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Network Algorithms
Chapter 2

Modeling Network Design Problems
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A Simple Network Design Example

 Consider the example above with three nodes and the demands as 
specified between the nodes

 An intuitive option to satisfy the demands could be to install one T1 link 
(1.54 Mbps) between each node

 In this case, link utilization would be 300Kbps / 1.54 Mbps ~ 19.5% on 
each link

 However, we could also only install two links (1-2 and 1-3) and have 
traffic between nodes 2 and 3 routed over node 1

 Link utilization would be ~ 39% in this case, which is still low enough
 Advantage: this would require only 2/3 of link installation cost
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Modeling Design Problems in Link-Path Formulation (1)

 We consider again a simple 
network, this time with links 
between each node

 Let us assume that we have 
undirected demands 
between nodes:

 1 and 2: 

 1 and 3:

 2 and 3:
 See on the right all possible 

paths between nodes
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Modeling Design Problems in Link-Path Formulation (2)

 The demand between nodes 1 and 2, denoted as <1, 2> can be 
routed over two possible paths: 1-2 and 1-3-2

 We use    with appropriate indices to denote the unknown demand 
path-flow variables to specify the following constraints:

 Furthermore, all path-flows are non-negative:            for all paths
 We also need to consider link capacities denoted with
 In our example three path-flows make use of the link 1-2:

x̂

ĉ
0ˆ x
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Modeling Design Problems in Link-Path Formulation (3)

 In a similar way, we obtain the following two inequalities:

 Let us further assume that the capacities of the first two links is 10 and 
the third link is 15:

 All in all, we obtain the following set of constraints:
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Modeling Design Problems in Link-Path Formulation (4)

 In fact, this system has multiple (continuously many) solutions and 
defines the set of all feasible solutions, i.e. feasible flows

 This raises the question, which specific feasible solution is of best 
interest?

 However, this depends on what is the goal of our network design, e.g.:
 Minimize the total routing cost (if links are annotated with a link 

cost)
 Minimize congestion of the most congested link

 Let us assume, we would like to minimize the total routing cost and the 
cost of routing one unit of traffic over one link is set to 1 for all links

 This results in the following objective function:

 Note that flows routed over two links are weighted with factor 2

x̂
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Modeling Design Problems in Link-Path Formulation (5)

 All in all, we have formulated the following optimization problem 
(Problem 1):
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Modeling Design Problems in Link-Path Formulation (6)

 Such an optimization task is called a multi-commodity flow problem
 The term multi-commodity comes from the fact that 

 there are multiple demands (or commodities) 
 which need to be routed in the network (to be satisfied) and
 which compete for available link capacities (resources)

 As all constraints and the optimization function are linear, this is also 
known as a linear programming problem

 The way we formulated the problem is called the link-path 
formulation of the problem

 In our simple example, the optimal solution (marked with a * in 
superscript) is easy to find, as the cost of multi-link paths is higher 
than on single link paths and our demands can be satisfied by using 
only direct links:

 The total cost of this solution is: 
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Modeling Design Problems in Link-Path Formulation (7)

 In most cases, it is not as easy as this to find an optimal solution
 Let us, for example, consider a (rather strange) cost function that has 

twice the cost for using direct links than for paths over two links 
(in reality such situations sometimes occur in air travel networks):

 We are tempted to route all demand over two-link paths as they are 
cheaper than single-link paths
 However, this way we would exceed link capacities
 So, is there no solution to this problem?

 Of course there is, we have only changed the objective function, not 
the constraints, so the solution to the original problem is still feasible, 
even though not optimal

 Without explaining how to obtain it (will be done later), the optimal 
solution (with cost F = 25) is:
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Modeling Design Problems in Link-Path Formulation (8)

 From this, we can learn two important lessons:
 Changing the objective function usually affects the optimal solution 

to a problem, and can have significant impact on the difficulty of 
finding it (sometimes quite dramatically!)

