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Algorithmic Aspects of 
Communication Networks

Chapter 1
Introduction

 Short Recapitulation of Networking Basics
 Packet Forwarding and Routing
 Characterizing Traffic
 Traffic Demand and Link Utilization
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Short Recap: World Wide Web 

 You already know from a basic networking class what happens when 
you enter http://www.tu-ilmenau.de into a Web browser

???
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Short Recap: Telephony

 Also, you have a basic understanding what happens when picking up 
a telephone and making a phone call
 How to find the peer’s phone? How to transmit speech? 

 You are aware of the differences between transferring a Web page 
and a phone call (and their implications):
 Web: Bunch of data that has to be transmitted
 Phone: Continuous flow of information, must arrive in time

?
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Simplest Communication: Direct Physical Connection

 Web example: Browser = client and server
 Simplest case: directly connect them by a (pair of) cable

 Server provides data, client consumes it

 Telephony: Connect two telephones via a (pair of) cable

Client Server
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But There are More than Two Computers / Telephones 

 Connect each telephone / 
computer with each other one? 

With four computers:

With eleven computers:

…
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Beirut Connections

 Connecting many phones in real life
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Beirut Connections
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Put some Structure into a Network

 Pair wise connecting all entities does not work
 Need some structure

 Distinguish between “end systems/terminals/user devices” on one hand, 
“switching elements/routers” on the other hand
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Forwarding and Next Hop Selection

 Recall: A switching element/a router forwards a packet onto the next 
hop towards its destination

 How does a router know which of its neighbors is the best possible 
one towards a given destination?
 What is a “good” neighbor, anyway?
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Overview on Routing Algorithms (1)

 An router executes a routing algorithm to decide which output line an 
incoming packet should be transmitted on:
 In connection-oriented service, the routing algorithm is performed only 

during connection setup
 In connectionless service, the routing algorithm is either performed as 

each packet arrives, or performed periodically and the results of this 
execution updated in the forwarding table

 Often, routing algorithms take a so-called metric into account when 
making routing decisions:
 In this context, a metric assigns a cost to each network link 

 This allows to compute a metric for each route in the network

 A metric may take into account parameters like number of hops, “€ cost” of 
a link, delay, length of output queue, etc.

 The “cheapest” path according to some metric is often also referred to as 
the shortest path (even though it might actually contain more hops than an 
alternative path)
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Overview on Routing Algorithms (2)

 Two basic types of routing algorithms:
 Non-adaptive routing algorithms: do not base their routing decisions on the 

current state of the network (example: flooding)
 Adaptive routing algorithms: take into account the current network state 

when making routing decisions (examples: distance vector routing, link 
state routing)

 Remark: additionally, hierarchical routing can be used to make these 
algorithms scale to large networks
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Flooding

 Basic strategy:
 Every incoming packet is sent out on every outgoing line except the one it 

arrived on
 Problem: vast number of duplicated packets

 Reducing the number of duplicated packets:
 Solution 1:

 Have a hop counter in the packet header; routers decrement each 
arriving packet’s hop counter; routers discard a packet with hop 
count=0

 Ideally, the hop counter should be initialized to the length of the path 
from the source to the destination

 Solution 2:
 Require the first router hop to put a sequence number in each packet it 

receives from its hosts
 Each router maintains a table listing the sequence numbers it has 

seen from each first-hop router; the router can then discard packets it 
has already seen
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Adaptive Routing Algorithms (1)

 Problems with non-adaptive algorithms:
 If traffic levels in different parts of the subnet change dramatically and 

often, non-adaptive routing algorithms are unable to cope with these 
changes

 Lots of computer traffic is bursty (~ very variable in intensity), but non-
adaptive routing algorithms are usually based on average traffic conditions

  Adaptive routing algorithms can deal with these situations

 Three types:
 Centralized adaptive routing:

 One central routing controller
 Isolated adaptive routing:

 Based on local information
 Does not require exchange of information between routers

 Distributed adaptive routing:
 Routers periodically exchange information and compute updated 

routing information to be stored in their forwarding table
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Centralized Adaptive Routing

 Basic strategy:
 Routing table adapts to network traffic
 A routing control center is somewhere in the network
 Periodically, each router forwards link status information to the control 

center
 The center can compute the best routes, e.g. with Dijkstra’s shortest 

path algorithm (explained later)
 Best routes are dispatched to each router

 Problems:
 Vulnerability: if the control center goes down, routing becomes non-

adaptive
 Scalability: the control center must handle a great deal of routing 

information, especially for larger networks
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Isolated Adaptive Routing Algorithms

 Basic idea: 
 Routing decisions are made only on the basis of information available 

locally in each router
 Examples:

 Hot potato
 Backward learning

 Hot potato routing:
 When a packet arrives, the router tries to get rid of it as fast as it can by 

putting it on the output line that has the shortest queue 
 Hot potato does not care where the output line leads
 Not very effective
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Backward Learning Routing

