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Network Security
Chapter 12

Security Protocols 
of the Transport Layer

 Secure Socket Layer (SSL)
 Transport Layer Security (TLS)
 Datagram Transport Layer Security (DTLS)
 Secure Shell (SSH)
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Scope of Transport Layer Security Protocols

 The transport layer provides communications between application 
processes (instead of communications between end-systems) and its 
main tasks are:
 Isolation of higher protocol layers from the technology, structure and 

deficiencies of deployed communications technology
 Transparent transmission of user data
 Global addressing of application processes, independently of lower layer 

addresses (Ethernet addresses, telephone numbers, etc.)
 Overall goal: provision of an efficient and reliable service

 Transport layer security protocols aim to enhance the service of the 
transport layer by assuring additional security properties
 As they usually require and are build upon a reliable transport service, 

they actually represent session layer protocols according to the 
terminology of the Open Systems Interconnection (OSI) reference model

 However, as OSI is no longer “en vogue” they are called transport layer 
security protocols
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The Secure Socket Layer (SSL) Protocol

 SSL was originally designed to primarily protect HTTP 
sessions:
 In the early 1990’s there was a similar protocol called S-HTTP
 However, as S-HTTP capable browsers were not free of charge 

and SSL version 2.0  was included in browsers of Netscape 
Communications, it quickly became predominant

 SSL v.2 contained some flaws and so Microsoft Corporation 
developed a competing protocol called Private Communication 
Technology (PCT)

 Netscape improved the protocol and SSL v.3 became the de-facto 
standard protocol for securing HTTP traffic

 Nevertheless, SSL can be deployed to secure arbitrary 
applications that run over TCP

 In 1996 the IETF decided to specify a generic Transport Layer 
Security (TLS) protocol that is based on SSL
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SSL Security Services

 Peer entity authentication:
 Prior to any communications between a client and a server, an 

authentication protocol is run to authenticate the peer entities
 Upon successful completion of the authentication dialogue an SSL 

session is established between the peer entities
 User data confidentiality:

 If negotiated upon session establishment, user data is encrypted
 Different encryption algorithms can be negotiated: RC4, DES, 3DES, 

IDEA
 User data integrity:

 A MAC based on a cryptographic hash function is appended to user 
data

 The MAC is computed with a negotiated secret in prefix-suffix mode
 Either MD5 or SHA can be negotiated for MAC computation
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SSL Session & Connection State

 Session state:
 Session identifier: a byte sequence chosen by the server
 Peer certificate: X.509 v.3 certificate of the peer (optional)
 Compression method: algorithm to compress data prior to encryption
 Cipher spec: specifies cryptographic algorithms and parameters
 Master secret: a negotiated shared secret of length 48 byte
 Is resumable: a flag indicating if the session supports new connections

 Connection state:
 Server and client random: byte sequences chosen by server and client
 Server write MAC secret: used in MAC computations by the server
 Client write MAC secret: used in MAC computations by the client
 Server write key: used for encryption by server and decryption by client
 Client write key: used for encryption by client and decryption by server
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SSL Protocol Architecture

 SSL is structured as a layered and modular protocol architecture:
 Handshake: authentication and negotiation of parameters
 Change Cipherspec.: signaling of transitions in ciphering strategy
 Alert: signaling of error conditions
 Application Data: interface for transparent access to the record protocol 
 Record: 

 Fragmentation of user data into plaintext records of length < 214

 Compression (optional) of plaintext records
 Encryption and integrity protection (both optional)

SSL Handshake
Protocol

SSL Change
Cipherspec. Protocol

SSL Application
Data Protocol

SSL Alert
Protocol

SSL Record Protocol
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SSL Record Protocol

 Content Type: 
 Change Cipherspec. (20)
 Alert (21)
 Handshake (22)
 Application Data (23)

 Version: the protocol version of SSL (major = 3, minor = 0)
 Length: the length of the data in bytes, may not exceed 214 + 210 

    Type  Ver. (maj.)  Ver. (min.)     Length 

   Length  Data

0 23157 31
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SSL Record Protocol Processing

 Sending side:
 The record layer first fragments user data into records of a maximum 

length of 214 octets, more than one message of the same content type can 
be assembled into one record

 After fragmentation the record data is compressed, the default algorithm 
for this is null (~ no compression), and it may not increase the record 
length by more than 210 octets

 A message authentication code is appended to the record data:
 MAC = H(MAC_write_secret + pad_2 + 