 We need to formulate the right goal (objective function) for a 
particular network – otherwise our optimal solution might not be 
meaningful

 So far, we have used the notions of links and paths to describe the 
network optimization problem (thus the name link-path formulation)

 Link-path formulation is appropriate for networks with undirected links 
as well as with directed links

 Next, we will look at another way to represent network optimization 
problems
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Modeling Design Problems in Node-Link Formulation (1)

 We assume now that links and demands are directed
 Consider a fixed demand pair and a fixed node
 Instead of tracing all path flows realizing the demand, we consider the 

total link flow for the demand on each link (many of these flows will be 
zero)

 If we look at this from the point of view of a fixed node that is not an 
end point of the flow
 we see flows coming in and going out of that node
 the total incoming flow is equal to the total outgoing flow (flow 

conservation law)
 If you consider the source node of a demand, the sum of the outgoing 

flows minus the sum of incoming flows is equal to the demand
 Similar, for a sink node the sum of incoming flows minus the sum of 

outgoing flows is equal to the demand volume
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Modeling Design Problems in Node-Link Formulation (2)

 Back to our example network, we substitute each undirected link with 
two directed links (“arcs”): 1-2 is substituted by 12 and 21

 Likewise, we need to replace our undirected demands by directed 
demands:
 In this example, we do not consider both directions of the 

demands: 
<1, 2> is replaced by <1:2>

 For this demand, there are two outlets: 12 and 13
 We represent the flows to be allocated on these links with

                         (flow over arc 12 for demand <1:2>, and flow 
over arc 13 for demand <1:2>)

12,1312,12
~and~ xx
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Modeling Design Problems in Node-Link Formulation (3)

 Consider demand <1:2>
 For the source of the flow, node 1, we obtain the following equation:

 Node 3 is a transit node for the flow:

 Node 2 is the sink of the flow:
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Modeling Design Problems in Node-Link Formulation (4)

 In our equations we explicitly also included potential “backflows”, e.g. 
flows                           run in opposite directions

 Having such opposite flows would not make much sense from a 
practical view, so that we can safely set the “back directions” to 0

 Thus, we obtain the following flow conservation equalities for 
demand <1:2>:

 This system of equations is dependent and one equation can be 
eliminated (this is a general fact)

 For demand <1:3> we obtain the following equations:
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Modeling Design Problems in Node-Link Formulation (5)

 For demand <2:3> we obtain the following equations:

 Furthermore, we have to model capacity constraints of our links, e.g. 
all flows on link 12 should not exceed its capacity:

 We can write down similar equations for all other capacity constraints
 If we want to minimize the overall routing cost for realizing the flows 

with cost of routing one unit of flow over one link set to 1 (like in our 
first link-path formulation), we use the following objective function:
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Modeling Design Problems in Node-Link Formulation (6)

minimize                                                                                 (Problem 2)

subject to
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Reflection on Notations

 So far, we have used a certain notation to represent nodes, links, 
demands and path flows from a node-identifier based perspective

 While this works well for small examples, in larger networks this may 
become cumbersome:
 Between some pairs of nodes (i, j) there might be no demand:  
 Between most pairs of nodes (i, j) there will be no links: 
 In a node-identifier based notation, all such cases have to be explicitly 

included in the problem formulation
 Furthermore, the notation of candidate paths is rather clumsy:

 All nodes in a candidate path are included in the variables indices
 This allows for no clean notation of candidate paths in case that candidate 

paths with different lengths have to be supported
 The notation can not handle multiple links between a given pair of nodes 

(multi-graph case) 
 Likewise handling multiple demands between a pair of nodes is impossible
 There is virtually no compact way of writing summations over paths
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Link-Demand-Path-Identifier-Based Notation (1)

 In order to avoid these problems, we develop yet another notation:
 Each non-zero demand <i, j> (undirected) or <i:j> (directed) is explicitly 

assigned a demand label index (assignments are stored in a table)

 The same is done with all existing links (v, w)

 Candidate paths for each demand d are numbered from 1 to Pd with Pd 
being the total number of candidate paths for demand d

 E.g., for the demand h1 = <1, 2> we have a total number of P1 = 2 
candidate paths 

 The respective path flow variables are indexed by composed indices 
consisting of the demand identifier and the candidate path identifier
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Link-Demand-Path-Identifier-Based Notation (2)

 Thus, demand and capacity labels each have a single index
 This notation allows us to rewrite our original problem to  (Problem 3):
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Link-Demand-Path-Identifier-Based Notation (3)

 Note, that this formulation still represents the original problem 
(Problem 1) and both are given in link-path representation. The only 
difference lies in the simplified indexing of the variables and constants.