 Basic idea:
 Packet headers include destination and source addresses; they also 

include a hop counter 
 learn from this data as packets pass by

 Network nodes, initially ignorant of network topology, acquire knowledge of 
the network state as packets are handled

 Algorithm:
 Routing is originally random (or hot potato, or flooding)
 A packet with a hop count of one is from a directly connected node; thus, 

neighboring nodes are identified with their connecting links
 A packet with a hop count of two is from a source two hops away, etc.
 As packets arrive, the IMP compares the hop count for a given source 

address with the minimum hop count already registered; if the new one is 
less, it is substituted for the previous one

 Remark: in order to be able to adapt to deterioration of routes (e.g. link 
failures) the acquired information has to be “forgotten” periodically
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Distributed Adaptive Routing 

Goal: Determine “good” path
(sequence of routers) through
 network from source to dest.

Routing Protocol
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  “Good” path:
 Typically means minimum cost 

path
 Other definitions possible

Graph abstraction for routing 
algorithms:
 Graph nodes are routers
 Graph edges are physical 
links

 Link cost: delay, $ cost, or 
congestion level

 Path cost: sum of the link 
costs on the path
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Decentralized Adaptive Routing Algorithm Classification

Global or decentralized 
information?
Decentralized: 
 Router knows physically-connected

neighbors, link costs to neighbors
 Iterative process of computation,

exchange of info with neighbors

 “Distance vector” algorithms
  RIP protocol

   BGP protocol (“path vector”)

Global:
 All routers have complete

topology, link cost info
 “Link state” algorithms

 Dijkstra’s algorithm
 OSPF protocol

Static or dynamic?

Static: 
  Routes change slowly over time
Dynamic: 
  Routes change more quickly

 Periodic update
 In response to link cost 

changes
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Graph Model for Routing Algorithms (1)

 Input: a graph G=(V, E) with

 V = {v1, v2, …, vn} the set of nodes

 E ⊆ V  V; E={e1, e2, …, em} the set of edges

 A mapping c(vi, vj) representing the cost of edge (vi, vj) if (vi, vj) is in E 
(otherwise c(vi, vj) = infinity)

 Start node s=vx an arbitrary node from the set V

 Output: two arrays d and p with

 d[i] containing the cost (distance) of the shortest path from s to vi 

 p[i] containing the index j of the predecessor node vj of vi on the shortest 
path from s to vi
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Graph Model for Routing Algorithms (2)

 Assumptions and Notation:
 Let s  V be the source node
  v  V: let (s, v) denote the cost of the shortest path from s to v 
 While d[i] denotes the shortest path cost (estimate) for node vi, we also 

write this as d(vi) in our proof later on

 Assume that source node s is connected to every node v in the graph:
  s, v  V: (s, v) <  

 Assume all edge weights are finite and positive: 
  (v, w)  E: c(v, w) > 0
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Dijkstra‘s Algorithm for Shortest Paths (1)

 Let us try to develop an algorithm for computing shortest paths by 
induction:
 We could try induction on nodes or on edges: we choose nodes here
 We need an estimate of costs to all nodes

 Initially, this is set to infinity for all nodes except the source node s:
 vi  V \ {s}: d[i] := ∞

 Cost estimate for node s=vx is set to 0: d[x] := 0

 When trying to “reduce” our problem to a smaller one by making use of 
induction, it would not be wise to actually remove nodes from the graph, as 
this would change the graph (e.g. destroy connectivity)

 Therefore, we run our induction on the number n of nodes for which we 
can compute the shortest paths

 Base case: n = 1: We know how to compute the shortest path from s to s
 Induction hypothesis: We know how to compute the lengths of the shortest 

paths and respective predecessor nodes for up to n nodes.
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Dijkstra‘s Algorithm for Shortest Paths (2)

 Induction step: n ⇝ n + 1
 Consider the set N of nodes for which we know the lengths of their 

shortest paths as well as the predecessor nodes: 
 Initially, N := {s}
 So, we would like to increase the set N in every step by one node
 But, which node of V \ N can be selected?
 Clearly, it is not a good idea to choose a node vi for which our current 

shortest path cost estimate is high, e.g. d[i] = ∞
 How to get better estimates?

 Whenever we insert a node vi into N (also when s is inserted to N), we 
can update our estimates for nodes vj that are adjacent to vi: 
if ( d[i]+ c[i, j] < d[j]) {

      d[j] = d[i] + c[i, j];
      p[j] = i; }

 As d[i] is the cost of a path from s to vi, the cost of the shortest path 
from s to vj can not be higher than d[i]+c[i, j]
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Dijkstra‘s Algorithm for Shortest Paths (3)

 Actually, we will show now by contradiction that in every step the 
vertex vi in V \ N with a minimal value d[i] can be inserted into N and 
that d[i] equals the shortest path cost from source s to vi (and at all 
subsequent times)
 With this it is trivial to see that also the predecessor node is correctly set

