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Optimization Problems

� An optimization problem is given by a set M and a function
f : X → R with X ⊇ M.

� The usual terminology is as follows:
� M is called the feasible set.
� f is called the objective function
� Elements of M are called feasible solutions.
� x∗ ∈ M is an optimal (maximal) solution if f (x∗) ≥ f (x) for

all x ∈ M, i.e.

f (x∗) = max{f (x) | x ∈ M}.

� An optimization method is an algorithm that computes an
optimal solution x∗ given the input (M, f ) if there is any.

� Note that min{f (x) | x ∈ M} = −max{−f (x) | x ∈ M}.
Thus, there is no need to deal with minimization problems
separately.
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Linear Optimization Problems (LOP)

� An optimization problem (M, f ) is a linear optimization
problem (LOP) if M ⊆ Rn for some n ∈ N consists of all
�x ∈ Rn satisfying a finite set of linear inequalities and/or
linear equations, and f : Rn → R is a linear function.

� Example 1:
Maximize

f (x , y) = x + 3y

subject to

−x + y ≤ 1

x + y ≤ 2

x , y ≥ 0
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Some Remarks on Notation

� Rn is the set of all column vectors �x = (x1, . . . , xn)
T with

x1, . . . xn ∈ R.
� We write �a ≤ �b if and only if ak ≤ bk for all k ∈ {1, . . . , n},

and use this notation for row vectors correspondingly.
(Caution: This is not a linear order. For example, neither
(1, 2)T ≤ (2, 1)T nor (1, 2)T ≥ (2, 1)T obtains. )

� �o denotes a zero vector (with appropriately many entries).

� I denotes an identity matrix (with appropriately many rows
and columns).

� ��x� =
�
x21 + · · ·+ x2n denotes the euclidean norm of �x .
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Canonical Form LOP’s

Canonical Form:
Maximize

f (�x) = �cT�x

subject to
A�x ≤ �b, �x ≥ �o

Here, A ∈ Rm×n is real matrix with m rows and n columns and
�b ∈ Rm is a real column vector with m entries.
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Transformation into Canonical Form

� If there is a variable xk subject to xk ≤ 0 replace every
appearance of xk with −xk and replace xk ≤ 0 with xk ≥ 0.

� If a variable xk is unrestricted, replace every appearance of xk
by x+k − x−k and let x+k ≥ 0, x−k ≥ 0. This results in an
equivalent LOP where each variable is non-negative.

� The inequality �aTk �x ≤ bk is equivalent to −�aTk �x ≥ −bk , and
the equality �aTk �x = bk is equivalent to �aTk �x ≤ bk and
�aTk �x ≥ bk . Thus, any LOP can be transformed into an
equivalent LOP in canonical form.
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Standard Form LOP’s

� Standard Form:
Maximize

f (�x) = �cT�x

subject to
A�x = �b

and
�x ≥ �o

Here, A ∈ Rm×n is a matrix with rank m and �b ∈ Rm is a
column vector with �b ≥ �o.
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Transformation into Standard Form
� Assume the LOP is given in general form, i.e.the feasible set

M is written as M = {�x ∈ Rn | (A�x ≤ �b) ∧ (�x ≥ �o)} such
that A ∈ Rm×n, �b ∈ Rm.

� Clearly,

M = {�x ∈ Rn| ∃�y ∈ Rm : (A�x+�y = �b)∧(�x ≥ �o)∧(�y ≥ �o))}.
The additional variables in �y are called slack variables.

� Note that the equality A�x + �y = �b can be re-written as

(A|I )
�

�x
�y

�
= �b.

� If �b does not satisfy �b ≥ �o, multiply all rows k with bk < 0 by
(−1).

