ 0x0B XOR 0x06 = 0x0D

 Multiplication Example (over x4+x+1):
 x3+x+1 ● x2+x = x5+x3+x2  x⊕ 4+x2+x MOD x4+x+1 = 

x5+x4+x3+x MOD x4+x+1 = x3+x2+x+1 

 Elements of GF(2n) (except for 1 and the irreducible polynomial) may 
be a generator for the group
 Example for x and the polynomial x4+x+1: x, x2, x3, x+1, x2+x, x3+x2, 

x3+x+1, x2+1, x3+x, x2+x+1, x3+x2+x, x3+x2+x+1, x3+x2+1, x3+1, 1, x, 
…

 Other concepts of finite groups also apply, e.g., every element has a 
multiplicative inverse element 
 May be found by an adapted version of the Extended Euclidian 

Algorithm 



37
©  Dr.-Ing G. Schäfer

Network Security (WS 23/24): 05 – Modification Check Values

Galois/Counter Mode (GCM) (2)

 I0 is initialized with the IV and a padding, or a hash of the IV (if it is not 96 bits)
 ●H is GF(2128) multiplication with H = E(K, 0128)
 Input blocks Am and Pn are padded to 128 bits

 Am & Cn are truncated to original size before output
 The last authentication uses 64 bit encoded bit lengths of A and C
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Galois/Counter Mode (GCM) (3) - Security

 Fast mode, but needs some care:
 Proven to be secure (under preconditions, e.g. used block cipher is not 

distinguishable from random numbers), but construction is fragile:
 IVs MUST NOT be reused, otherwise streams can be XORed and the 

XOR of the streams can be recovered, may lead to an instant recovery of 
the secret value  “H”

 H has a possible weak value 0128, in this case authentication will not work 
and if IVs of a length other than 96 bits are used, C0 will always be the 
same!

 Some other keys generate hash keys with a low order, which must be 
avoided… [Saa11]

 Successful forgery attempts may leak information about H, thus short 
MAC lengths MUST be avoided or risk-managed [Dwo07]

 The achieved security is only 2t-k not 2t (for MAC length t and number of 
blocks 2k) as blocks may be modified to make to only change parts of the 
MAC [Fer05]
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SpongeWrap

 By using SHA-3 it is also possible to implement an AEAD construct 
[BDP11a]

 Construction is very simple and comparably easy to understand
 Uses so-called duplex mode for sponge functions, where data write 

and read operations are interleaved
 Does not require padding of data to a specific block size
 Cannot be parallelized

 Security:
 Not widely used yet, but several aspects proven to be as secure as SHA-3 

in standardized mode
 If the authenticated data A does not contain a unique IV the same key 

stream will be generated (allows the recovery of one block of XORed 
encrypted data)

40
©  Dr.-Ing G. Schäfer

Network Security (WS 23/24): 05 – Modification Check Values

+

SpongeWrap - Operation

 Simplified version, where key and MAC length must be smaller than 
block-size

 Paddings with a single “0” or “1” bit ensure that different data blocks 
types are well separated
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