 Too see this, let us assume that this is not true when the n+1th node v 
is added to N
 Thus the vertex v added has d(v) >  (s, v)
 Consider the situation just before insertion of v
 Consider the true shortest path p from s to v (see next slide)
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Dijkstra‘s Algorithm for Shortest Paths (4)

 Since s is in N, and v is in V \ N, path p must jump from N to V \ N at 
some point:

N V \ N

s
v

yx

Path p

 Let the jump have end point x in N, and y in V \ N  
(possibly s = x, and / or v = y)

 We will argue that y and v are different nodes
 Since path p is the shortest path from s to v, the segment of path p 

between s and x, is the shortest path from s to x, and that between s 
and y is the shortest path from s to y
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Dijkstra‘s Algorithm for Shortest Paths (5)

 The cost of the segment between s and x is d(x), and since x is in N, 
d(x) is the cost (s, x) of the shortest path to x (induction hypothesis)

 The cost of the segment between s and y is d(x) + c(x, y)
 Thus, (s, y) = d(x) + c(x, y)

 Because d(y) was correctly updated when node x was inserted into N 
it also holds that d(y)  d(x) + c(x, y) = (s, y)

 This implies that d(y) = (s, y) 
 However, as we assume that d(v) > (s, v), v and y have to be 

different

N V \ N

s
v

yx

Path p

c(x, y)
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Dijkstra‘s Algorithm for Shortest Paths (6)

 Since y appears somewhere along the shortest path between s and v, 
but y and v are different, we can deduce that (s, y) < (s, v)
 Here we use the assumption that all edges have positive cost

 Hence, d(y) = (s, y) < (s, v) < d(v)
 As both y and v are in V \ N, v can not have been chosen in this step, 

as the algorithm always chooses the node w with minimum d(w)

 So, whenever a node v is included in N, it holds that d(v) = (s, v) 

ys v
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Dijkstra‘s Algorithm for Shortest Paths (7)

 Termination of Dijkstra’s algorithm:
 As the algorithm adds one node to N in every step, the algorithm 

terminates when the costs of shortest paths to all nodes have been 
computed correctly

 Algorithm complexity for |V| nodes:
 Each iteration: need to check all nodes v that are not yet in N
 This requires |V|• (|V|+1)/2 comparisons, leading to O(|V|2) 
 This is optimal in dense graphs (where |E| ~ |V|2)
 In sparse graphs, more efficient implementations are possible: 

O(|V|•log|V| + |E|) using so-called Fibonacci-heaps
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Dijkstra’s Algorithm in Pseudocode

Computes least-cost path from one node to other nodes in the net
1  Initialization (for Node s): 
2    N = {s} /* Set of Nodes with known least-cost path */
3    for all nodes v 
4      if v adjacent to s 
5        then { d(v) = c(s,v); p(v) = s; }
6        else d(v) = infinity; 
7 
8   Loop 
9     find v not in N such that d(v) is a minimum 
10    add v to N 
11    for all w adjacent to v and not in N do     /* update d(w) */
12       { if (d(v) +c(v, w) < d(w)) 
                { d(w) = d(v) + c(v, w); p(w) = v; } }
13    /* new cost to w is either old cost to w or known 
14       shortest path cost to v plus cost from v to w */  
15  until all nodes in N 

Computes least-cost path from one node to other nodes in the net
1  Initialization (for Node s): 
2    N = {s} /* Set of Nodes with known least-cost path */
3    for all nodes v 
4      if v adjacent to s 
5        then { d(v) = c(s,v); p(v) = s; }
6        else d(v) = infinity; 
7 
8   Loop 
9     find v not in N such that d(v) is a minimum 
10    add v to N 
11    for all w adjacent to v and not in N do     /* update d(w) */
12       { if (d(v) +c(v, w) < d(w)) 
                { d(w) = d(v) + c(v, w); p(w) = v; } }
13    /* new cost to w is either old cost to w or known 
14       shortest path cost to v plus cost from v to w */  
15  until all nodes in N 
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Example Run of Dijkstra’s Algorithm (1)
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Example Run of Dijkstra’s Algorithm (2)

Step
0
1

start N
A

AD

d(B),p(B)
2,A
2,A
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Example Run of Dijkstra’s Algorithm (3)
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Example Run of Dijkstra’s Algorithm (4)
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Example Run of Dijkstra’s Algorithm (5)
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Example Run of Dijkstra’s Algorithm (6)
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Distance Vector Routing Algorithm

Iterative:
  Continues until no 

nodes exchange info.
  Self-terminating: 

no “signal” to stop

Asynchronous:
  Nodes need not

exchange info/iterate 
in lock step!