            H(MAC_write_secret + pad_1 + seqnum + length + data))
 Note, that seqnum is not transmitted, as it is known implicitly and the 

underlying TCP offers an assured service
 The record data and the MAC are encrypted using the encryption 

algorithm defined in the current cipherspec (may imply prior padding)
 Receiving side:

 The record is decrypted, integrity-checked, decompressed, de-fragmented 
and delivered to the application or SSL higher layer protocol
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SSL Handshake Protocol: Introduction

 The SSL handshake protocol is used to establish peer 
authentication and cryptographic parameters for an SSL 
session

 An SSL session can be negotiated to be resumable: 
 Resuming and duplicating SSL sessions allows to re-use 

established security context
 This is very important for securing HTTP traffic, as usually every 

item on a web page is transferred an individual TCP connection
 Since HTTP 1.1 persistent TCP connections are used
 Nevertheless, resuming SSL sessions still makes a lot sense, 

as persistent TCP connections may be closed after 
downloading all items that belong to one page and some period 
of inactivity by the user.

 When resuming / duplicating an existing session, an abbreviated 
handshake is performed
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SSL Handshake Protocol: Full Handshake

Client Server

ClientHello

ServerHello
[ServerCertificate]

[CertificateRequest]
[ServerKeyExchange]

ServerHelloDone

[ClientCertificate]
ClientKeyExchange

[CertificateVerify]
ChangeCipherSpec

Finished

ChangeCipherSpec
Finished

[...] denotes optional messages
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SSL Handshake Protocol: Abbreviated Handshake

Client Server

ClientHello(SessionID)

ServerHello(SessionID)
ChangeCipherSpec

Finished

ChangeCipherSpec
Finished

 The Finished message contains a MAC based on either MD5 or SHA 
including the master-secret previously established between client and 
server

 If the server can not resume / decides not to resume the session it 
answers with the messages of the full handshake

12
©  Dr.-Ing G. Schäfer

Network Security (WS 23/24): 12 – Transport Layer Security Protocols

SSL Handshake Protocol: Cryptographic Aspects (1)

 SSL supports three methods for establishing session keys:
 RSA: a pre-master-secret is randomly generated by the client and sent to 

the server encrypted with the servers public key
 Diffie-Hellman: a standard Diffie-Hellman exchange is performed and the 

established shared secret is taken as pre-master-secret 
 Fortezza: an unpublished security technology developed by the NSA, that 

supports key escrow and that is not discussed in this class
 As SSL was primarily designed to secure HTTP traffic, its “default 

application scenario” is a client wishing to access an authentic web-
server:
 In this case the web-server sends its public key certificate after the 

ServerHello message
 The server certificate may contain the server’s public DH-values or the 

server may send them in the optional ServerKeyExchange message
 The client uses the server’s certificate /  the received DH-values / its 

Fortezza card to perform an RSA- / DH- / Fortezza-based key exchange
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SSL Handshake Protocol: Cryptographic Aspects (2)

 The pre-master-secret and the random numbers provided by the client 
and the server in their hello-messages are used to generate the master-
secret of length 48 byte

 Computation of the master-secret:
 Master-secret = MD5(pre-master-secret + SHA(‘A’ + pre-master-secret +     

                                  ClientHello.random + ServerHello.random)) +
                          MD5(pre-master-secret + SHA(‘BB’ + pre-master-secret +
                                  ClientHello.random + ServerHello.random)) +
                          MD5(pre-master-secret + SHA(‘CCC’ + pre-master-secret + 
                                  ClientHello.random + ServerHello.random)) 

 The use of both MD5 and SHA to generate the master-secret is 
considered to provide security even in case that one of the 
cryptographic hash functions is “broken”
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SSL Handshake Protocol: Cryptographic Aspects (3)

 To compute the session keys from the master-secret, a sufficient 
amount of key material is generated from the master-secret and the 
client’s and server’s random numbers in a first step:
 key_block = MD5(master-secret + SHA(‘A’ + master-secret +

         ClientHello.random + ServerHello.random)) +
MD5(master-secret + SHA(‘BB’ + master-secret +
         ClientHello.random + ServerHello.random)) +
[...]

