Algorithmic Aspects of Communication Networks

Chapter 3
 General Optimization Methods for Network Design

Part 2

Branch and Bound - the basic algorithm

- The idea of branch and bound methods
- Consider a (hard to solve) optimization problem

$$
\begin{equation*}
\text { minimize } f(x) \quad \text { subject to } x \in M \tag{1}
\end{equation*}
$$

- Associate a relaxed optimization problem

$$
\begin{equation*}
\text { minimize } g(x) \quad \text { subject to } x \in R \tag{2}
\end{equation*}
$$

such that

- $R \supseteq M$,
- if $x \in R$, then $g(x)=f(x)$, and
- (2) can be solved efficiently.

Branch and Bound - the basic algorithm

- Recall:

An optimal solution for (1) is an element x^{*} of M such that $f(x) \geq f\left(x^{*}\right)$ for all x in M (likewise for (2)).

- Claim 1:
(a) If y^{*} is an optimal solution for (2), then $f(x) \geq f\left(y^{*}\right)$ for all x in M.
(b) If y^{*} is an optimal solution for (2) and $y^{*} \in M$, then y^{*} is an optimal solution for (1) too.
- Claim 2:

Let $M=M_{1} \cup M_{2}$ be a partition of M, and let x_{k}^{*} be an optimal solution for the OP

$$
\begin{equation*}
\text { minimize } f(x) \quad \text { subject to } \quad x \in M_{\mathrm{k}} \tag{k}
\end{equation*}
$$

$(k=1,2)$. Then $\operatorname{argmin}_{x}\left\{f\left(x^{*}\right), f\left(x^{*}\right)\right\}$ is an optimal solution for (1).

Branch and Bound - the basic algorithm

- Let R ' be a nonempty subset of R, and consider the optimization problem

$$
\text { minimize } g(y) \quad \text { subject to } \quad y \in R^{\prime}
$$

- If (R^{\prime}) has a solution, then $\operatorname{SOLVE}\left(R^{\prime}\right)$ returns a pair $\left(y^{*}, g\left(y^{*}\right)\right)$ consisting of an optimal solution y^{*} of $\left(R^{\prime}\right)$ and the corresponding value $g\left(y^{*}\right)$, otherwise $\operatorname{SOLVE}\left(R^{\prime}\right)$ returns (n, n).
- If $\operatorname{SOLVE}\left(R^{\prime}\right)$ yields an optimal solution $y^{*} \notin M$, then $\operatorname{BRANCH}\left(R^{\prime}, y^{*}\right)$ returns two disjoint subsets $R_{1}^{\prime}, R_{2}^{\prime}$ of R^{\prime} such that

$$
M \cap R^{\prime}=\left(M \cap R_{1}^{\prime}\right) \cup\left(M \cap R_{2}^{\prime}\right) .
$$

Branch and Bound - the basic algorithm

T'he idea of the algorithm

- Initialization $L \leftarrow\{R\}$; best $\leftarrow \infty$;
- While $L \neq \varnothing$ do begin
choose $B \in \mathrm{~L}$; \quad \% according to a specific rule $\%$
$\left(y^{\star}, g\left(y^{\star}\right)\right) \leftarrow \operatorname{SOLVE}(B) ;$
if $y^{*} \in M$ and $g\left(y^{*}\right)<$ best then begin
best $\leftarrow g\left(y^{*}\right)$;
$y_{\text {best }} \leftarrow y^{\star}$;
remove B from L; end;
if $g\left(y^{*}\right) \geq$ best then remove B from L; $\quad \%$ bounding $\%$
else
begin
\% branching \%

Branch and Bound - the basic algorithm

A. more concrete recursive realization of Branch and Bound

- Initialization $A \leftarrow M$, $B \leftarrow R$, best $\leftarrow \infty$
- procedure $\mathrm{BB}(A, B, f, g)$
begin
$\left(y^{*}, g\left(y^{*}\right)\right) \leftarrow \operatorname{SOLVE}(B)$
if $y^{*} \in A$ then
if $g\left(y^{*}\right)<b e s t$ then
begin best $\leftarrow g\left(y^{*}\right)$; return $\left(y^{*}, g\left(y^{*}\right)\right)$
else
if $g\left(y^{*}\right) \geq$ best then return $\%$ bounding $\%$
else $\%$ branching \%
begin
$\left(B_{1}, B_{2}\right) \leftarrow \operatorname{BRANCH}\left(B, y^{*}\right)$;
$\mathrm{BB}\left(A, B_{1}, f, g\right)$;
$\mathrm{BB}\left(A, B_{2}, f, g\right)$;
end;
end

Branch and Bound - the basic algorithm

- Remarks:
- Branch and Bound yields an (exact) optimal solution provided there is a constant K (depending on the input) such that all subproblems obtained after at most K repetitions of BRANCH either have no optimal solution or their optimal solutions are in M.

Branch and Bound is not (necessarily) efficient.