Distributed:
  Each node

communicates only with 
directly-attached  
neighbors

Distance Table data structure 
  Each node has its own

 Row for each possible 
destination

 Column for each directly-
attached neighbor to node

  Example: in node X, for dest. Y 
via neighbor Z:

D (Y,Z)
X

distance from X to
Y, via Z as next hop

c(X,Z) + min  {D  (Y,w)}
Z

w

=

=
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Example for Distance Table
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D (C,D)
E

c(E,D) + min  {D  (C,w)}
D

w=
= 2+2  = 4

D (A,D)
E

c(E,D) + min  {D  (A,w)}
D

w=
= 2+3  = 5

D (A,B)
E

c(E,B) + min  {D  (A,w)}
B

w=
= 8+6  = 14

loop!

loop!

38Algorithmic Aspects of ComNets (WS 21/22): 01 – Introduction

Constructing Routing Table from Distance Table

D  ()

A
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Distance table Routing table
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Distance Vector Routing: Overview

Iterative, asynchronous: 
Each local iteration caused by: 
 Local link cost change 
 Message from neighbor: its 

least cost path change from 
neighbor

Distributed:

Each node notifies neighbors
only when its least cost path to
any destination changes
 Neighbors then notify their 

neighbors if necessary

wait for (change in local link 
cost of msg from neighbor)

recompute distance table

if least cost path to any dest 

has changed, notify 
neighbors 

Each node:
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Distance Vector Algorithm: Initialization

1  Initialization: 

2   for all adjacent nodes v: 

3      D  (*,v) = infinity        /* the * operator means "for all rows" */ 

4      D  (v,v) = c(X,v) 

5   for all destinations, y 

6      send min     D  (y,w) to each neighbor  /* w over all X's neighbors */ 

At all nodes, X:

X

X

X
W
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Distance Vector Algorithm: Main Loop

8  loop 
9    wait (until I see a link cost change to neighbor V 
10         or until I receive update from neighbor V) 
11 
12   if (c(X,V) changes by d) 
13     /* change cost to all dest's via neighbor v by d */ 
14     /* note: d could be positive or negative */ 
15     for all destinations y:  D  (y,V) =  D  (y,V) + d 
16 
17   else if (update received from V w.r.t. destination Y) 
18     /* shortest path from V to some Y has changed  */ 
19     /* V has sent a new value for its  min     D  (Y,w) */ 
20     /* call this received new value "newval"     */ 
21     for the single destination y: D  (y,V) = c(X,V) + newval 
22 
23   if we have a new min   D  (Y,w) for any destination Y 
24      send new value of min   D  (Y,w) to all neighbors 
25 
26  forever 

X X

V
W

X

X
X

W

W
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Distance Vector Algorithm: Example (1)

X Z

12

7

Y
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Distance Vector Algorithm: Example (2)

X Z

12

7

Y

D  (Y,Z)
X

c(X,Z) + min  {D  (Y,w)}w=

= 7+1 = 8

Z

D  (Z,Y)
X

c(X,Y) + min  {D  (Z,w)}w=

= 2+1 = 3

Y
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Distance Vector: Reaction to Link Cost Changes (1)

Link cost changes:
Node detects local link cost change 
Updates distance table (line 15)
 If cost change in least cost path, 

notify neighbors (lines 23,24)
X Z

14

50

Y
1

Algorithm
“terminates”“Good

news 
travels
fast”
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Distance Vector: Reaction to Link Cost Changes (2)

Link cost changes:
 Good news travels fast 
 Bad news travels slow - 

“count to infinity” problem!

algorithm
continues

on!

X Z

14

50

Y
60
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Distance Vector: Poisoned Reverse

If Z routes through Y to get to X:
 Z tells Y its (Z’s) distance to X is infinite 

(so Y won’t route to X via Z)
 Will this completely solve count to infinity

problem? 

algorithm
terminates

X Z

14

50

Y
60
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The Bellman-Ford Algorithm (1)

 In our correctness proof of Dijkstra’s algorithm, we assumed that all 
link costs are positive:  (v, w)  E: c(v, w) > 0
 In fact, it is possible to proof that the algorithm also correctly computes the 

shortest path from s to all nodes v in case that link costs may be zero (see 
[CLR90, section 25.2])

 The Bellman-Ford algorithm is capable of solving the even more 
general problem of computing shortest paths in graphs in which edges 
with negative cost exist:
 In order for the shortest paths to be well defined in such graphs, it is 

required that there exist no negative weight cycles in the graph
 Otherwise, the cost of the shortest path would “grow” to - on a path with 

infinite length containing infinite many tours along one or more negative 
weight cycles

 When being run on a graph G=(V, E) the algorithm detects, if there are 
negative weight cycles in G and computes the shortest paths from one 
source node s to all other nodes, in case that no such cycles exist
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The Bellman-Ford Algorithm (2)

 Why do we care about this algorithm at all, and why at this point of the 
lecture?
 First, because we have to care about this algorithm, as it is the basis of 

distance vector routing
 Second, because it is easier to understand its proof after having learned 

about Dijkstra’s algorithm

 Like Dijkstra’s algorithm, the Bellman-Ford algorithm iteratively 
improves an estimate of the cost to reach each node:
 The idea of the algorithm is to iterate |V|-1 times over all edges 