 Then, the session key material is consecutively taken from the 
key_block:
 client_write_MAC_secret     = key_block[1, CipherSpec.hash_size]
 server_write_MAC_secret   = key_block[i1, i1 + CipherSpec.hash_size - 1]

 client_write_key             = key_block[i2, i2 + CipherSpec.key_material - 1]

 server_write_key             = key_block[i3, i3 + CipherSpec.key_material - 1]

 client_write_IV             = key_block[i4, i4 + CipherSpec.IV_size - 1]

 server_write_IV             = key_block[i5, i5 + CipherSpec.IV_size - 1]
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SSL Handshake Protocol: Cryptographic Aspects (4)

 Authentication of and with the pre-master-secret:
 SSL supports key establishment without authentication (anonymous), in 

this case man-in-the-middle attacks can not be defended
 When using the RSA-based key exchange:

 The client encrypts the pre-master-secret with the server’s public key 
which can be verified by a certificate chain

 The client knows that only the server can decrypt the pre-master-
secret, thus when the server sends the Finished message using the 
master-secret, the client can deduce server-authenticity

 The server can not deduce any client authenticity from the received 
pre-master-secret

 If client authenticity is required, the client additionally sends its 
certificate and a CertificateVerify message that contains a signature 
over a hash (MD5 or SHA) of the master-secret and all handshake 
messages exchanged before the CertificateVerify message

 With DH-key-exchange, authenticity is deduced from the DH-values which 
are contained and signed in the server’s (and client’s) certificate
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SSL Handshake Protocol: A Vulnerability (1)

 In 1998, D. Bleichenbacher discovered a vulnerability in the PKCS #1 
(v.1.5) encryption standard that is used in the SSL handshake method

 When the client encrypts the pre-master-secret with the public key of 
the server, it uses PKCS #1 to format it prior to encryption:
 EM = 0x02 | PS | 0x00 | M

with PS denoting a padding string of at least 8 pseudo-randomly 
generated nonzero octets, and M denoting the message to be encrypted 
(= pre-master-secret)
(PS is used to add a random component and fill up M to the modulus size 
of the deployed key)

 Then EM is encrypted: C = E(+KServer, EM) 
 After the server has decrypted C, it checks if the first octet is equal to 0x02 

and if there is a 0x00 octet, if this check fails it answers with an error 
message

 This reporting of errors can be utilized by an attacker to launch an “oracle-
attack”
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SSL Handshake Protocol: A Vulnerability (2)

 An oracle-attack against the SSL handshake protocol [BKS98a]:
 Consider an attacker (Eve) that eavesdropped on a SSL handshake 

dialogue and that wants to recover the pre-master-secret (and with this all 
other derived secrets) exchanged between Alice (client) and Bob (server)

 Eve has successfully eavesdropped the encrypted message C containing 
the pre-master-secret and now wants to recover the plaintext

 Eve generates a series of related ciphertexts C1, C2, ...:
 Ci = C  Ri

e mod n with (e, n) being the public key of Bob
 The Ri are chosen in an adaptive way, depending on older “good” Ri 

that have been processed by Bob without generating error messages 
(indicating that they have been decrypted to a valid PKCS #1 message)

 The Ci are submitted to Bob and new Ci are generated accordingly
 From the “good” Ri, Eve deduces certain bits of the corresponding 

message Mi = Ci
d = M  Ri mod n, based on the PKCS #1 encoding 

method
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SSL Handshake Protocol: A Vulnerability (3)

 An oracle-attack against the SSL handshake protocol (cont.):
 From the inferred bits of M  Ri mod n for sufficiently many Ri Eve is able 

to reduce the size of the interval that must contain the unknown message M 
 Essentially, each “good” ciphertext halves the interval in question, so that 

with enough “good” ciphertexts Eve is able to determine M
 With PKCS #1 Version 1.5 (as used originally in SSL V.3.0) roughly one in 

216 to 218 randomly chosen ciphertexts will be “good”
 Typically, for a 1024-bit modulus, the total number of required ciphertexts is 

about 220, and this is also the number of queries to Bob
 Thus, after performing about 1 million bogus SSL handshake dialogues 

(which are all disrupted by either Bob or Eve), Eve is able to recover the 
pre-master-secret and all derived keys of a previously established SSL 
session between Alice and Bob

Subtle protocol interactions (here: SSL and PKCS #1) can lead 
to failure of a security protocol, even if the basic cryptographic 
algorithm (here: RSA) itself is not broken!
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SSL Handshake Protocol: A Vulnerability (4)