 More definitions on notation:
 An undirected demand between nodes v and w is denoted as <v,w>
 A directed demand between nodes v and w is denoted as <v:w>
 An undirected link between nodes v and w is denoted as v-w
 A directed link between nodes v and w is denoted as vw
 An n-hop path between two nodes v1 and vn+1 is an interlacing sequence of 

nodes and links (v1, e1, v2, e2, …, vn, en, vn+1)

 In “node representation” we write undirected paths as v1-v2-…-vn+1 and 
directed paths as v1v2…vn+1 

 In “link representation” we write undirected paths as {e1, e2, …, en} and 
directed paths as  (e1, e2, …, en)

 We denote nodes with v, links with e, demands with d and paths with p
 The total numbers of nodes, links, demands, paths is given by V, E, D, P
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Dimensioning Problems (1)

 Consider the following example of a network with four nodes, in which 
there exist demands between three nodes and one node (node 4) is a 
pure transit node

Demand

Network

1d

2v

3d

2d

1v 3v

2v

2e 1e

4v

1v
5e 3v

4e 3e
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Dimensioning Problems (2)

 The figure on the preceding slide shows in the upper part the demand 
view of the dimensioning problem and in the lower part the network 
view:
 Demand 1 is between nodes 1 and 2 etc.
 Link 1 is between nodes 2 and 3 
 Both links and demands are undirected (no arrows)
 As node 4 has no demand (neither as source nor as sink), it is not shown 

in the upper part of the figure
 Concerning link capacities:

 When a capacity for a link e is given, we usually represent it by constant ce 

 However, in a dimensioning problem capacities are unknown and will 
therefore be represented by variables ye 

 Demand and link capacities are represented in generic demand volume 
units (DVU) or link capacity units (LCU), respectively 

 You can think of DVU and LCU in terms of pps or Mbps, but it really does 
not matter as long as all units are equal 
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Dimensioning Problems (3)

 The refined view on the left adds 
further details to our problem:
 Volumes of individual demands hi 

are specified
 Costs ξi of links ei are given

 Potential candidate paths for 
demands Pij are specified 

 Note that demand 1 has only one 
candidate path P11 even if others 
would be possible

 Demands 2 and 3 have 2 candidate 
paths each (P21, P22 and P31, P32)

 The flow on path Pij is denoted by 
the path flow variable xij 
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Dimensioning Problems (4)

 This allows us to write the following equations for path flow variables:

 If we denote the number of candidate paths for demand d with Pd, we 
can – due to our link-demand-path-identifier based notation – actually 
write these equations in a more concise and uniform way as:

 When it is clear that we sum over all candidate paths for demands:
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Dimensioning Problems (5)

 We call the vector of all flows (path flow variables) the flow allocation 
vector or short flow vector: 

 In this notation, we represent vectors with bold letters x and scalar 
components of vectors with normal letters x

 The only exception of this rule is the value of the objective function F 
which is a scalar, but nevertheless represented with a bold letter

 We need a second set of constraints for modeling that for each link e 
its capacity ce or ye is not exceeded

 Recall, if the capacities are known, they are specified as constants ce 

 If capacities are unknown (dimensioning problem) we write them as 
variables ye 
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Dimensioning Problems (6)

 For our four node network example, we obtain the following capacity 
constraints:

 In order to write down the capacity constraints we need to know the 
relationship between links and paths (link-path incidence relation        )



27Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (7)

 The table for the link-path incidence relation          contains a 1 
whenever a link e is used for satisfying a demand d over a path p, and 
0 when the link is not used in that path

 Thus, it is defined as:

 Note, that        is not a variable, as it is already fixed which paths are 
to be considered as candidate paths for demands d 

 This notation allows us to write the load      on link e in a compact way:

 With this, we can specify our capacity constraints as:
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Dimensioning Problems (8)

