

Network Security

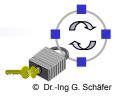
Chapter 14

Security Aspects of Mobile Communications

Security Aspects of Mobile Communication

- ☐ Mobile communication faces all threats that does its' fixed counterpart:
 - Masquerade, eavesdropping, authorization violation, loss or modification of transmitted information, repudiation of communication acts, forgery of information, sabotage
 - ☐ Thus, similar measures like in fixed networks have to be taken
- However, there are some specific issues arising out of mobility of users and / or devices:
 - Some already existing threats get more dangerous:
 - Wireless communications is more accessible for eavesdropping
 - The lack of a physical connection makes it easier to access services
 - □ Some new difficulties for realizing security services:
 - Authentication has to be re-established when the mobile device moves
 - Key management gets harder as peer identities can not be predetermined
 - One completely new threat:
 - The location of a device / user becomes a more important information that is worthwhile to eavesdrop on and thus to protect

Location Privacy in Mobile Networks (1)


- There is no appropriate location privacy in today's mobile networks:
 - □ GSM / UMTS / LTE:
 - Active attackers can collect IMSIs on the air interface
 - Visited network's operators can partially track the location of users
 - Home network operators can fully track the location of users
 - However, at least communicating end systems can not learn about the location of a mobile device
 - □ Wireless LAN:
 - No location privacy, as the (world-wide unique) MAC address is always included in the clear in every MAC frame

Location Privacy in Mobile Networks (2)

- The basic location privacy design problem:
 - ☐ A mobile device should be reachable
 - No (single) entity in the network should be able to track the location of a mobile device
- □ Some fundamental approaches to this problem [Müller99a]:
 - □ Broadcast of messages:
 - Every message is sent to every possible receiver
 - If confidentiality is needed, the message is encrypted asymmetrically
 - This approach does not scale well for large networks / high load
 - □ Temporary pseudonyms:
 - Mobile devices use pseudonyms which are changed regularly
 - However, to be able to reach the mobile device this needs a mapping entity which can track the mobile's history of pseudonyms
 - □ Mix networks:
 - Messages are routed via various entities (mixes) and every entity can only learn a part of the message route (see below)

Location Privacy in Mobile Networks (3)

- Addressing schemes for location privacy with broadcast:
 - □ Explicit addresses:
 - Every entity that "sees" an explicit address is able to determine the addressed entity
 - □ *Implicit addresses:*
 - An implicit address does not identify a specific device or location, it just names an entity without any further meaning attached to the name
 - Visible implicit addresses:
 - Entities that see multiple occurrences of an address can check for equality
 - Invisible implicit addresses:
 - Only the addressed entity can check for equality of the address
 - This requires public key operations: $ImplAddr_A = \{r_B, r_A\}_{+K_A}$ where r_A is chosen by the addressed entity and r_B is a random value created by an entity B which wants to invisibly make reference to entity A

Location Privacy in Mobile Networks (4)

- □ Temporary Pseudonyms:
 - □ The location of a device A is no longer stored with its' identification ID_A but with a changing pseudonym $P_A(t)$
 - Example: VLRs in GSM might just know and store the TMSI (which is kind of a temporary pseudonym)
 - □ The mapping of an ID_A to the current pseudonym $P_A(t)$ is stored in a trustworthy device
 - Example: GSM HLRs might be realized as trustworthy devices
 - □ When an incoming call has to be routed to the current location of device A:
 - The network provider of device A asks the trustworthy device for the current pseudonym P_A(t)
 - The network then routes the call to the current location of A by looking up the temporary pseudonym in a location database
 - It is important, that the entities that route a call can not learn about the original address of the call setup message (→ implicit addresses)
 - The use of mixes (see below) can provide additional protection against attacks from colluding network entities

Location Privacy in Mobile Networks (5)

- □ Communication mixes:
 - The concept was invented in 1981 by D. Chaum for untraceable email communication
 - □ A *mix* hides the communication relations between senders and receivers:
 - It buffers incoming messages which are asymmetrically encrypted so that only the mix can decrypt them
 - It changes the "appearance" of messages by decrypting them
 - It changes the order of messages and relays them in batches
 - However, if the mix is compromised an attacker can learn "everything"
 - □ Security can be increased by cascading mixes
 - □ Example: A sends a message m to B via two mixes M1 and M2

A

 \rightarrow M1: $\{r_1, \{r_2, \{r_3, m\}_{+K_B}\}_{+K_{M2}}\}_{+K_{M1}}$

■ M1

 \rightarrow M2: $\{r_2, \{r_3, m\}_{+K_B}\}_{+K_{M2}}$

■ M2

 \rightarrow B: $\{r_3, m\}_{+K_B}$

- It is important, that the mixes process "enough" messages
- ☐ This concept can be applied to mobile communications [Müller99a]

Additional References

[Müller99a] G. Müller, K. Rannenberg (Ed.). *Multilateral Security in Communications*. Addison-Wesley-Longman, 1999.

