
1
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Network Security
Chapter 6

Random Number Generation

2
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Tasks of Key Management (1)

 Generation:
 It is crucial to security, that keys are generated with a truly random or at

least a pseudo-random generation process (see below)
 Otherwise, an attacker might reproduce the key generation process and

easily find the key used to secure a specific communication
 Distribution:

 Distribution of some initial keys usually has to be performed manually / out
of band

 Session key distribution is generally performed during an authentication
exchange

 Examples: Diffie-Hellman, Otway-Rees, Kerberos, X.509
 Storage:

 Keys, especially authentication keys, should be securely stored:
 either encrypted with a hard-to-guess pass-phrase, or better
 in a secure device like a smart-card

3
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Tasks of Key Management (2)

 Revocation:
 If a key has been compromised, it should be possible to revoke that key,

so that it can no longer be misused (cf. X.509)
 Destruction:

 Keys that are no longer used (e.g. old session keys) should be safely
destroyed (cf. media security in lecture 1)

 Recovery:
 If a key has been lost (e.g. defect smart-card, floppy, accidentally erased)

it should be possible to recover it, in order to to avoid loss of data
 Key recovery is not to be mixed up with key escrow (see below):

 Escrow:
 Mechanisms and architectures that shall allow government agencies (and

only them) to obtain session keys in order to be able to eavesdrop on
communications / to read stored data for law enforcement purposes

 “If I can get my key back it’s key recovery,
 if you can get my key back it’s key escrow...” :o)

4
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Random and Pseudo-Random Number Generation (1)

 Definition:

A random bit generator is a device or algorithm, which outputs a
sequence of statistically independent and unbiased binary digits.

 Remark:
 A random bit generator can be used to generate uniformly distributed

random numbers, e.g. a random integer in the interval [0, n] can be
obtained by generating a random bit sequence of length lg n + 1 and
converting it into a number. If the resulting integer exceeds n it can be
discarded and the process is repeated until an integer in the desired range
has been generated.

 Definition:

A pseudo-random bit generator (PRBG) is a deterministic algorithm
which, given a truly random binary sequence of length k, outputs a
binary sequence of length m >> k which “appears” to be random.

The input to the PRBG is called the seed and the output is called a
pseudo-random bit sequence.

5
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Random and Pseudo-Random Number Generation (2)

 Remarks:
 The output of a PRBG is not random, in fact the number of possible output

sequences of length m is at most all small fraction 2k / 2m, as the PRBG
produces always the same output sequence for one (fixed) seed

 The motivation for using a PRBG is that it might be too expensive to
produce true random numbers of length m, e.g. by coin flipping, so just a
smaller amount of random bits is produced and then a pseudo-random bit
sequence is produced out of the k truly random bits

 In order to gain confidence in the “randomness” of a pseudo-random
sequence, statistical tests are conducted on the produced sequences

 Example:
 A linear congruential generator produces a pseudo-random sequence of

numbers y1, y2, ... According to the linear recurrence

yi = a yi-1 + b mod q

with a, b, q being parameters characterizing the PRBG
 Unfortunately, this generator is predictable even when a, b and q are

unknown, and should, therefore, not be used for cryptographic purposes

6
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Random and Pseudo-Random Number Generation (3)

 Security requirements of PRBGs for use in cryptography:
 As a minimum security requirement the length k of the seed to a PRBG

should be large enough to make brute-force search over all seeds
infeasible for an attacker

 The output of a PRBG should be statistically indistinguishable from truly
random sequences

 The output bits should be unpredictable for an attacker with limited
resources, if he does not know the seed

 Definition:

A PRBG is said to pass all polynomial-time statistical tests, if no
deterministic polynomial-time algorithm can distinguish between an
output sequence of the generator and a truly random sequence of the
same length with probability significantly greater than 0.5
 Polynomial-time algorithm means, that the running time of the algorithm is

bound by a polynomial in the length m of the sequence

7
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Random and Pseudo-Random Number Generation (4)

 Definition:

A PRBG is said to pass the next-bit test, if there is no deterministic
polynomial-time algorithm which, on input of the first m bits of an
output sequence s, can predict the (m + 1)st bit sm+1 of the output
sequence with probability significantly greater than 0.5

 Theorem (universality of the next-bit test):

A PRBG passes the next-bit test

it passes all polynomial-time statistical tests
 For the proof, please see section 12.2 in [Sti95a]

 Definition:

A PRBG that passes the next-bit test – possibly under some plausible
but unproved mathematical assumption such as the intractability of the
factoring problem for large integers – is called a cryptographically
secure pseudo-random bit generator (CSPRBG)

8
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Random Number Generation (1)

 Hardware-based random bit generators are based on physical
phenomena, as:
 elapsed time between emission of particles during radioactive decay,
 thermal noise from a semiconductor diode or resistor,
 frequency instability of a free running oscillator,
 the amount a metal insulator semiconductor capacitor is charged during a

fixed period of time,
 air turbulence within a sealed disk drive which causes random fluctuations

in disk drive sector read latencies, and
 sound from a microphone or video input from a camera
 the state of an odd number of circular connected NOT gates

 A hardware-based random bit generator should ideally be enclosed in
some tamper-resistant device and thus shielded from possible
attackers

9
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Random Number Generation (2)

 Software-based random bit generators, may be based upon
processes as:
 the system clock,
 elapsed time between keystrokes or mouse movement,
 content of input- / output buffers
 user input, and
 operating system values such as system load and network statistics