 Countermeasures:
 Regularly changing the public key pairs ( overhead)
 Reducing the probability of getting “good” ciphertexts by thoroughly 

checking the format of decrypted ciphertexts and showing identical 
behaviour (error message, timing behaviour, etc.) to the client

 Requiring the client to show knowledge of the plaintext before responding 
if the message could be successfully decrypted

 Adding structure to the plaintext, e.g. by adding a hash value to the 
plaintext:

 Attention: some care needs to be taken in order to avoid vulnerabilities 
to a different class of attacks [Cop96a]

 Changing the public key encryption protocol, that is revising PKCS #1:
 PKCS #1 Version 2.1 prepares the plaintext prior to encryption with a 

method called optimal asymmetric encryption padding (OAEP) in order 
to make the PKCS #1 decryption procedure “plaintext aware” which 
implies that it is not possible to construct a valid ciphertext without 
knowing the corresponding plaintext
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SSL Cipher-Suites (1)

 No protection (default suite):
 CipherSuite SSL_NULL_WITH_NULL_NULL                  = { 0x00,0x00 }

 Server provides an RSA key suitable for encryption:
 SSL_RSA_WITH_NULL_MD5                                        = { 0x00,0x01 }
 SSL_RSA_WITH_NULL_SHA                                        = { 0x00,0x02 }
 SSL_RSA_EXPORT_WITH_RC4_40_MD5                   = { 0x00,0x03 }
 SSL_RSA_WITH_RC4_128_MD5                                  = { 0x00,0x04 }
 SSL_RSA_WITH_RC4_128_SHA                                  = { 0x00,0x05 }
 SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5         = { 0x00,0x06 }
 SSL_RSA_WITH_IDEA_CBC_SHA                               = { 0x00,0x07 }
 SSL_RSA_EXPORT_WITH_DES40_CBC_SHA           = { 0x00,0x08 }
 SSL_RSA_WITH_DES_CBC_SHA                                = { 0x00,0x09 }
 SSL_RSA_WITH_3DES_EDE_CBC_SHA                     = { 0x00,0x0A }



21
©  Dr.-Ing G. Schäfer

Network Security (WS 23/24): 12 – Transport Layer Security Protocols

SSL Cipher-Suites (2)

 Cipher-Suites with an authenticated DH-Key-Exchange
 SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA       = { 0x00,0x0B }
 SSL_DH_DSS_WITH_DES_CBC_SHA                            = { 0x00,0x0C }
 SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA                 = { 0x00,0x0D }
 SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA        = { 0x00,0x0E }
 SSL_DH_RSA_WITH_DES_CBC_SHA                             = { 0x00,0x0F }
 SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA                  = { 0x00,0x10 }
 SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA      = { 0x00,0x11 }
 SSL_DHE_DSS_WITH_DES_CBC_SHA                           = { 0x00,0x12 }
 SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA                = { 0x00,0x13 }
 SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA       = { 0x00,0x14 }
 SSL_DHE_RSA_WITH_DES_CBC_SHA                            = { 0x00,0x15 }
 SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA                = { 0x00,0x16 }

(DH stands for suites in which the public DH values are contained in a
 certificate signed by a CA, DHE for suites in which they are signed
 with a public key which is certified by a CA)
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SSL Cipher-Suites (3)

 The use of the following cipher-suites without any entity authentication 
is strongly discouraged, as they are vulnerable to man-in-the-middle 
attacks:
 SSL_DH_anon_EXPORT_WITH_RC4_40_MD5                = { 0x00,0x17 }
 SSL_DH_anon_WITH_RC4_128_MD5                               = { 0x00,0x18 }
 SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA         = { 0x00,0x19 }
 SSL_DH_anon_WITH_DES_CBC_SHA                              = { 0x00,0x1A }
 SSL_DH_anon_WITH_3DES_EDE_CBC_SHA                   = { 0x00,0x1B }

 The final cipher suite is for the Fortezza token:
 SSL_FORTEZZA_DMS_WITH_NULL_SHA                        = { 0x00,0x1C }
 SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA     = { 0x00,0x1D }

(These cipher-suites, of course, do not need to be memorized and are
 listed here only to illustrate the flexibility of the SSL protocol)
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The Transport Layer Security Protocol (1)