(u, v)  E and check, if the current estimate for the node v can be 
improved by making use of edge (u, v) given the current estimate of the 
cost to reach node u 

 Compared with Dijkstra’s algorithm, which does not need to reconsider 
edges of nodes that have already been included in the set N, the Bellman-
Ford algorithm always checks all edges, leading to a higher running time in 
the order of O(|V|•|E|)
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The Bellman-Ford Algorithm (3)

Computes least-cost path from one node to other nodes in the net
1  Initialization (for Node s): 
2    d(s) = 0;
3    for all nodes v  s { d(v) = infinity; p(v) = NULL; }
4  Main Algorithm
5    for i = 1 to |V| - 1 {
6      for all edges (u, v)  E  { /* see if (u, v) can improve d(v) */
7        if (d(u) +c(u, v) < d(v)) {
8            d(v) = d(u) + c(u, v); p(v) = u; 
9        } /* of <if (u, v) can improve current d(v) */
10    } /* of <for all edges>
11  } /* of <for i> */
12  Check for negative cycles
13  for all edges (u, v)  E  { /* see if (u, v) can still improve d(v) */
14    if (d(u) +c(u, v) < d(v)) return FALSE;
15  }
16  return TRUE;

Computes least-cost path from one node to other nodes in the net
1  Initialization (for Node s): 
2    d(s) = 0;
3    for all nodes v  s { d(v) = infinity; p(v) = NULL; }
4  Main Algorithm
5    for i = 1 to |V| - 1 {
6      for all edges (u, v)  E  { /* see if (u, v) can improve d(v) */
7        if (d(u) +c(u, v) < d(v)) {
8            d(v) = d(u) + c(u, v); p(v) = u; 
9        } /* of <if (u, v) can improve current d(v) */
10    } /* of <for all edges>
11  } /* of <for i> */
12  Check for negative cycles
13  for all edges (u, v)  E  { /* see if (u, v) can still improve d(v) */
14    if (d(u) +c(u, v) < d(v)) return FALSE;
15  }
16  return TRUE;
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The Bellman-Ford Algorithm (4)

 Intuition behind the check for negative cycles:
 In a graph with |V| nodes and no negative cycles, a shortest path from 

node s to any node v, can at most have |V|-1 edges
 We will see, that after the i-th iteration, all lengths of shortest paths to 

nodes vi that are i hops away from s have been properly computed

 Thus, after |V|-1 iterations, all shortest paths with a length of up to |V|-1 
have been properly computed

 So, if a further improvement is possible, this implies that the resulting path 
must have a length > |V|-1, and it can therefore be concluded that such a 
path must contain a negative cost cycle
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Correctness of the Bellman-Ford Algorithm (1)

 Let G=(V, E) be a graph with no negative-cost cycles reachable from a 
source node s  V. Then, after termination of the Bellman-Ford 
algorithm it holds:  v  V reachable from s: d(v) = (s, v)

 Proof:
 Let v be a node reachable from s, and let p=(v0, v1, ..., vk) be a shortest 

path from s to v, where v0 = s and vk = v 

 As G does not contain negative-cost cycles, the path p is simple and it 
holds that k  |V| - 1

 We will prove by induction over i that after the i-th iteration over all edges of 
G it holds that d(vi) = (s, vi)

 Base case i = 0: d(v0) = (s, v0) = 0

 Inductive step from i to i+1:
 By induction hypothesis we know that d(vi-1) = (s, vi-1) 
 As the edge (vi-1, vi) is checked in the i-th iteration to be part of the 

shortest path from s to v based on the current estimate for vi-1 (which is 
definite) we can conclude that d(vi) = (s, vi)
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Correctness of the Bellman-Ford Algorithm (2)

 The Bellman-Ford algorithm when run over a weighted, directed graph 
G=(V, E) with a source node s and a cost function c: E  |R returns
 TRUE if there is no negative-cost cycle and it holds  v  V: d(v) = (s, v)
 FALSE if there is a negative-cost cycle reachable from s 

 Proof:
 If the graph contains no negative-cost cycle reachable from s, then the 

result presented on the preceding slide proves the claim regarding d(v) 
 Furthermore, at the termination of Bellman-Ford we have:

  (u, v)  E: d(v) = (s, v)  (s, u) + c(u, v) = d(u) + c(u, v)
 This holds because the shortest path from s to v has no more weight 

than any other path from s to v, especially than the path which 
contains the edge (u, v) 

 Therefore, none of the tests in lines 13 to 15 returns FALSE and so the 
algorithm returns TRUE
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Correctness of the Bellman-Ford Algorithm (3)

 Let us now assume that G contains a negative-cost cycle reachable 
from s:
 Let z = (v0, v1, ..., vk) be the negative-cost cycle with v0, = vk

 Thus it holds that 

 Let us assume, that the algorithm returns TRUE

 In this case, we have  i  {1, ..., k}: d(vi) ≤ d(vi-1) + c(vi-1, vi) 