 Please note the difference of the actual link loads      (determined by 
path flow variables xdp of a solution) and the capacity variables     
(computed as part of the solution)

 If we denote the cost of a link e by ξe and we are interested in 
minimizing the capacity cost, we obtain the following objective 
function:

 The general formulation of our simple dimensioning problem is:
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Dimensioning Problems (9)

 All in all, we obtain the following problem formulation for our example  
(Problem 4):
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Dimensioning Problems (10)

 Even though in linear programming all variables are usually written on 
the left-hand side of equations or constraints, we keep the yi on the 
right hand side for clarity of presentation

 Let us compare Problem 4 to our first example Problem 1:
 In Problem 1, we minimized the total routing cost in a network for which 

link capacities were given to carry a given demand using flow variables
 In Problem 4, we minimized the total link capacity cost under the constraint 

that the network needs to meet a given traffic demand. Link capacities 
were not given, but variables for which optimal values were to be 
computed

 Problems that have variable link capacities are referred to as 
dimensioning problems or uncapacitated problems 

 When variables can take continuous values, then for any optimal 
solution the capacity constraints become equalities
 For each link, its load is equal to its capacity because otherwise we would 

have to pay for unused capacity (implying the solution is not optimal)
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Dimensioning Problems (11)

 This figure shows a set of values for 
the flow variables xij 

 If we calculate the link loads for this 
flow allocation vector, we obtain:

 The total cost for this feasible 
solution according to our cost 
function is: 

 It is easy to see that this is not an 
optimal solution, as it uses the 
rather expensive path P22 (cost 4) 
for parts of demand h2 which could 
also completely be routed over the 
cheaper path P21 (cost 1)
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Dimensioning Problems (12)

 In general, the cost of a path Pdp is given by:

 In our example, it is profitable to move all the flow from path P22 to 
path P21 which results in a saving of x22 · (ζ22 - ζ21)= 5 · 3 = 15

 Note that path flow x11 is trivially optimal as there is only one 
(considered) candidate path P11 for demand h1 

 Also, the two flows x31 and x32 are optimal as they both have the same 
cost ζ31 = ζ32 = 2

 Thus for demand 3 any split of its volume h3 = 10 among the two 
available paths leads to an optimal solution

 These considerations lead to describing the optimal solution (x*, y*) in 
the following way (see next slide)
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Dimensioning Problems (13)

 Thus, we can make the following statement in regard to obtaining the 
optimal solution to problems like Problem 4:

Shortest-Path Allocation Rule for Dimensioning Problems:

For each demand, allocate its entire demand to its shortest path with 
respect to link costs and candidate paths.

If there is more than one shortest path for a given demand, then the 
demand volume can be arbitrarily split among the shortest paths.
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Dimensioning Problems (14)

 Note that the optimal solution to Problem 4 is not unique, but there are 
many solutions with the same optimal cost (F = 100)

 While the shortest path rule works for the simple dimensioning 
problem considered so far, this must not necessarily be the case if 
further constraints are to be taken into account

 The list of considered candidate paths has a determining influence on 
the optimal solution:
 Let us assume that we also have P12 = (e1, e5) with overall path cost 

ξe5 + ξe5 = 3 as a candidate path for demand 1

 In this case path P12 is 1 unit cheaper than P11 and we can save 15 units of 
cost by routing all traffic of demand 1 over path P12 

 Starting with a “good” set of candidate paths is thus essential for obtaining 
good solutions, so that “path preprocessing”, i.e. initializing and 
augmenting path lists is an important part of the network design process
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Dimensioning Problems (15)

 There are cases, in which further constraints are imposed on the 
problem:
 One example are so called non-bifurcated flows, in which each demand 

has to be satisfied by exactly one path flow
 We could as well imagine cases where demands have to be partitioned 

among several (node-disjoint) paths in order to allow for graceful 
degradation in case of node or link failures

 When link capacities are given we speak of capacitated design 
problems 

 Depending on demands and capacities it may happen that non-bifurcated 
solutions are not possible even though bifurcated solutions exist
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Capacitated Problems

 In some cases link capacities are given, and we are looking for a 
solution that satisfies the specified demands while staying within 
capacity bounds