 In 1996 the IETF started a working group to define a transport layer 
security (TLS) protocol:
 Officially, the protocols SSL, SSH and PCT were announced to be taken 

as input
 However, the TLS V.1.0 specification draft published in December 1996 

was essentially the same as the SSL V.3.0 specification
 Actually, the intention of the working group was from the beginning to 

base TLS on SSL V.3.0 with the following modifications:
 The HMAC construction for computing cryptographic hash values should 

be adopted instead of hashing in prefix and suffix mode 
 The Fortezza based cipher-suites of SSL should be removed, as they 

include an unpublished technology
 A DSS (digital signature standard) based authentication and key exchange 

dialogue should be included
 The TLS Record Protocol and the Handshake Protocol should be 

separated out and specified more clearly in separated documents, which 
actually did not happen
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The Transport Layer Security Protocol (2)

 In order to achieve exportability of TLS compliant products, some 
cipher-suites used to specify the use of keys with entropy reduced to 
40 bit
 The use of these cipher-suites is strongly discouraged, as they offer 

virtually no data confidentiality protection
 As of TLS 1.2 (RFC 5246):

 Key exchange algorithms:
 DH or ECDH exchange without or with DSS / RSA / ECDSA signatures
 DH exchange with certified public DH parameters
 RSA based key exchange 
 none

 Encryption algorithms: AES / 3DES in CBC / CCM /GCM, RC4, null
 Hash algorithms: MD5, SHA-1, SHA-256, SHA-384, SHA-512, null
 Premaster Secret: No MD5/SHA-1 combination, but SHA-256 only! 

 Concerning its protocol functions, TLS is essentially the same like SSL
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The Transport Layer Security Protocol (3)

 Security:
 In SSL 3.0 and TLS 1.0 the initialization vector of a record 

encrypted in CBC mode is the last block of the previous record
 If an attacker controls the content of the previous record, he may 

perform an adaptive chosen plaintext attack to find out the content 
of the next record

 Feasible for web traffic, i.e. generate traffic with JavaScript and 
observe from the outside, leads to so-called BEAST (Browser 
Exploit Against SSL/TLS) attack [RD10]

 Also feasible for VPN traffic
 Mitigated by TLS 1.1, where explicit IVs are used
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The Transport Layer Security Protocol (4)

 Security (cont.):
 In 2009 a so-called TLS Renegotiation Vulnerability was identified
 Attackers may use it to prepend data to a legitimate session by a man-in-

the-middle attack (details in [Zo11])
 The impact heavily depends on the used application protocol
 In HTTPS this will lead to multiple exploit possibilities, e.g.,

 Attacker injects:
GET /ebanking/transfer?what=LotsOfMoney&to=eve HTTP/1.1 <crlf>
X-Ignore: <no crlf>

 Alice sends:
GET /ebanking/start.html HTTP/1.1

 The request will become a valid HTTP request:
GET /ebanking/transfer?what=LotsOfMoney&to=eve HTTP/1.1 <crlf>
X-Ignore: GET /ebanking/start.html HTTP/1.1

 Mitigated by identifying renegotiated sessions with a different ID 
[RRDO10]
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The Datagram Transport Layer Security Protocol

 TLS provides secure communication over a reliable transport protocol
 DTLS is adapted to work over unreliable transport protocols e.g. UDP
 Used to protect:

 Real-time speech and video data especially Voice-over-IP
 Tunneled TCP-data (as TCP over TCP is a bad idea for performance)

 DTLS is currently based on TLS 1.2, but contains several changes:
 Provides

 Message retransmits to counter lost handshake packets
 Own fragmentation mechanism to allow for large handshake packets

 Adds sequence numbers to allow reordered data packets (and prohibits 
stream ciphers i.e. RC4)

 Adds mechanism to detect that a client restarted “connection” with the 
same ports (e.g. after application crash)

 Adds a replay protection by a sliding window (same as in IPsec)
 Adds cookie-based DoS-defense (same as in IKEv2)
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The Secure Shell Protocol

 Secure Shell (SSH) Version 1 was originally developed by Tatu Ylönen 
at the Helsinki University of Finland

 As the author also provided a free implementation with source code, 
the protocol found widespread use in the Internet

 Later on, the development of SSH was commercialized by the author
 Nevertheless, free versions are still available with the most widely 

deployed version being OpenSSH
 In 1997 a version 2.0 specification of SSH was submitted to the IETF 

and has been refined in a series of Internet Drafts since
 SSH was originally designed to provide a secure replacement for the 

Unix r-tools (rlogin, rsh, rcp, and rdist), thus it represents an 
application or session-layer protocol