� Finally, recall that if A ∈ Rm×n, then rk(A) ≤ m, and that if
rk(A) < m, then the system of linear equations A�x = �b either
has no solution at all or there are m − rk(A) redundant
equations. Consequently, the assumption that rk(A) = m is
no restriction.
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The Structure of the Feasible Set 1

Definition: A subset X of Rn is called

� convex if for any two points x1, x2 ∈ X the whole straight line
segment x1x2 = {αx1 + (1− α)x2 | α ∈ [0, 1]} is in X ,

� closed if the limit of every convergent sequence in X is in X
too, and

� bounded if there is K ∈ R such that ��x� ≤ K for all �x ∈ X .
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The Structure of the Feasible Set 2

We recall the following statements.

� The intersection of two convex sets is convex.

� The intersection of two closed sets is closed.

� If f : X → R is continuous and M ⊆ X is nonempty, closed
and bounded, then there is a x∗ ∈ M such that f (x) ≤ f (x∗)
for all x ∈ M, i.e. f attains its maximum on M.

� If �d ∈ Rn and t ∈ R, then the set {�x ∈ Rn | �dT�x ≤ t} is
convex and closed.

� Linear functions from Rn into R are continuous.
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The Structure of the Feasible Set 3

Consider an LOP in standard form.

Maximize f (�x) = �cT�x subject to A�x = �b, �x ≥ �o with A ∈ Rm×n,
�b ≥ �o and rk(A) = m.

By the statements from the previous slide we deduce that the
feasible set M = {�x ∈ Rm×n |(A�x = �b) ∧ (�x ≥ �o) } is convex and
closed. If M is also nonempty and bounded, f attains its maximum
on M.
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Extreme Points and Basic Solutions 1

Definition: Let M be a convex set. A point �x0 ∈ M is called an
extreme point of M if �x0 cannot be expressed as a convex linear
combination α�x1 + (1− α)�x2 with α ∈ [0, 1] of two points
�x1, �x2 ∈ M with �x1 �= �x0 �= �x2.

We mention the following statements without proof.

(A) If the set M = {�x ∈ Rm×n |(A�x = �b) ∧ (�x ≥ �o) } is
nonempty, then M has at most finitely many and at least one
extreme point.

(B) If M is in addition bounded, then M is the convex hull of its
extreme points �x1, . . . , �xk , i.e. any point �x in M can be
expressed as convex linear combination �x =

�k
i=1 αk�xi with

α1, . . . ,αk ∈ [0, 1] and
�k

i=1 αi = 1.

12 / 46



Extreme Points and Basic Solutions 2

Theorem (1)

If M is nonempty and bounded, then there is an extreme point
�x∗ ∈ M such that f (�x∗) ≥ f (�x) for all �x ∈ M.

Proof.
� Since f is linear and M is closed and bounded, there is a point

�x0 ∈ M such that f (�x0) ≥ f (�x) for all �x ∈ M.
� Since M is nonempty and bounded, �x0 can be expressed as

convex linear combination

�x0 =
k�

i=1

αi�xi

of extreme points �x1, . . . , �xk with α1, . . . ,αk ∈ [0, 1] and�k
i=1 αi = 1. By linearity of f it is

f (�x0) =
�k

i=1 αi f (�xi ) ≤ max{f (�x1), . . . , f (�xk)}. By
maximality of f (�x0) it is f (�x0) ≥ max{f (�x1), . . . , f (�xk)}.
Hence, there is an i ∈ {1, . . . , k} such that f (�x0) = f (�xi ).
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Extreme Points and Basic Solutions 3

If M is nonempty and unbounded there need not be an optimal
solution. However, if there is one, a similar but more elaborate
argument can be used to prove the following theorem.

Theorem (2)

If M is nonempty and there exists an K such that f (�x) ≤ K for all
�x ∈ M, then there is an extreme point �x∗ ∈ M such that
f (�x∗) ≥ f (�x) for all �x ∈ M.
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Extreme Points and Basic Solutions 4

Definition: Let A ∈ Rm×n be a matrix with column vectors
�a1, . . . , �an, M = {�x ∈ Rm×n |(A�x = �b) ∧ (�x ≥ �o) }, �x ∈ M, and
S(�x) = {�ai | (i ∈ {1, . . . , n}) ∧ (xi �= 0)}. Then �x is called a basic
solution if S(�x) is linear independent. Note that linear
independence of S(�x) is equivalent to the assertion that there is no
�v �= �o such that A�v = �o with the property that vi �= 0 implies
xi �= 0.