Branch and Bound for MIP

- Consider the MIP (1)

minimize	$f(\boldsymbol{x})=\boldsymbol{c} \boldsymbol{x}$
subject to	$\boldsymbol{A} \boldsymbol{x}=\mathbf{b}$,
$\boldsymbol{x} \geq \mathbf{0}$, and	
	x_{j} is integer for all $k \in I$
where $\quad \boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right), \boldsymbol{b} \geq \mathbf{0}, \boldsymbol{A}$ has rank $m \leq n$, and $I \subseteq\{1, \ldots, n\}$	

- Choose as relaxed problem the LOP (2) (called LP-relaxation)

minimize	$f(\boldsymbol{x})=\boldsymbol{c} \boldsymbol{x}$
subject to	$\boldsymbol{A} \boldsymbol{x}=\mathbf{b}$,
	$\boldsymbol{x} \geq \mathbf{0}$

where $\quad \boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right), \boldsymbol{b} \geq \mathbf{0}$, and \boldsymbol{A} has rank $m \leq n$

Branch and Bound for MIP

- SOLVE can be any method to solve LOPs (e.g. the simplex algortihm).
- If $\left(y^{*}, g\left(y^{*}\right)\right)$ is an optimal solution where y_{k}^{*} is not an integer, then $\operatorname{BRANCH}\left(B, y^{*}\right)$ 'adds' new inequalitities to B, i.e.

$$
\begin{aligned}
\operatorname{BRANCH}\left(B, y^{*}\right) & =\left(B_{1}, B_{2}\right) \text { where } \\
B_{1} & =\left\{y \in B \mid y_{k} \leq\left[y_{k}^{*}\right]\right\}, \\
B_{2} & =\left\{y \in B \mid y_{k} \geq\left\{y_{k}^{*}\right\}\right\} .
\end{aligned}
$$

(Notation: $\left[y_{k}^{*}\right]$ is the smallest integer not smaller than y_{k}^{*} and $\left\{y_{k}^{*}\right\}$ is the greatest integer not greater than $y^{*}{ }_{k}$.)

Cutting planes for MIP

- Consider the MIP (1)

$$
\begin{aligned}
& \text { minimize } \quad f(\boldsymbol{x})=\boldsymbol{c} \boldsymbol{x} \\
& \text { subject to } \quad \boldsymbol{x} \in M=\left\{\boldsymbol{x} \mid \boldsymbol{A x}=\mathbf{b}, \boldsymbol{x} \geq \mathbf{0} \text {, and } x_{j} \text { is integer for all } k \in I\right\} \\
& \text { where } \quad \boldsymbol{x}=\left(x_{\left.1, \ldots, x_{n}\right) \text { and } I \subseteq\{1, \ldots, n\},} .\right.
\end{aligned}
$$

and its LP-relaxation (2)

$$
\begin{array}{ll}
\text { minimize } & f(\boldsymbol{x})=\boldsymbol{c} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{x} \in R=\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x}=\mathbf{b}, \boldsymbol{x} \geq \mathbf{0}\} .
\end{array}
$$

Cutting planes for MIP

- A valid cut for (1) is an equality $\mathbf{d} \mathbf{x} \geq q$ such that
- $\{x \mid A x=b, x \geq 0, \mathrm{~d} x \geq q\} \neq R$ and
- $\left\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x}=\mathbf{b}, \boldsymbol{x} \geq \mathbf{0}\right.$, and x_{j} is integer for all $\left.k \in I, \mathbf{d} \mathbf{x} \geq q\right\}=M$.
- Outline of a cutting plane algorithm
begin
$B \leftarrow R ;$
$\left(y^{*}, g\left(y^{*}\right)\right) \leftarrow \operatorname{SOLVE}(B)$;
while $y^{*} \notin M$ do
begin
compute a valid cut $\mathbf{d} \mathbf{x} \geq q$ for (B);
$B \leftarrow\{\mathbf{x} \in B \mid \mathbf{d} \mathbf{x} \geq q\} ;$
$\left(y^{*}, g\left(y^{*}\right)\right) \leftarrow \operatorname{SOLVE}(B) ;$
end;
end

Cutting planes for MIP

- There are two kinds of cuts:
- problem specific ones (e.g. for the knap sack problem), and
- general purpose ones (Gomory cuts).
- Gomory cuts
- Let $\boldsymbol{x}=\left(x_{1, \ldots,}, x_{n}\right)$ be a basic solution of the LP-relaxation such that x_{i} is not an integer.
- Then x_{i} is a basic variable and from the simplex tableau we know that

$$
\begin{equation*}
x_{i}+\sum a_{i j} x_{j}=b_{i} \tag{a}
\end{equation*}
$$

- Equation (a) implies

$$
\begin{equation*}
x_{i}+\sum\left[a_{i j}\right] x_{j}-\left[b_{i}\right]=b_{i}-\left[b_{i}\right]-\sum\left(a_{i j}-\left[a_{i j}\right]\right) x_{j} \tag{b}
\end{equation*}
$$

Cutting planes for MIP

- For any point $\mathbf{x} \in M$ the right hand site of (b) is less than 1 , and the left hand site is an integer.
- Consequently,

$$
\begin{equation*}
b_{i}-\left[b_{i}\right]-\sum\left(a_{i j}-\left[a_{i j}\right]\right) x_{i} \leq 0 \tag{c}
\end{equation*}
$$

for any point $\mathbf{x} \in M$.
] Furthermore, for the original basic solution $\boldsymbol{x}=\left(x_{1, \ldots}, x_{n}\right)$ is

$$
b_{i}-\left[b_{i}\right]-\sum\left(a_{i j}-\left[a_{i j}\right]\right) x_{i}=b_{i}-\left[b_{i}\right]
$$

(because all non basic variables $=0$) not an integer, and therefore

$$
b_{i}-\left[b_{i}\right]-\sum\left(a_{i j}-\left[a_{i j}\right]\right) x_{i}=b_{i}-\left[b_{i}\right]>0,
$$

i.e. (c) excludes \mathbf{x}.

- Hence (c) is a valid cut. The inequality (c) is called a Gomory cut.