 However, as SSH also includes a generic transport layer security 
protocol and offers tunneling capabilities, it is discussed in this chapter 
as a transport layer security protocol
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SSH Version 2 

 SSH Version 2 is specified in several separate documents, e.g.,:
 SSH Protocol Assigned Numbers [LL06]
 SSH Protocol Architecture [YL06a]
 SSH Authentication Protocol [YL06b]
 SSH Transport Layer Protocol [YL06c]
 SSH Connection Protocol [YL06d]

 SSH Architecture:
 SSH follows a client-server approach
 Every SSH server has at least one host key
 SSH version 2 offers two different trust models:

 Every client has a local database that associates each host name with 
the corresponding public host key

 The hostname to public key association is certified by a CA and every 
client knows the public key of the CA

 The protocol allows full negotiation of encryption, integrity, key exchange, 
compression, and public key algorithms and formats 
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SSH Transport Protocol (I)

 SSH uses a reliable transport protocol (usually TCP)
 It provides the following services:

 Encryption of user data
 Data origin authentication (integrity)
 Server authentication (host authentication only)
 Compression of user data prior to encryption
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SSH Transport Protocol (II)

 Supported algorithms:
 Encryption: 

 AES, 3DES, Blowfish, Twofish, Serpent, IDEA and CAST in CBC
 AES in GCM [IS09]
 Arcfour (“believed” to be compatible with the “unpublished” RC4)
 none (not recommended)

 Integrity: 
 HMAC with MD5, SHA-1, SHA-256 or SHA-512
 none (not recommended)

 Key exchange: 
 Diffie-Hellman with SHA-1 and two pre-defined groups
 ECDH with multiple pre-defined NIST groups [SG09] (mandatory 

three curves over ℤp)
 Public key: RSA, DSS, ECC (in multiple variants [SG09])

 Compression: none, zlib (see RFCs 1950, 1951)
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SSH Transport Protocol Packet Format (1)

 The packet format is not 32-bit-word aligned

    Packet Length 

Pad Length  Payload

  Padding

   MAC

0 23157 31
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SSH Transport Protocol Packet Format (2)

 Packet fields:
 Packet length: the length of the packet itself, not including this length field 

and the MAC
 Padding length: length of the padding field, must be between four and 255
 Payload: the actual payload of the packet, if compression is negotiated this 

field is compressed
 Padding: this field consists of randomly chosen octets to fill up the payload 

to an integer multiple of 8 or the block size of the encryption algorithm, 
whichever is larger

 MAC: if message authentication has been negotiated this contains the 
MAC over the entire packet without the MAC field itself, if the packet is to 
be encrypted the MAC is computed prior to encryption as follows:

 MAC = HMAC(shared_secret, seq_number || unencrypted_packet)
with seq_number denoting a 32-bit sequence number for every packet

 Encryption: if encryption is negotiated, the entire packet without the 
MAC is encrypted after MAC computation
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SSH Negotiation, Key Exchange & Server Authentication (1)

 Algorithm Negotiation:
 Each entity sends a packet (referred to as kexinit) with a specification of 

methods it support, in the order of preference
 Both entities iterate over the list of the client and chose the first algorithm 

that is also supported by the server
 This method is used to negotiate: server-host-key algorithm (~ server 

authentication), as well as encryption, MAC, and compression algorithm
 Additionally, either entity may attach a key exchange packet according to a 

guess of the preferred key exchange algorithm of the other entity
 If a guess is right, the corresponding key exchange packet is accepted as 

the first key exchange packet of the other entity
 Wrong guesses are ignored and new key exchange packets are sent after 

algorithm negotiation
 For key exchange [YL06c] defines only one method: 

 Diffie-Hellman with SHA-1 and two predefined groups (1024 and 2048 bit)
 E.g. p = 21024 -2960 - 1 + (264  2894   + 129093); g = 2
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SSH Negotiation, Key Exchange & Server Authentication (2)

 If key exchange is realized with the pre-defined DH group:
 The client chooses a random number x, computes e = gx mod p and sends 

e to the server
 The server chooses a random number y, computes f  = gy mod p
 Upon reception of e, the server further computes K = ey mod p and a hash 

value h = Hash(versionC, versionS, kexinitC, kexinitS, +KS, e, f, K)  with 
version and kexinit denoting the client’s and server’s version information 
and initial algorithm negotiation messages

 The server signs h with its private host key -KS and sends to the client a 
message containing (+KS, f, s) 