 Such problems can be formulated in the following general notation 
(Problem 5):

 Sometimes there might even be no objective function, so that any 
solution that satisfies the constraints is acceptable

 If flow routing cost is to be minimized, these problems are similar to 
problem 1 
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Shortest-Path Routing (1)

 Shortest-path routing in network design means, that we have to 
anticipate that demands will only be routed on their shortest paths

 The path “length” is determined by adding up link costs we according 
to some weight system w = (w1, w2, …, wE)

 Let us assume the weight system 
(1, 3, 1, 2, 4) for our example network
 With shortest-path routing the entire 

demands would be routed over their 
respective shortest path:

 However, if we assume capacities
c = (5, 10, 10, 5, 30) this flow vector
x(w) is not feasible, as link load would
be y(w) = (25, 0, 35, 35, 0)

2v
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Shortest-Path Routing (2)

 Clearly, if we change the link capacities to be equal to the computed 
link loads of the shortest-path routing solution, this solution becomes 
(trivially) feasible

 In general, however, we are interested in a solution that allows to 
respect the given link capacities and instead looks for the appropriate 
weight system

Single Shortest Path Allocation Problem 
For given link capacities c and demand volumes h, find a link weight 
system w such that the resulting shortest paths are unique and the 
resulting flow allocation vector is feasible

 This usually is a complex problem:
 A non-bifurcated solution may not exist even when bifurcated solutions do
 Non-bifurcated solutions are usually hard to determine (if they exist)
 Even when a single-path flow solution exists, it might be impossible to find 

a weight system to induce this solution
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Shortest-Path Routing (3)

 Consider the following network:
 Demands d1 between nodes 1 and 7, and 

demand d2 between nodes 2 and 6 both have 
volume h1 = h2 = 1

 All link capacities ci = 1

 Two candidate paths for d1: 
P11 = 1357 and P12 = 13457

 Two candidate paths for d2: 
P21 = 23456 and P22 = 2356

 We are looking for a non-bifurcated (single-
path) solution to Problem 5 (link capacities 
given, no objective function)

 x11 = 1 and x21 = 1 is a valid solution

 However, trying to find a weight system to 
induce this solution is not obvious (actually, 
it is not possible for single shortest paths) 

 1

 7

3

5

6

4

2
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Shortest-Path Routing (4)

 Let us go back to our four node network
and set all link weights to 1 (like in 
standard Internet routing)

 Consider demand d1 between nodes 
2 and 1: there are two shortest 
paths P11 = {2, 4} and P12={1, 5}

 This raises the question over which path
the demand should be routed
 Often, a rule for splitting demand volumes among multiple shortest 

paths is desired
 One such rule, used in OSPF routing, is the “equal-cost multi-

path” rule (ECMP): for a fixed destination the goal of ECMP is to 
equally split the outgoing demand volume over all outgoing next 
hops with equal cost

2v

11 w

4v

1v 3v

12 w

13 w

15 w

14 w
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Shortest-Path Routing (5)

 However, this simple rule may fail if link 
weights are not set appropriately

 Assume that in the network on the left
all link weights wi = 1 
 there are 3 shortest paths from 6 to 7

 For the directed demand <6:7> paths
6137 and 6147 each carry 
25% and path 6257 carries 50%
of the traffic volume if ECMP is used

 As in OSPF routing is directional, the 
directed demand <7:6> is equally split 
to the three paths in opposite direction

 Determining weight systems under the ECMP rule encounters similar 
difficulties like when determining weight systems for the single-
shortest-path allocation case (~non-bifurcated)

6

5

2

7

43
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Fair Networks (1)

 In the Internet, traffic demands are often not fixed but elastic, that is 
each demand can consume any bandwidth assigned to its path

 In such cases, we have capacity constraints as in Problem 5, but no 
particular values hd for demands are assumed

 In order to deal with potential capacity bottlenecks, we are interested 
in assigning demand volumes such that fairness is assured among the 
different demands
 As an obvious initial solution, we could assign each demand volume on its 

lower bound
 If this does not satisfy capacity constraints, then there is no feasible 

solution at all
 However, if feasibility is assured, we would like to carry more than the 

minimum required bandwidth of demands while at the same time giving a 
fair share of bandwidth to all flows

