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Let G = (V ,E ) be a finite undirected graph.
� G is connected if for any two distinct vertices u, v ∈ V there is

a path connecting u and v in G .
� A maximal connected subgraph of G is called a component of

G .
� G is biconnected if it is connected and for any vertex v ∈ V

the graph G − v obtained from G by deleting v is connected
too.

� A maximal biconnected subgraph of G is called a block of G .
� A block B of G is called isolated if it is also a component of G .

B is called an end block if it contains exactly one articulation.
� A vertex v ∈ V is said to be an articulation if G − v has more

components than G .
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Let G = (V ,E ) be a finite undirected graph and v ∈ V .
� c = c(G ) ... number of components of G
� p = p(G ) ... number of end blocks of G
� q = q(G ) ... number of isolated blocks of G
� d(v : G ) ... number of components of G − v

� d = d(G ) = max{d(v : G ) | v ∈ V }
Remark. Note that p = 0 implies d = 1, and p > 0 implies p ≥ 2.
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Proposition (1)
Let = (V ,E ) be a finite undirected graph with c components. The
minimal number of additional edges needed to make G connected is
c − 1.
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Proposition (2)
Let G = (V ,E ) be a finite undirected graph and E � ⊆

�V
2

�
such

that G is not biconnected but G � = (V ,E ∪ E �) is biconnected.
Then |E �| ≥ max{d − 1, q + �p2�}.
Proof.

(i) Let v ∈ V be a vertex of G and A1, . . . ,Ad(v :G) the
components of G − v . It follows from Proposition (1) that E �

contains d(v : G )− 1 edges connecting the components of
G − v . Hence, |E �| ≥ d − 1.

(ii) Any isolated block of G is incident with at least two distinct
edges in E � and any end block is incident with at least one
edge in E �. Thus 2|E �| ≥ 2q+ p and so, |E �| ≥ q+ �p/2�.
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Proposition (3)
Let G = (V ,E ) be a finite undirected graph that is not
biconnected. Then there is a set E � ⊆

�V
2

�
such that

G � = (V ,E ∪ E �) is biconnected and
|E �| = h(G ) = max{d − 1, q + �p/2�}.
Proof.

The proof is by induction on h(G ). We let p � = p(G �), q� = q(G �),
d � = d(G �), and h� = h(G �).

If h(G ) = 1, then q + �p/2� ≤ 1. If p = 0, then d = 1, and q = 1.
This contradicts the assumption that G is not biconnected. Hence,
p = 2 and q = 0. Let A,B be the two end blocks of G . Adding an
edge that connects a non articulation vertex in A with one in B
results in a biconnected graph. This establishes the base case.

For the inductive step we prove that if h(G ) ≥ 2, then there is an
edge e ∈

�V
2

�
such that h(G �) = h(G )− 1 for G � = (V ,E ∪ {e}).
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Case 1: G is not connected.

Let A,B be two distinct components of G and
a ∈ V (A), b ∈ V (B) such that

� a and b are not articulations,
� if A is not an isolated block, then a is contained in an end

block, and
� if B is not an isolated block, then b is contained in an end

block.
Case 1.1: p = 0

� d = q unless G is edgeless, in which case d = q − 1.
Consequently, d − 1 < q + �p/2�.

� q� ≤ q

� If q� = q − 1, then p� = p = 0.
� If q� = q − 2, then p� = p + 2 = 2.

In either case q� + �p�/2� = q + �p/2� − 1. Hence h� = h − 1.
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Case 1.2: p > 0
� There is an articulation x such that d(x : G ) = d .
� It follows d � = d − 1.

As in case 1.1, q� + �p�/2� = q + �p/2� − 1. Hence h� = h − 1.
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Case 2: G is connected. Since G is not biconnected, q = 0. Thus
h = h(G ) = max{d − 1, �p/2�}. Furthermore, if G � is obtained
from G by adding an arbitrary edge, then q(G �) = q = 0.

� If d − 1 < �p/2�, then adding an edge connecting two non
articulation vertices in two distinct end blocks of G results in a
graph G � with p� = p(G �) = p − 2. It follows h� = h − 1.

For the remaining case d − 1 ≥ �p/2� some preparation is needed.

Let u be an articulation of G and A1, . . . ,Ak the components of
G − u. If F is an end block of G , then there is exactly one
component Ai of G − u such that Ai contains F − u. Conversely,
for any component Ai there is at least one end block F such that
Ai contains F − u. Let ai denote the number of end blocks F such
that Ai contains F − u. Clearly, a1 + · · ·+ ak = p and ai ≥ 1 for
all i = 1, . . . , k .
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Suppose that d(u : G )− 1 = d − 1 ≥ �p/2�. Since
a1 + · · ·+ ad = p and ai ≥ 1 for all i = 1, . . . , d , it follows that
max{ai | i = 1, . . . , d} ≤ p − (d − 1). This implies that

� max{ai | i = 1, . . . , d} ≤ �p/2�, and that
� max{ai | i = 1, . . . , d} < �p/2� if d − 1 > �p/2�, or, if

d − 1 = �p/2� and p is odd. Thus
max{ai | i = 1, . . . , d} = �p/1� if and only if d − 1 = �p/2�
and p is even. We also conclude that in this case exactly one
ai is p/2 and all other ai ’s are one.
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Let y be an articulation of G different from u such that
d(y : G ) = d = d(x : G ). Assume w.l.o.g. that y is contained in
A1. Let B1, . . . ,Bd be the components of G − y , and let b1, . . . , bd
be the number of end blocks F such that Bi contains F − u.
Suppose that u is contained in B1. Then b1 ≥ a2 + · · ·+ ad and
a1 ≥ b2 + · · ·+ bd . Hence, d(y : G ) ≤ 1 + b2 + · · ·+ bd ≤ 1 + a1.
Consequently, d(y : G )− 1 = d(u : G )− 1 = d − 1 ≥ �p/2� implies
that a1 = b1 = �p/2� and d(y : G ) = d(u : G ) = d = �p/2�. In
this case is a1 = b2 + · · ·+ bd . It follows that B1, . . . ,Bd are
exactly the end blocks contained in A1. Furthermore, it follows that
a2 = ... = ad = b2 = ... = bd = 1 and no Ai with i �= 1 can
contain an articulation v with d(v : G )− 1 = d − 1 = �p/2�. We
conclude that adding an edge connecting a non articulation vertex
in an end block that intersects A1 with one in an end block
intersecting A2 (or any other Ai with i �= 1) results in a graph G �

with d � = d(G �) = d − 1 and p� = p(G �) = p − 2, i.e.
h� = h(G �) = h − 1. (Note that this is also true if u is the only
articulation with d(u : G )− 1 = d − 1 = �p/2�. )
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