Theorem (3)

Let �x ∈ M. Then the following two statements are equivalent.
(a) �x is an extreme point of M.
(b) �x is a basic solution.
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Extreme Points and Basic Solutions 5

Proof of Theorem (3).
(a) implies (b): Suppose that �x is not a basic solution, i.e. S(�x) is
not linear independent. Then there is a vector �v �= �o such that
A�v = �o and vi �= 0 implies xi �= 0 for all i ∈ {1, . . . , n}. Thus,
there is an ε > 0 such that �u1 = �x + ε�v ≥ �o and �u2 = �x − ε�v ≥ �o.
Clearly, �u1, �u2 ∈ M, �u1 �= �x �= �u2, and

1
2�u1 +

1
2u2 = �x , i.e. �x is not

an extreme point.
(b) implies (a): Suppose �x is not an extreme point. Then there are
vectors �v1, �v2 ∈ M such that �v1 �= �x �= �v2 and an α ∈ (0, 1) such
that �x = α�v1 + (1− α)�v2. It follows that �v1 �= �v2, A(�v1 − �v2) = �o,
and that if the i-th entry of �v1 − �v2 is not 0, then xi �= 0. This
implies that S(�x) is not linear independent, and so �x is not a basic
solution.
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The Simplex Algorithm 1

We consider the LOP in standard form (L) as follows.

Maximize
f (�x) = �cT�x

subject to
A�x = �b

and
�x ≥ �o

with
A ∈ Rm×n, �b ≥ �o, and rk(A) = m.

Let M = {�x ∈ Rn | (A�x = �b) ∧ (�x ≥ �o)}.
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The Simplex Algorithm 2

We know so far:

� M has at least one extreme point.

� Any extreme point of M is a basic solution of (L) and vice
versa.

� (L) has at most
�n
m

�
basic solutions.

� If there is an optimal solution of (L), then there is an optimal
solution of (L) that is a basic solution.

� If M is nonempty and bounded, then there is an optimal
solution of (L).

It follows that (at least) if M is nonempty and bounded, there is a
finite algorithm that finds an optimal solution of (L).
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The Simplex Algorithm 3

� The simplex algorithm consists of two parts, called Phase 1
and Phase 2.

� The input of Phase 2 is a feasible basic solution.

� The simplex algorithm stops when either an optimal basic has
been found, or if it has been detected that the objective
function is unbounded on M. In the latter case there is no
optimal solution of (L).

� Phase 1 is needed only if there is no feasible basic solution
known.

� Phase 1 consists in applying Phase 2 to an auxiliary LOP.
Phase 1 stops when a feasible basic solution of (L) has been
found or if it has been detected that M is empty.
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The Simplex Algorithm 4 - Phase 2

� Let �x be a feasible basic solution of (L).

� Let T (�x) ⊆ {�a1, . . . , �an} be a maximal linear independent set
of column vectors of A such that

xk �= 0 =⇒ �ak ∈ T (�x).

(Note: Since rk(A) = m the set T (�x) has m elements.)

� Let B = {k ∈ {1, . . . , n} | �ak ∈ T (�x)} and
N = {1, . . . , n} \ B .

� If T (�x) contains column vectors �ak such that xk = 0, the
basic solution �x is called degenerate, otherwise it is said to be
non-degenerate.
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The Simplex Algorithm 5 - Phase 2

� T (�x) is a basis of the linear subspace generated by all column
vectors of A. Thus, each column vector �aj can represented as
a linear combination of the elements of T (�x), and this
representation is unique:

�aj =
�

k∈B
tk,j�ak .