 Upon reception the client checks the host key +KS, computes K = fx mod p 
as well as the hash value h and then checks the signature s over h 

 After performing these checks, the client can be sure that he has in 
fact negotiated a secret K with the host that knows -KS 

 However, the server host can not deduce anything about the client’s 
authenticity, for this purpose the SSH authentication protocol is used
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SSH Session Key Derivation

 The key exchange method allows to establish a shared secret K and 
the hash value h which are used to derived the SSH session keys:
 The hash h of the initial key exchange is also taken as the session_id 
 IVClient2Server   = Hash(K, h, “A”, session_id)  // initialization vector

 IVServer2Client   = Hash(K, h, “B”, session_id)  // initialization vector

 EKClient2Server  = Hash(K, h, “C”, session_id)   // encryption key

 EKServer2Client  = Hash(K, h, “D”, session_id)   // encryption key

 IKClient2Server   = Hash(K, h, “E”, session_id)   // integrity key

 IKServer2Client   = Hash(K, h, “F”, session_id)   // integrity key

 Key data is taken from the beginning of the hash output
 If more key bits are needed than produced by the hash function:

 K1 = Hash(K, h, x, session_id)        // x = “A”, “B”, etc.
 K2 = Hash(K, h, K1) 
 K2 = Hash(K, h, K1, K2) 
 XK = K1 || K2 || ... 
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SSH Authentication Protocol

 The SSH authentication protocol serves to verify the client’s identity 
and it is intended to be run over the SSH transport protocol

 The protocol per default supports the following authentication methods:
 Public key: the user generates and sends a signature with a per user public 

key to the server
Client  Server: E(-KUser, (session_id, 50, NameUser, Service, “publickey”,

True, PublicKeyAlgorithmName, +KUser))
 Password: transmission of a per user password in the encrypted SSH 

session (the password is presented in clear to the server but transmitted 
with SSH transport protocol encryption)

 Host-based: analogous to public key but with with per host public key
 None: used to query the server for supported methods and if no 

authentication is required (server directly responds with success message)
 If the client’s authentication message is successfully checked, the 

server responds with a ssh_msg_userauth_success message
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SSH Connection Protocol (1)

 The SSH connection protocol runs on top of the SSH transport 
protocol and provides the following services:
 Interactive login sessions
 Remote execution of commands
 Forwarded TCP/IP connections
 Forwarded X11 connections

 For each of the above services one or more “channels” are 
established, and all channels are multiplexed into a single encrypted 
and integrity protected SSH transport protocol connection:
 Either side may request to open a channel and channels are identified by 

numbers at the sender and receiver
 Channels are typed, e.g. “session”, “x11”, “forwarded-tcpip”, 

“direct-tcpip”...
 Channels are flow-controlled by a window mechanism and no data may be 

sent via a channel before “window space” is available 
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SSH Connection Protocol (2)

 Opening a channel:
 Either side may send the message ssh_msg_channel_open signaled with 

message code 90 and the following parameters:
 channel type: is of data type string, e.g. “session”, “x11”, etc.
 sender channel: is a local identifier of type uint32 and chosen by the 

requestor of this channel
 initial window size: is of type uint32 and specifies how many bytes may 

be send to the initiator before the window needs to be advanced
 maximum packet size: is of type uint32 and defines the maximum 

packet size the initiator is willing to accept for this channel
 further parameters depending on the type of the channel may follow

 If receiver of this message does not want to accept the channel request, it 
answers with the message ssh_msg_channel_open_failure (code 92):

 recipient channel: the id given in the open request by the sender
 reason code: is of type uint32 and signals the reason for the rejection
 additional textual information: is of type string
 language tag: is of type string and according to RFC 1766
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SSH Connection Protocol (3)

 Opening a channel (cont.):
 If receiver of this message wants to accept the channel request it answers 

with the message ssh_msg_channel_open_confirmation (code 91) and 
parameters:

 recipient channel: the id given in the open request by the sender
 sender channel: the id given to the channel by the responder
 initial window size: is of type uint32 and specifies how many bytes may 

be send to the responder before the window needs to be advanced
 maximum packet size: is of type uint32 and defines the maximum 

packet size the responder is willing to accept for this channel
 further parameters depending on the channel type may follow

 Once a channel is opened, the following actions are possible:
 Data transfer (however, the receiving side should know “what to do with 

the data” which may require further prior negotiation)
 Channel type specific requests
 Closure of the channel
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SSH Connection Protocol (4)