 Summing the equalities around the cycle z leads to 

 Since each link appears only once in the cycle z, it holds

and we have 

which contradicts the above inequality

 Thus, the algorithm returns FALSE

0),(
1

1 




k

i
ii vvc











k

i
ii

k

i
i

k

i
i vvcvdvd

1
1

1
1

1

),()()(








k

i
i

k

i
i vdvd

1
1

1

)()(





k

i
ii vvc

1
1 ),(0

0),(
1

1 




k

i
ii vvc

54Algorithmic Aspects of ComNets (WS 21/22): 01 – Introduction

Comparison of Link State and Distance Vector Algorithms

Message complexity
  LS: with n nodes, E links, 

O(n•E) msgs sent each 
  DV: exchange between 

neighbors only
 convergence time varies

Speed of Convergence
  LS: O(n2) algorithm requires

O(n•E) msgs
 may have oscillations

  DV: convergence time varies
 may be routing loops
 count-to-infinity problem

Robustness: what happens if 
router malfunctions?
LS: 

 Node can advertise incorrect 
link cost

 Each node computes only its 
own table

DV:
 DV node can advertise 

incorrect path cost
 Each node’s table used by 

other routers:
 Errors propagate through 

network
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Hierarchical Routing

Scale (>100 million destinations!):
  Can’t store all destinations in

routing tables
  Routing table exchange

would overload links

Administrative autonomy:
  Internet = network of   

networks
  Each network admin may  

want to control routing in its 
own network

Our routing study so far is an idealization:
  All routers are assumed to be identical
  Network is assumed to be “flat”

    … Practice, however, looks different
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Data Transmission in Interconnected Networks

 Data transmission usually involves multiple networks
 Routing in Internet distinguishes two levels:

 Intradomain routing inside autonomous systems (networks themselves)
 Interdomain routing between autonomous systems (AS)
 Internet-wide routing via border gateway protocol (BGP) operates on the 

AS level, every intermediate network is considered as being one hop

 Internet service providers (ISP) have peering agreements & “links”
 If no direct link is possible, ISPs connect via a transport provider network
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Transport Provider Networks

 Transport provider networks 
 Interconnect different ISP networks over longer distances
 For close distances, ISPs also operate so-called peering points (= room 

full of routers from different ISPs with direct connection) in order to save 
costs

 Transport providers are usually large telecommunication network 
operators, their transmission networks often deploy technologies as 
SONET, SDH, WDM, and carry multiple types of traffic (IP, voice, …)

 ISPs can be connected to more than one transport network

Transport Provider

ISP 1

ISP 2

ISP 3

Transport Provider
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Handling Traffic Inside Domains

 Every network operator (ISP, transport provider) has to make his own 
decisions regarding how to handle the traffic in his network:
 Capacity of routers and links
 Routing algorithm
 Link costs
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Notion of Traffic and Traffic Demand

 In order to handle the traffic inside his network, every network provider 
needs to estimate/determine the traffic demand for his network

 If V = {v1, …, vn} are the nodes (routers) in the network, then we can 
consider the demand volume matrix 

H : {1, ..., n}  {1, ..., n}  |N

with H[i, j] denoting the traffic demand volume between nodes vi and vj 
 
 We will also write the entry H[i, j] as hij 

 The unity of hij is not of importance for our discussion (e.g. think of Mbit/s 
or average sized packets per second, pps)
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Considerations on Traffic Demand and Link Utilization (1)

 In order to later on understand constraints on maximum link 
utilization, we need to recapitulate some basic facts on the nature of 
traffic in the Internet:
 Packets are delayed in every router of a path due to store-and-forward 

processing and queuing in routers
 Traffic congestion can occur in parts of the Internet
 Packets may be dropped if arriving at a router with full output queues

 Thus, the task of a network designer is to design a network in a way 
that: 
 delay, congestion and probability of packet dropping are minimized
 while allowing for a reasonable utilization of the network

 This task becomes a bit complicated due to the fact that traffic arrival 
patterns and packet sizes in the Internet are random
 When do people use the Internet?
 When do applications send packets of what size?
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Considerations on Traffic Demand and Link Utilization (2)

 In order to characterize Internet traffic behavior, large scale 
measurements are needed that can give insight on
 traffic (inter-)arrival distribution
 packet size distribution

 It has been observed that Internet traffic in fact does not follow 
commonly known distributions as normal distribution or exponential 
distribution but shows self-similar characteristics and can have 
heavy-tailed distributions 

 For simplicity let us nevertheless assume for a moment that 
 arrive according to a Poisson process with rate λ: 

(on the average one arrival in every time interval 
of length 1/λ; which they do not in reality)

 packet size is exponentially distributed  
leading to exponentially distributed service time with rate μ

 so that the system considering one router can be thought of as the well-
known M/M/1 queuing system

 Pardon? :o)
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Describing Traffic: The Poisson Process (1)

 Let A(t) (for t ≥ 0) be the number of packets arriving in the 
interval (0, t]. Consider the following requirements,

1. No packet arrives at time 0: A(0) = 0  

2. Independence of the number of arrivals in disjoint time periods

3.