� Clearly, if j ∈ B , then tj ,j = 1 and tk,j = 0 if k �= j .

� For j ∈ N let uj =
�

k∈B tk,jck and dj = uj − cj . (Recall that
the objective function f is given by f (�x) = �cT�x with
�c = (c1, . . . , cn)

T . )
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The Simplex Algorithm 6 - Phase 2
Let �y ∈ Rn be an arbitrary feasible solution of (L), i.e.�n

i=1 yi�ai =
�b and �y ≥ �o. Then

�b =
�

k∈B
xk�ak

=
n�

i=1

yi�ai

=
n�

i=1

yi (
�

k∈B
tk,i�ak)

=
�

k∈B
(

n�

i=1

tk,iyi )�ak .

Since T (�x) is linear independent we know that for all k ∈ B

xk =
n�

i=1

tk,iyi = yk +
�

i∈N
tk,iyi .
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The Simplex Algorithm 7 - Phase 2

Consequently, yk = xk −
�

i∈N tk,iyi for all k ∈ B . We can now
express f (�y) = �cT�y as follows

�cT�y =
n�

i=1

ciyi

=
�

k∈B
ckyk +

�

i∈N
ciyi

=
�

k∈B
ck(xk −

�

i∈N
tk,iyi ) +

�

i∈N
ciyi

=
�

k∈B
ckxk +

�

i∈N
(ci −

�

k∈B
cktk,i )yi

= �cT�x −
�

i∈N
diyi
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The Simplex Algorithm 8 - Phase 2
We distinguish three cases.

Case 1 It is di ≥ 0 for all i ∈ N. Then f (�x) ≥ f (�y) for all feasible
solutions �y , i.e. �x is an optimal solution. In this case the algorithm
stops.

Case 2 There is an index j ∈ N such that dj < 0 and tk,j ≤ 0 for
all k ∈ B . Let α > 0. Then the vector �z ∈ Rn with

zk =





xk − αtk,j for k ∈ B
α for k = j
0 for k ∈ N and k �= j

is nonnegative, and

A�z =
n�

k=1

zk�ak =
�

k∈B
xk�ak − α

�

k∈B
tk,j�ak + α�aj =

=
�

k∈B
xk�ak − α�aj + α�aj =

�

k∈B
xk�ak = A�x = �b.
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The Simplex Algorithm 9 - Phase 2
Consequently, �z is a feasible solution for all α > 0. Since dj < 0,

lim
α→∞

f (�z) = lim
α→∞

f (�x)− djα = ∞,

i.e. the objective function f is unbounded from above on M. In
this case the algorithm stops.

Case 3 There is an index j ∈ N such that dj < 0 and there is an
index � ∈ B such that t�,j > 0. Let
ε = min{xk/tk,j | (k ∈ B) ∧ (tk,j > 0)}. Clearly, ε ≥ 0. Suppose
that ε = x�/t�,j and define �z ∈ Rn by

zk =





xk − εtk,j for k ∈ B
ε for k = j
0 for k ∈ N and k �= j

.

Similarly as in Case 2 it is not hard to see that �z is a feasible
solution. Furthermore, z� = 0 and since t�,j �= 0, the j-th column
vector �aj of A cannot be expressed as a linear combination of the
column vectors in S(�x) \ {�a�}. Thus, �z is a feasible basic solution.
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The Simplex Algorithm 10 - Phase 2

By dj < 0 and ε > 0, it is f (�z) = f (�x)− djε ≥ f (�x). The
algorithm starts over with the new feasible basic solution �z .

Special care is needed to avoid ‘cycling’. One way to avoid cycling
is to apply Bland’s rule (in Case 3 above)1

Bland’s Rule.

� Let j = min{i ∈ N | di < 0}.
� Let � = min{s ∈ B | xs/ts,j = ε}, with ε as above.