 For data transfer the following messages are defined:
 ssh_msg_channel_data: with the two parameters recipient channel, data 
 ssh_msg_channel_extended_data: allows to additionally specify a data 

type code and is useful to signal errors, e.g. of interactive shells
 ssh_msg_channel_window_adjust: allows to advance the flow control 

window of the recipient channel by the specified number of bytes to add 
 Closing of channels:

 When a peer entity will not longer send data to a channel it should signal 
this to the other side with the message ssh_msg_channel_eof 

 When either side wishes to terminate a channel it sends the message 
ssh_msg_channel_close with parameter recipient channel 

 Upon reception of the message ssh_msg_channel_close a peer entity 
must answer with a similar message unless it has already requested 
closure of this channel

 After both receiving and sending of the ssh_msg_channel_close message 
for a specific channel, the id of that channel may be re-used
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SSH Connection Protocol (5)

 Channel type specific requests allow to demand for specific properties 
of a channel, e.g. such that the receiving side knows how to process 
data send via this channel, and are signaled with:
 ssh_msg_channel_request: with the parameters recipient channel, request 

type (string), want reply (bool) and further request specific parameters
 ssh_msg_channel_success: with the parameter recipient channel 
 ssh_msg_channel_failure: with the parameter recipient channel 

 Example 1 – requesting an interactive session and starting a shell in it:
 First, a channel of type “session” is opened
 A pseudo-terminal is requested by sending an ssh_msg_channel_request  

message with the request type set to “pty-req” 
 If needed, environment variables can be set by issuing ssh_msg_channel_

request messages with request type set to “env”  
 Then, the start of a shell process is demanded via an ssh_msg_channel_

request message with the request type set to “shell” (usually this results in 
the start of the default shell for the user as defined in /etc/passwd)
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Requesting an Interactive Session and Starting a Shell in it 

SSH Client SSH Server

ssh_msg_channel_open
(“session”, 20, 2048, 512)

ssh_msg_channel_open_
confirmation(20, 31, 1024, 256)

ssh_msg_channel_request
(31, “pty-req”, false, ...)

ssh_msg_channel_request
(31, “env”, false, “home”, 
“/home/username”)

ssh_msg_channel_request
(31, “shell”, true, ...)

ssh_msg_channel_success(20)

[Use data exchange takes place from now on...]
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SSH Connection Protocol (6)

 Example 2 – requesting X11 forwarding:
 First, a channel of type “session” is opened
 X11 forwarding is requested by sending an ssh_msg_channel_request 

message with request type set to “x11-req”
 If later on an application is started on the server that needs to access 

the terminal of the client machine (the X11-server running on the client 
machine), a new channel is opened via ssh_msg_channel_open with 
the channel type set to “x11” and the originator IP address and port 
number as additional parameters
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SSH Connection Protocol (7)

 Example 3 – setting up TCP/IP port forwarding:
 A party needs not to explicitly request port forwarding from its own end to 

the other direction, however, if it wants to have connections to a port on 
the other side forwarded to its own side, it must explicitly request this via 
an ssh_msg_global_request message with the parameters “tcpip-forward”, 
want-reply, address to bind (“0.0.0.0” for every source address), and port 
number to bind (this request is usually sent by the client)

 When a connection comes for a port for which forwarding has been 
requested, a new channel is opened via ssh_msg_channel_open with the 
type set to “forwarded-tcpip” and the addresses of the port that was 
connected as well as of the original source port as parameters (this 
message is usually sent by the server)

 When a connection comes to a (client) port that is locally set to be 
forwarded, a new channel is requested with the type set to “direct-tcpip” 
and the following address information specified in additional parameters:

 host to connect, port to connect: address to which the recipient should 
connect this channel 

 originator IP address, originator port: source address of the connection
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Conclusion

 Both SSL, TLS and SSH are suited to secure Internet 
communications in (above) the transport layer:
 All three security protocols operate upon and require a reliable 

transport service, e.g. TCP
 There is a datagram oriented variant of TLS, called DTLS
 Even though SSH operates in / above the transport layer the 

server authentication is host-based and not application-based
 Transport layer security protocols offer true end-to-end protection 

for user data exchanged between application processes
 Furthermore, they may interwork with packet filtering of today’s 

firewalls
 But, protocol header fields of lower layer protocols can not be 

protected this way, so they offer no countermeasures to threats to 
the network infrastructure itself
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