 Furthermore, we want to understand implications of our assignments 
on network throughput (= sum of path flows xdp)
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Fair Networks (2)

 Consider the above example network with three nodes, three 
demands, only one candidate path per demand, and both link 
capacities being c1 = c2 = 1.5 

 The best-known general fairness criterion is Max-Min Fairness 
(MMF), also called equity:
 If no lower bounds are specified, assign the same maximal value to all 

demands 
 If there is still capacity left, assign the same maximal value to all demands 

that can still make use of that capacity

 Under MMF, we obtain x11 = x21 = x31 = 0.75    ( all capacity used)

1v  3v 2v 
1e  2e 

3d 

2d 1d 
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Fair Networks (3)

 Let us assume now, that c2 has been increased to 2:
 After the initial MMF allocation link 2 still has 0.5 LCU available
 As only demand 2 can make use of this unused capacity, we can increase 

h2 to 1.25

 Fair from the user’s point of view (nobody else can use this capacity)
 Let us look at network throughput:

 The first MMF solution leads to throughput x11 + x21 + x31 = 2.25

 The second MMF solution (with c2 = 2) leads to throughput 2.75

 A rather unfair solution (for c2 = 1.5) would be x11 = 1.5, x21 = 1.5, 
x31 = 0, leading to throughput 3.0

3d 

1v  3v 2v 

2d 1d 

5.11 c 22 c



45Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Fair Networks (4)

 This last unfair solution would be obtained if we used the objective 
function

 Clearly, setting all path flow variables of one flow to 0 is not desirable if 
we aim to assure some kind of fairness in the network
 However, if a demand is routed over a longer path, it uses more link 

resources than demands that are routed over shorter paths
 We would like to find a compromise between MMF and greedily 

maximizing network throughput:
 One such fair allocation principle is called Proportional Fairness (PF) and it 

is realized by maximizing the following logarithmic revenue function

with rd being the revenue associated with demand d 
(e.g. ri = 1 if all demands are of equal importance)

 Note, that this is not a linear function
 This function ensures that no demand is allocated an overall path flow sum 

of 0 and makes assigning (unfairly) high values “unattractive” 
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Fair Networks (5)

 The above PF problem can be solved by introducing a linear 
approximation of the logarithmic function and solving the resulting 
linear programming problem (explained later)

 Solving the MMF capacitated problem is more complicated:
 In general, it is not enough to find a flow allocation vector that 

maximizes the minimal flow Xd over all demands d

 If such a flow vector X is found then in general some link 
capacities might still be free and can be used to increase flow 
allocations for at least a subset of demands

 However, depending on the initial flow allocation vector, we may be 
able to extend some flows or not (leading to different overall 
network throughput)
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Fair Networks (6)

 Applying solution x1 leaves room 
for further increase in flow for 
demand 1
 In this case x1

12 = 1 can be 
additionally routed over path 
{1, 3}

 Applying solution x2 does not 
leave room for further 
improvement:
 Link 3 is exhausted, routing 

demand 2 over this link was not 
a good decision

 Remaining capacity of 
link 1 can not be used

 The final total flow allocation 
vector is X = (X1, X2) = (2, 1) 

   
   

1 1 1
11 21

2 2 2
11 21

: 1 2 , 1 1,4

: 1 1,3 , 1 2,3,4

Solution x x on path x on path

Solution x x on path x on path

 

 

1e 
1v  3v 

4e 
4v 

1 2c  4 1c 

3e 

2e 
2 1c 

2v 

1d 

2d 

3 2c 
13 c
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Topological Design (1)

 When installing a link in a network, usually a fixed cost has to be 
invested (e.g. cabling cost) independent of the capacity of the link

 In order to account for this, we have to model this “opening cost” 
in the objective function (which is to be minimized):

where the binary variable ue is 1 if link e is installed and 0 if not

 In order to force the capacity ye of link e to be 0 whenever the link e is 
not installed, we introduce the following additional constraints:
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Topological Design (2)

 Assume, that the installation 
costs    are  (50, 1, 1, 1, 50)