1A proof that Bland’s rule indeed prevents cycling can be found in:
J.Matousek and B. Grtner, Understanding and Using Linear Programming,
Springer, 2006.
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The Simplex Algorithm 11 - Phase 1

If the original LOP is given in standard from (L), and no feasible
basic solution is known, an auxiliary LOP can be used to find one.

The Auxiliary LOP
Minimize g(�x , �y) =

�m
i=1 yi

subject to
A�x + �y = �b, �x ≥ �o, �y ≥ �o.

A feasible basic solution for the auxiliary problem is �y = �b, �x = �o.
Thus, the feasible set of the auxiliary LOP nonempty.
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The Simplex Algorithm 12 - Phase 1

Theorem (4)

(a) The auxiliary LOP has an optimal solution (�y∗, �x∗).
(b) The original LOP has a feasible solution if and only if �y∗ = �o.

Proof. (a) Since �y ≥ �o, we have g(�x , �y) =
�m

i=1 yi ≥ 0.
Furthermore, the feasible set of the auxiliary LOP is nonempty. It
follows that the auxiliary LOP has an optimal solution.
(b) It is not hard to see that �x = �x0 is a feasible solution of the
original LOP if and only if �x = �x0, �y = �o is a feasible solution of
the auxiliary one. A feasible solution of the auxiliary LOP with
�y = �o is optimal because g(�x , �o) = 0 for all �x ∈ Rn.
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The Simplex Algorithm 13 - Phase 1

Remark.

If the original LOP is given in general form with �b ≥ �o, then a
feasible solution of the corresponding LOP in standard form

Maximize �cT�x subject to A�x + I�y = �b, �x ≥ �o, and �y ≥ �o

can be obtained as follows: �y = �b, �x = �o.
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Simplex Tableaus 1

Consider a system of linear equations A�x = �b. Recall from linear
algebra that A�x = �b can be transformed into an equivalent system

of linear equations Â�x = �̂b using the following ‘row operations’.

(1) Switching two equations.

(2) Multiplying one equation with a nonzero factor.

(3) Adding a multiple of an equation to another equation.

Here, ‘equivalent’ means that a vector �x0 ∈ Rn is a solution of

A�x = �b if and only if it is a solution of Â�x = �̂b.
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Simplex Tableaus 2

Now suppose, as above, that A ∈ Rm×n with rank m, and �b ∈ Rm.
Let �x0 ∈ Rn be a feasible basic solution, i.e. A�x0 = �b, �x0 ≥ �o, and
the set S(�x0) = {�ai | x0i �= 0} of column vectors of A is linear
independent. Let T (�x0) ⊇ S(�x0) be a maximal linear independent
set of column vectors containing S(�x0), B = {i | �ai ∈ T (�x0)}, and
N = {1, . . . , n} \ B . Note that |B | = m because rank(A) = m. In
order to simplify our notation we assume henceforth that
B = {1, . . . ,m}.

Using the row operations (1),(2), and (3), the system of linear
equations A�x = �b can be transformed into an equivalent systems

of linear equations Â�x = �̂b such that the first m columns of Â form
an m ×m identity matrix I . Thus Â can be written as

(ÂB , ÂN) = (I , ÂN). Note that this implies that �̂b = (�x0)B .
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Simplex Tableaus 3

Let j ∈ N and express the column vector �aj as a linear combination
of the column vectors in T (�x0)

�aj =
�

k∈B
tk,j�ak .

Let �u ∈ Rn with

ui =





tk,j for i = k
−1 for i = j
0 else

.

Then A�u = �o. It follows that Â�u = �o. From the structure of Â we
see that

(ÂN)k,j = tk,j

for all k ∈ B and j ∈ N.
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Simplex Tableaus 4

Since

tk,i =

�
1 for k = i
0 else

for all i , k ∈ B, it finally follows that (Â)k,j = tk,j for all
k , j ∈ {1, . . . , n}. Now we extend the system of linear equations
A�x = �b by appending the equation �cT�x = z

�
A
�cT

�
�x =

�
�b
z

�
.