 Ideally, multiple sources of randomness should be “mixed”, e.g. by
concatenating their values and computing a cryptographic hash value
for the combined value, in order to avoid that an attacker might guess
the random value
 If, for example, only the system clock is used as a random source, than an

attacker might guess random-numbers obtained from that source of
randomness if he knows about when they were generated

10
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Random Number Generation (3)

 De-skewing:
 Consider a random generator that produces biased but

uncorrelated bits, e.g. it produces 1’s with probability p 0.5 and
0’s with probability 1 - p, where p is unknown but fixed

 The following technique can be used to obtain a random sequence
that is uncorrelated and unbiased:

 The output sequence of the generator is grouped into pairs of
bits

 All pairs 00 and 11 are discarded
 For each pair 10 the unbiased generator produces a 1 and for

each pair 01 it produces a 0
 Another practical (although not provable) de-skewing technique is

to pass sequences whose bits are correlated or biased through a
cryptographic hash function such as MD5 or SHA-1

11
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Statistical Tests for Random Numbers

 The following tests allow to check, if a generated random or pseudo-
random sequence inhibits certain statistical properties:
 Monobit Test: Are there equally many 1’s like 0’s?
 Serial Test (Two-Bit Test): Are there equally many 00-, 01-, 10-, 11-pairs?
 Poker Test: Are there equally many sequences ni of length q having the

same value with q such that m / q 5 (2q)
 Runs Test: Are the numbers of runs (sequences containing only either 0’s

or 1’s) of various lengths as expected for random numbers?
 Autocorrelation Test: Are there correlations between the sequence and

(non-cyclic) shifted versions of it?
 Maurer’s Universal Test: Can the sequence be compressed?
 NIST SP 800-22: Standardized test suite, includes above & more

advanced tests

 The above descriptions just give the basic ideas of the tests. For a
more detailed and mathematical treatment, please refer to sections
5.4.4 and 5.4.5 in [Men97a]

12
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Secure Pseudo-Random Number Generation (1)

 There are a number of algorithms, that use cryptographic hash
functions or encryption algorithms for generation of cryptographically
secure pseudo random numbers
 Although these schemes can not be proven to be secure, they seem

sufficient for most practical situations
 One such approach is the ANSI X9.17 generator:

 Input: a random and secret 64-bit seed s, integer m, and 3-DES key K
 Output: m pseudo-random 64-bit strings y1, y2, ... Ym

1.) q = E(K, Date_Time)
2.) For i from 1 to m do

2.1) xi = E(K, (q s)

2.2) s = E(K, (xi q)

3.) Return(x1, x2, ... xm)

 This method is a U.S. Federal Information Processing Standard (FIPS)
approved method for pseudo-randomly generating keys and initialization
vectors for use with DES

13
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Secure Pseudo-Random Number Generation (2)

 The RSA-PRBG is a CSPRBG under the assumption that the RSA
problem is intractable:
 Output: a pseudo-random bit sequence z1, z2, ..., zk of length k

1.) Setup procedure:
Generate two secret primes p, q suitable for use with RSA
Compute n = p q and = (p - 1) (q - 1)
Select a random integer e such that 1 < e < and gcd(e,) = 1

2.) Select a random integer y0 (the seed) such that y0 [1, n]

3.) For i from 1 to k do

3.1) yi = (yi-1)e mod n

3.2) zi = the least significant bit of yi

 The efficiency of the generator can be slightly improved by taking the last j
bits of every yi, with j = c lg(lg(n)) and c is a constant

 However, for a given bit-length m of n, a range of values for the constant c
such that the algorithm still yields a CSPRBG has not yet been determined

14
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Secure Pseudo-Random Number Generation (3)

 The Blum-Blum-Shub-PRBG is a CSPRBG under the assumption that
the integer factorization problem is intractable:
 Output: a pseudo-random bit sequence z1, z2, ..., zk of length k

1.) Setup procedure:
Generate two large secret and distinct primes p, q
such that p, q are each congruent 3 modulo 4 and let n = p q

2.) Select a random integer s (the seed) such that s [1, n - 1]
such that gcd(s, n) = 1 and let y0 = s2 mod n

3.) For i from 1 to k do

3.1) yi = (yi-1)2 mod n

3.2) zi = the least significant bit of yi

 The efficiency of the generator can be improved using the same method
as for the RSA generator with similar constraints on the constant c

15
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

Secure Pseudo-Random Number Generation (4)

 Dual Elliptic Curve Deterministic Random Bit Generator:
 Based on the intractability of the elliptic curve discrete logarithm problem
 Simplified version:

 State t is multiplied with a generator P, the x-value of the new point
becomes t’

 Multiplied with a different point Q r bits of output can be generated,
number of bits depend on curve (ranging between 240 and 504 bits)

 Part of NIST 800-90A standard
 Security:

 It has been shown that if P is chosen to be eQ for a constant e then
attackers can derive the state t

 We do not know how the predefined points P and Q in NIST 800-90A
are derived, so be careful !!!

t ●P ●Qx value x value r bits

16
© Dr.-Ing G. Schäfer

Network Security (WS 23/24): 06 – Random Number Generation

CSPRNG Security is a Big Thing!

 In September 2006 Debian was accidentally modified that only the
process ID was used to feed the OpenSSL CSPRNG
 Only 32,768 possible values!
 Was not discovered until May 2008

 A scan of about 23 million TLS and SSH hosts showed that
 At least 0.34% of the hosts shared keys because of faulty RNGs
 0.50% of the scanned TLS could be compromised because of low

randomness
 and 1.06% of the SSH hosts…

 Supervise your CSPRNG!
 Do not generate random numbers right after booting your system
 Use blocking RNGs, i.e. those that do not continue until having enough

entropy