 Then the optimal network 
topology becomes a tree 
consisting of links {2, 3, 4} 
with link installation costs 3 
and capacity dependent costs 
summing up to 160

 The difficulty of solving such 
problems is considerable and 
comparable to the case of 
uncapacitated problems with 
modular links (= links of 
various fixed capacity values)

 A variation of such problems 
considers node locations

1 50 

151 h

2v

103 h

202 h

3v1v
2v

4v

1v 3v

1511 x
532 x

531 x

522 x

15 

34 
13 

12  21 

1521 x

1 50 

3 1 
4 1 

2 1 

5 50 
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Restoration Design (1)

 So far, we have considered the network to be in normal operational 
state, that is no link or node failure has been taken into account

 Let us now assume the following failure model:
 Links can be either fully functional or completely failed
 No more than one link fails at a time
 For our example network consisting of four nodes and five links, we can 

therefore model the following 6 failure states or failure situations: 
 In failure state 0 no link, in failure state s link s has failed (1 ≤ s ≤ 5)

 Suppose, we want to solve the restoration design problem 
(RDP) for our four network example (with two candidate paths 
for demand 1), so that all demands can be fully satisfied in all 
failure states:
 In order to account for failure situations, we introduce an 

additional index s to our path flow variables xdps referring now to 
that particular flow in case of failure state s

 E.g. for demand 1 we obtain:
(note that due to our assumptions S = E in this example) 
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Restoration Design (2)

 Furthermore, we have to 
reformulate our capacity 
constraints: 

 We introduce notation αes to 
denote if link e is up (1) or not 
(0) and obtain the following:

151 h

2v

103 h

202 h

3v1v
2v

4v

1v 3v

11P
32P 31P

22P

15 

34 

13 

12 
21 

21P

12P
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Restoration Design (3)

 If we can fully re-arrange flows, we obtain the following optimal flows:

 The optimum capacity y*
e of link e implied by the above flows is 

computed as the maximum load of the link e over all states s:

 This results in the optimal cost F* = 245
 Thus, a robust network can be considerably more expensive than the 

cheapest network without failure considerations (F* = 85)
 In this example, we obtained only non-bifurcated flows which must not 

always be the case
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Restoration Design (4)

 Assume the above network with two nodes, three links and one demand:
 If we allow for bifurcated solutions we obtain cost F* = 4.5

XX X

(1.5) (1.5) (1.5) (1.5) (1.5) (1.5) (1.5)(1.5) (1.5) (1.5) (1.5)

1.5 1.5 1.5 1.5 1.5 1.51 1 1 0 0 0

(1.5)capacities

flows

s
sss

10 3demand h  11 3demand h  12 3demand h  13 3demand h 

0s  1s  2s  3s 

t t
tt
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Restoration Design (5)

 For the optimal non-bifurcated solution we obtain cost F* = 6
 Our example considered the path protection mechanism

(other mechanisms are possible, e.g. link protection)

XX X

(0) (3) (0) (3) (0) (3) (0)(3) (3) (0) (3)

3 0 0 3 0 30 3 0 0 0 0

(3)capacities

flows

s
sss

10 3demand h  11 3demand h  12 3demand h  13 3demand h 

0s  1s  2s  3s 

t t
tt
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Intra-Domain Traffic Engineering for IP-Networks (1)

 Let us consider now, optimizing intra-domain routing in the Internet
 Intra-domain routing is operated by an ISP that has control over the 

network topology, routing algorithm, and link weight system
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Intra-Domain Traffic Engineering for IP-Networks (2)

 Due to either contracted service level agreements or experience 
obtained via measurements the ISP knows the demands between 
nodes of his network

 A common objective of intra-domain routing optimization is to minimize 
the (average) delay experienced by data packets
 Recall the relationship between link utilization and average delay
 Thus, we would like to minimize the maximum utilization over all links

 A commonly used intra-domain routing protocol is OSPF which is 
based on Dijkstra’s algorithm:
 Dijkstra’s algorithm calculates for each destination the shortest path 

according to some weight system w 
 Thus, we have to solve a variant of a shortest path problem, that is 

identifying a weight system w: 
 such that the maximum link utilization of our network is minimized,
 while satisfying all given demands, and 
 staying within capacity constraints



57Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Intra-Domain Traffic Engineering for IP-Networks (3)

 How can we formulate this problem as a multi-commodity flow 
problem?
 We know our demands hd and link capacities ce

 The sum over all path flows for a given demand must meet the demand:

 Furthermore, the link load     on link e induced by the link metric system w 
should not be greater than the link capacity:

 The maximum r over all link utilizations can be computed as follows:

 We now need to ensure that all link loads stay below 
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Intra-Domain Traffic Engineering for IP-Networks (4)

 All in all, we obtain the following optimization problem:

 For this to work, we need to find k shortest candidate paths for every 
attempted weight system vector w 

 If r* < 1 then no link will be overloaded (congestion is likely to occur if r* 
is close to 1)
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Tunnel Optimization for MPLS Networks (1)

 Multi-Protocol Label Switching (MPLS) is an approach that introduces 
virtual connections into packet switched networking in order to:
 speed up processing times in routers, and to 
 allow for traffic engineering
 For details on basic MPLS principles and protocol functions please refer 

also to the respective chapter of the Telematics 2 course
 In order to transport traffic in an MPLS network, a so-called label 

switched path needs to be set up from the source (ingress MPLS 
node) to the destination (egress MPLS node)

 In order to allow for “similar” traffic to be handled in an aggregated 
way, tunnels can be set up (by making use of label stacking)

 Tunneling offers promising traffic engineering capabilities:
 put traffic with same QoS characteristics into one tunnel and treat this in a 

similar fashion
 simple re-routing in case of local congestion/link failures
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Tunnel Optimization for MPLS Networks (2)

 The figure above illustrates tunnels in an MPLS network consisting of 
label edge routers (LER) and label switch routers (LSR)

 Note the tunnel aggregation inside the network

LER

LER

LER

LER

LSR

LSR

LSR

LSR
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Tunnel Optimization for MPLS Networks (3)

 However, in order not to overload routers with too many tunnels 
(leading to high processing overhead), it is desirable to limit the 
number of tunnels per router and/or link

 Thus, we face the following optimization challenge:
 How to carry different traffic classes in an MPLS network through the 

creation of tunnels in a way that the number of tunnels per node/link is 
minimized and the load is balanced among routers/links?

 We use basically the same notation as before with one difference: 
 The path-flow variable xdp now denotes the fraction of demand hd that is 

routed over path Pdp 

 Thus, we obtain the demand constraint:
 As we are not interested in obtaining path-flows that carry a very low 

fraction, we: 
 require a lower bound ε for the fraction xdp, and for this 

 introduce the binary variables udp that are set to 1 if the lower bound is 
satisfied and 0 otherwise
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Tunnel Optimization for MPLS Networks (4)

 We need two constraints to model this:

 The book (Pioro, page 83) gives the first formula as:

Seems to be a typo…

 Furthermore, we have capacity feasibility constraints

 The number of tunnels on link e will be:

 We aim to minimize the number r representing the maximum number 
of tunnels over all links
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Tunnel Optimization for MPLS Networks (5)

 Altogether, we obtain the following optimization problem:
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Tunnel Optimization for MPLS Networks (6)

 This problem has both continous and discrete variables while the 
constraints and the objective function are linear

 It is an example for a mixed-integer linear programming problem (MIP)
 Finding exact solutions for MIP problems is more difficult than for 

(plain) linear optimization problems:
 Established techniques are branch-and-bound, and branch-and-cut (to be 

treated later)
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Summary

 This chapter has introduced various simple network design problems:
 Minimizing routing cost 
 Uncapacitated network dimensioning
 Shortest-path routing
 Fair networks
 Topological design
 Restoration design
 Delay minimization in IP networks with shortest path routing
 Minimizing the number of tunnels per link/node in MPLS networks

 We also introduced a notation to formulate such problems as multi-
commodity flow problems:
 Link-path formulation 
 Node-link formulation
 Refined notation to be able to deal with non-trivial examples

 We are now all curious how to solve these problems!   :-)