This system of linear equation is equivalent to

�
Â
�cT

�
�x =

�
�̂b
z

�
.
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Simplex Tableaus 5

In this system of linear equations we add for each k ∈ B the k-th
equation multiplied by −ck to the last newly appended equation
�cT�x = z . We get �

Â

�̂cT

�
�x =

�
�̂b
z

�
,

where

ĉi =

�
0 for i ∈ B

ci −
�

k∈B cktk,i for i ∈ N
.

Note that ci −
�

k∈B cktk,i = −di (see ‘The Simplex Algorithm 7’.)
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Simplex Tableaus 6

Producing a new basic solution (Case 3 on ‘The Simplex Algorithm
9’.) can now be described as follows.

Choose j ∈ N such that dj < 0. Choose � ∈ B such that t�,j > 0
and x�/t�,j is minimal. If there are more than one candidate for j
and �, respectively, apply Bland’s rule. Multiply the �-th equation
by 1/t�,j and then, add the resulting �-th equation multiplied by
−tk,j to the k-th equation for k ∈ {1, . . . ,m} with k �= �. Add the

�-th equation multiplied by −ĉj = −dj to the equation �̂c�x = z .
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Duality 1

Let A ∈ Rm×n, �c ∈ Rn, and �b ∈ Rm. Assume there are �x ∈ Rn and
�y ∈ Rm such that �x ≥ �o and �y ≥ �o, �yTA ≥ �cT , and A�x ≤ �b.

Observation *
�cT�x ≤ �yTA�x ≤ �yT�b.

We rephrase this observation in terms of two LOP’s (P) and (D).
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Duality 2

The LOP (P):

Maximize
�cT�x

subject to
A�x ≤ �b and �x ≥ �o.

The LOP (D):

Minimize
�yT�b

subject to
�yTA ≥ �cT and �y ≥ �o.
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Duality 3
Our initial Observation * now reads as follows.

Theorem (Weak Duality Theorem (WDT))

(i) If �x0 and �y0 are feasible solutions of (P) and (D), then
�cT�x ≤ �yT�b.

(ii) If the objective function �cT�x of (P) is unbounded from above,
then (D) has no feasible solution.

(iii) If the objective function �yT�b of (D) is unbounded from below,
then (P) has no feasible solution.

Remarks:

� (P) is called the primal LOP, (D) the dual LOP.

� Note that (i) obtains especially for optimal feasible solutions
of (P) and (D), respectively.

� It is possible that both LOP’s, (P) and (D), don’t have
feasible solutions.
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Duality 4

Theorem (Strong Duality Theorem (SDT))

(1) If there are feasible solutions of (P) and its objective function
�cT�x is bounded from above, then (P) and (D) have optimal
feasible solutions �x∗ and �y∗, respectively, and

�cT�x∗ = (�y∗)T�b.

(2) If there are feasible solutions of (D) and its objective function
�yT�b is bounded from below, then (P) and (D) have optimal
feasible solutions �x∗ and �y∗, respectively, and

�cT�x∗ = (�y∗)T�b.
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Duality 5

We want to give a proof of (1) using ideas from the simplex
algorithm. The proof is a modification of the one given in the
book by Grtner and Matousek2. To this end we recall some of the
facts we already know.

(a) If the objective function of (P) �cT�x is bounded on its feasible
set M = {�x ∈ Rn | A�x ≤ �b, �x ≥ �o} and M �= ∅, then (P) has
an optimal solution.

(b) (P) has an optimal solution �x∗ if and only if the standard
form LOP (P̂) (see next slide) has one.

(c) If (P̂) has an optimal solution, then it has an optimal basic
solution too.

2J.Matousek and B. Grtner, Understanding and Using Linear Programming,
Springer, 2006.
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Duality 6

The LOP (P̂)

Maximize
�̂cT �̂x

subject to
Â�̂x = �b, �̂x ≥ �o

with
Â = (A, I ), �̂x = (�x , �z)T , �̂c = (�c , �o)T .