4.
happen in a time interval (s, t) only depends on the interval length
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Describing Traffic: The Poisson Process (2)

 We would like to describe the arrival process A(t) mathematically
 Let Pn(t) denote the probability that n packets arrive in (0, t]

 As we required that no packet arrives at t = 0, that is A(0) = 0, we have

 Taking advantage of the singularity of arrivals we choose Δt so small 
that a maximum of one arrival can happen during Δt

 We define the rate λ(t):

 As A(t) is stationary, we do not need to consider the point in time and have 

 We say a function f(t) is element of the class of functions o(t) if
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Describing Traffic: The Poisson Process (3)

 Due to singularity of arrival events, arrival of two or more packets 
during Δt gets very unlikely for small Δt:

 Therefore, we get:

 With this we obtain:

and: 

 Concluding, the probability of one arrival in Δt is λΔt. 
 We also call λ the arrival rate of the arrival process.
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Describing Traffic: The Poisson Process (4)

 We would like to use this to compute the probability of having n > 0 
arrivals in the interval (0, t + Δt] 

 For this, we partition the interval into two intervals (0, t] and (t, t + Δt]

 We have to distinguish two cases that both may lead to n arrivals:
 We have n -  1 arrivals in interval (0, t] and one arrival in (t, Δt]
 We have n  arrivals in interval (0, t] and no arrival in (t, Δt]

t

t

0 t + Δt

Δt

or

either
n - 1

n

1

0
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Describing Traffic: The Poisson Process (5)

 Both cases correspond to disjoint random events and there are no 
more possibilities to have n arrivals in the interval (0, t + Δt]

 Thus

 Due to independence and stationarity of the arrival process, we can 
simplify 
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Describing Traffic: The Poisson Process (6)

 Thus, we get

and

 With Δt  0 we obtain the following two differential equations (n>0)

 We try the following substitution

 With this we get:

 Using the product rule on the left side
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Describing Traffic: The Poisson Process (7)

 Obviously, the second differential equation requires





 For n = 1 we obtain

 Thus, we can deduce

 Again, we use a constraint

 Which leads to



 Again, we use a constraint 

 Which leads to
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Describing Traffic: The Poisson Process (8)

 For n ≥ 2 we obtain by induction

and with this

 The arrival process characterized by this equation is called Poisson 
Process with parameter λ

 Poisson Distribution 

 The Poisson Process is of paramount importance for queuing theory
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Describing Traffic: The Poisson Process (9)
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Little’s Law (1)

 Let Arrival(T) be the number of packets arrived until time T,

Wi(T) be the waiting time of packet i at time T

N(T) be the number of packets in the system at time T
 We are interested in the accumulated (total) waiting time of all jobs 

that ever arrived in the system until time T
 This can be computed via two observations:

 Sum of the waiting times of all packets arrived 
until time T:

 Integral over the number of packets in the 
system N(T) during the interval (0, T]
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Little’s Law (2)

 Obviously both computations have to lead to the same result

 For Arrival(T) > 0, we can extend the equation as follows

 Let λ(T) be the average number of packets in time (0, T]





T

t

TArrival

i
i dttNTW

0

)(

1

)()(





T

t

TArrival

i
i dttN

T
TW

TArrivalT

TArrival

0

)(

1

)(
1

)(
)(

1)(

T

TArrival
T

)(
)( 



73Algorithmic Aspects of ComNets (WS 21/22): 01 – Introduction

Little’s Law (3)

 Let W(T) be the average waiting time of a packet

 Let N(T) be the average number of packets in the system

 Then we can write the above equation as:

 If the system is in stationary condition, that is the number of packets 
entering is equal to the number of packets leaving the system, then 
the following limits do exist

 With this we get Little’s Law: 
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Solving the M/M/1 System (1)

 Let us consider the number of packets in a router if packet arrivals are 
Poisson distributed with rate λ and service times exponentially 
distributed with rate μ

 In the diagram below the state identifiers denote the number of 

 The diagram describes the state changes of the system, and it is 
generally referred to as a Markov chain (as state changes are only 
dependent on finitely many prior states)
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Solving the M/M/1 System (2)

 Let pn denote the probability of the system being in state n 

 Then in case of statistical balance between states, we can formulate 



 As furthermore,
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Solving the M/M/1 System (3)

 Let us now consider the average number N of packets in the system 

 As Little’s Law  states

we obtain for the average waiting time 
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Considerations on Traffic Demand and Link Utilization (3)

 If packets have average size Kp bits and link capacity is C bits per 
second then the average service rate of the link is μp = C / Kp pps 
(packets per second)

 If the average arrival rate is λp pps then the average delay is given by

 Even if vastly simplified (due to our simple traffic assumptions), this 
can provide useful insights on delay
 Consider a T1-link with 1.54 Mbit/s, then for an average packet size of 

1 kByte = 8 kbit the average service rate of the link is 190 pps
 If the packets arrive with rate λp=100 pps, then the average delay is 

1 / 90 ~ 11.11 ms 
 If the arrival rate is increased to 150 pps, the delay increases to 25 ms

 Let us also consider the average link utilization ρ = λp / μp 
 For λp = 100 pps and μp = 190 pps, we have ρ = 0.526
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Considerations on Traffic Demand and Link Utilization (4)

 The above curve shows the average delay of an M/M/1 queuing 
system (for a given arrival rate λ) as a function of link utilization ρ

 So, in order to keep the average delay below 15 ms the link utilization 
should be kept below 64.5%
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Considerations on Traffic Demand and Link Utilization (5)

 As in reality Internet traffic does not arrive according to a Poisson 
process, link utilization should be kept even lower, e.g. below 50%
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Considerations on Traffic Demand and Link Utilization (6)

 So, when link utilization reaches a certain threshold, e.g. 50%, it 
should be upgraded

 However, from a delay perspective, it is better to have one high 
bandwidth link than multiple lower bandwidth links
 Consider a tenfold increase in both arrival rate and service rate:

 So the average delay is reduced to one tenth
 This is often referred to as the statistical multiplexing gain 
 Given the typical cost structure of low vs. high bandwidth links, it is even 

more beneficial to have one high bandwidth link
 On the other hand, delay is not the only characteristic to consider

 Fault-tolerance requirements may call for having multiple links 
 On a single link misbehaving traffic flows are difficult to control
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Considerations on Traffic Demand and Link Utilization (7)

 So, if we are able to predict or measure the utilization of a single link, 
then we can decide to upgrade the link once its utilization reaches a 
certain threshold

 However, in a network consisting of multiple routers and links, this 
gets more complicated:
 Link utilization is also influenced by routing decisions and the utilization of 

other router’s and links
 Routing decisions might be influenced by 

 delay experienced by packets, 
 average queue length in routers (over a recent period of time),
 currently available link capacities etc.

 What if capacities of links are not pre-determined?
 Can link capacity dimensioning and routing decisions be optimized in a 

joined way?
 How to account for fault-tolerance requirements when doing so?
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Notion of Routing and Flows

 Up to now, we have used the word routing in the context of making 
routing decisions for individual packets

 However, there are two different ways to interpret the term route:
 How an individual packet may be transported in the networks
 How, in general, ensemble traffic may be routed between the same two 

points (e.g. all packets flowing from New York to Berlin)

 From now on and for the remainder of this course, we will stick to the 
second notion of route and taking routing decisions unless we 
explicitly state that we mean the first notion

 So, we are more interested in making routing decisions for flows of 
packets, for which we have a (more or less accurate) traffic 
description (e.g. constant bit rate, Poisson arrival with rate λ etc.) 

 These routing decisions will
 have to stay within capacity constraints,
 in some cases influence capacity decisions (joined routing/dimensioning)
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Multi-Level Networks (1)

 As we have seen before, sometimes ISPs need to interconnect their 
networks via a transport network
 The transport network, in general, may use a different protocol 

architecture, e.g. SONET, SDH, ATM
 From the point of view of the transport network provider, his client (an ISP) 

demands a certain transport volume, e.g. expressed 
 Simply in MBit/s between two or more points, or more fine grained by
 Leaky bucket with rate r, burst size b, min. & max. packet size

 The resulting overall network architecture is a multi-level 
architecture, consisting of two views
 Transport view: network with protocol architecture X (SONET, SDH, …)
 Traffic view: network with protocol architecture Y (IP, ISDN, …)
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Multi-Level Networks (2)

 Links in the traffic network are 
logical links 
 Logical links have to be  mapped to 

links/paths in the transport network
 This mapping can change the 

properties of the network from one 
view to the other

 Consider path diversity:
 In the traffic view there are three 

link-diverse paths from node 1 to 
node 4

 In the transport view all three logical 
links make use of the same 
transport link 

 This has implications on 
protection and restoration design
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Chapter Summary

 Data traffic is usually transported in packets that are individually 
forwarded through interconnected routers in the network

 Routing decisions can be guided by minimizing the total “cost” of a 
path summing up individual link costs, and we know well established 
routing algorithms for this: Dijkstra’s Algorithm, Bellman-Ford 
Algorithm, Distance Vector Routing 

 Traffic can be characterized according to a stochastic process:
 The Poisson Process is a well established model and it shows ideal 

characteristics: independence, singularity, stationarity
 Real Internet traffic looks different though (self similar characteristics)

 Average link load should not exceed a certain threshold (e.g. 50%), 
otherwise long average delay occurs

 Routing decisions heavily influence link utilization and should take 
traffic demand, link capacities, etc into account

 In multi-level networks, characteristics may change between views 