Note that we do not assume that �b ≥ �o.
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Duality 7

Next, we need to reformulate the optimality criterion for basic
solutions of (P̂). Let �̂x be a feasible basic solution of (P̂). We let
ÂB be the matrix consisting of the columns of A forming the basis
corresponding to �̂x , and ÂN the matrix consisting of the remaining
columns. Likewise, we write �hB and �hN for the vectors consisting
of the entries of a vector �h ∈ Rn+m corresponding to ÂB and ÂN ,
respectively. Thus, Â�h = ÂB

�hB + ÂN
�hN . Let �̂y be a feasible

solution (P̂). Note that ÂB is an invertible m ×m-matrix.
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Duality 8
Since �̂x and �̂y are solutions of (P̂) we know

�b = Â�̂x = ÂB�̂xb = ÂB�̂yB + ÂN�̂yN .

Hence,
�̂yB = �̂xB − Â−1

B ÂN�̂yN

and

�̂cT �̂y = �̂cTB (�̂xB − Â−1
B ÂN�̂yN)+ �̂cTN �̂yN = �̂cTB �̂xB +(�̂cTN − �̂cTB Â−1

B ÂN)�̂yN .

Since �̂cT �̂x = �̂cTB �̂xB it follows that �̂x is optimal if and only if

(�̂cTN − �̂cTB Â−1
B ÂN)�̂yN ≤ 0

for all feasible solutions �̂y of (P̂). Because �̂y ≥ �o, we finally get
that �̂x is optimal if and only if

�̂cTB Â−1
B ÂN ≥ �̂cTN .

43 / 46

Duality 9

Since �̂cTB Â−1
B ÂB = �̂cTB the inequality �̂cTB Â−1

B ÂN ≥ �̂cTN is equivalent
to

�̂cTB Â−1
B Â = �̂cTB Â−1

B (ÂB , ÂN) = (�̂cTB , �̂cTB Â−1
B ÂN) ≥ (�̂cTB , �̂cTN ) = �̂cT .

We recall that �̂cT = (�cT , �oT ) and Â = (A, I ). Hence,
�̂cTB Â−1

B Â ≥ �̂cT is equivalent to �̂cTB Â−1
B A ≥ �cT and �̂c−1

B ÂB ≥ �oT .
Thus, we have proved the following proposition.

Proposition

A feasible basic solution �̂x of (P̂) is optimal if and only if
�̂cTB Â−1

B A ≥ �cT and �̂c−1
B ÂB ≥ �oT .
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Now we are ready to prove assertion (1) of SDT.

Proof. If (P) is feasible and bounded, it follows from (a) that (P)
has an optimal solution. By (b) and (c) it follows that (P̂)has an
optimal basic solution �̂x . We let �uT = �̂cTB Â−1

B . By the above

proposition �u is a feasible solution of (D). Recall that �̂xB = Â−1
B

�b.
Hence,

�uT�b = �̂cTB Â−1
B

�b = �̂cTB �̂xB = �̂cT �̂x = �cT�x .

By the WDT it follows that �u is an optimal solution of (P̂).
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The following ‘Dualization Recipe’ is taken from the book by
Grtner and Matousek3.
�����������������������

Primal LOP Dual LOP

Variables x1, x2, ..., xn y1, y2, ..., ym
Matrix A AT

Right hand side �b �c

Objective function max �cT�x min �bT�y
Constraints ith constraint has ≤ yi ≥ 0

ith constraint has ≥ yi ≤ 0
ith constraint has = yi ∈ R

xj ≥ 0 jth constraint has ≥
xj ≤ 0 jth constraint has ≤
xj ∈ R jth constraint has =

�����������������������

3J.Matousek and B. Grtner, Understanding and Using Linear Programming,
Springer, 2006.
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