
1Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Network Algorithms
Chapter 2

Modeling Network Design Problems

2Network Algorithms (WS 22/23): 02 – Modeling Design Problems

A Simple Network Design Example

 Consider the example above with three nodes and the demands as
specified between the nodes

 An intuitive option to satisfy the demands could be to install one T1 link
(1.54 Mbps) between each node

 In this case, link utilization would be 300Kbps / 1.54 Mbps ~ 19.5% on
each link

 However, we could also only install two links (1-2 and 1-3) and have
traffic between nodes 2 and 3 routed over node 1

 Link utilization would be ~ 39% in this case, which is still low enough
 Advantage: this would require only 2/3 of link installation cost

1

3
300 Kbps

300 Kbps 300 Kbps

2

3Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Link-Path Formulation (1)

 We consider again a simple
network, this time with links
between each node

 Let us assume that we have
undirected demands
between nodes:

 1 and 2:

 1 and 3:

 2 and 3:
 See on the right all possible

paths between nodes

1 2

3

21

3

2

3

1

3

1

12

2

3

1

3

2

51̂2 h

7ˆ
13 h

8ˆ
23 h

4Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Link-Path Formulation (2)

 The demand between nodes 1 and 2, denoted as <1, 2> can be
routed over two possible paths: 1-2 and 1-3-2

 We use with appropriate indices to denote the unknown demand
path-flow variables to specify the following constraints:

 Furthermore, all path-flows are non-negative: for all paths
 We also need to consider link capacities denoted with
 In our example three path-flows make use of the link 1-2:

x̂

ĉ
0ˆ x

5Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Link-Path Formulation (3)

 In a similar way, we obtain the following two inequalities:

 Let us further assume that the capacities of the first two links is 10 and
the third link is 15:

 All in all, we obtain the following set of constraints:

6Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Link-Path Formulation (4)

 In fact, this system has multiple (continuously many) solutions and
defines the set of all feasible solutions, i.e. feasible flows

 This raises the question, which specific feasible solution is of best
interest?

 However, this depends on what is the goal of our network design, e.g.:
 Minimize the total routing cost (if links are annotated with a link

cost)
 Minimize congestion of the most congested link

 Let us assume, we would like to minimize the total routing cost and the
cost of routing one unit of traffic over one link is set to 1 for all links

 This results in the following objective function:

 Note that flows routed over two links are weighted with factor 2

x̂

7Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Link-Path Formulation (5)

 All in all, we have formulated the following optimization problem
(Problem 1):

8Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Link-Path Formulation (6)

 Such an optimization task is called a multi-commodity flow problem
 The term multi-commodity comes from the fact that

 there are multiple demands (or commodities)
 which need to be routed in the network (to be satisfied) and
 which compete for available link capacities (resources)

 As all constraints and the optimization function are linear, this is also
known as a linear programming problem

 The way we formulated the problem is called the link-path
formulation of the problem

 In our simple example, the optimal solution (marked with a * in
superscript) is easy to find, as the cost of multi-link paths is higher
than on single link paths and our demands can be satisfied by using
only direct links:

 The total cost of this solution is:

9Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Link-Path Formulation (7)

 In most cases, it is not as easy as this to find an optimal solution
 Let us, for example, consider a (rather strange) cost function that has

twice the cost for using direct links than for paths over two links
(in reality such situations sometimes occur in air travel networks):

 We are tempted to route all demand over two-link paths as they are
cheaper than single-link paths
 However, this way we would exceed link capacities
 So, is there no solution to this problem?

 Of course there is, we have only changed the objective function, not
the constraints, so the solution to the original problem is still feasible,
even though not optimal

 Without explaining how to obtain it (will be done later), the optimal
solution (with cost F = 25) is:

10Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Link-Path Formulation (8)

 From this, we can learn two important lessons:
 Changing the objective function usually affects the optimal solution

to a problem, and can have significant impact on the difficulty of
finding it (sometimes quite dramatically!)

 We need to formulate the right goal (objective function) for a
particular network – otherwise our optimal solution might not be
meaningful

 So far, we have used the notions of links and paths to describe the
network optimization problem (thus the name link-path formulation)

 Link-path formulation is appropriate for networks with undirected links
as well as with directed links

 Next, we will look at another way to represent network optimization
problems

11Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Node-Link Formulation (1)

 We assume now that links and demands are directed
 Consider a fixed demand pair and a fixed node
 Instead of tracing all path flows realizing the demand, we consider the

total link flow for the demand on each link (many of these flows will be
zero)

 If we look at this from the point of view of a fixed node that is not an
end point of the flow
 we see flows coming in and going out of that node
 the total incoming flow is equal to the total outgoing flow (flow

conservation law)
 If you consider the source node of a demand, the sum of the outgoing

flows minus the sum of incoming flows is equal to the demand
 Similar, for a sink node the sum of incoming flows minus the sum of

outgoing flows is equal to the demand volume

12Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Node-Link Formulation (2)

 Back to our example network, we substitute each undirected link with
two directed links (“arcs”): 1-2 is substituted by 12 and 21

 Likewise, we need to replace our undirected demands by directed
demands:
 In this example, we do not consider both directions of the

demands:
<1, 2> is replaced by <1:2>

 For this demand, there are two outlets: 12 and 13
 We represent the flows to be allocated on these links with

 (flow over arc 12 for demand <1:2>, and flow
over arc 13 for demand <1:2>)

12,1312,12
~and~ xx

13Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Node-Link Formulation (3)

 Consider demand <1:2>
 For the source of the flow, node 1, we obtain the following equation:

 Node 3 is a transit node for the flow:

 Node 2 is the sink of the flow:

12,32
~x

2

3

1
12,13

~x 12,32
~x

12ĥ

12,12
~x

12ĥ

12,13
~x

12,12
~x

14Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Node-Link Formulation (4)

 In our equations we explicitly also included potential “backflows”, e.g.
flows run in opposite directions

 Having such opposite flows would not make much sense from a
practical view, so that we can safely set the “back directions” to 0

 Thus, we obtain the following flow conservation equalities for
demand <1:2>:

 This system of equations is dependent and one equation can be
eliminated (this is a general fact)

 For demand <1:3> we obtain the following equations:

15Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Node-Link Formulation (5)

 For demand <2:3> we obtain the following equations:

 Furthermore, we have to model capacity constraints of our links, e.g.
all flows on link 12 should not exceed its capacity:

 We can write down similar equations for all other capacity constraints
 If we want to minimize the overall routing cost for realizing the flows

with cost of routing one unit of flow over one link set to 1 (like in our
first link-path formulation), we use the following objective function:

16Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Modeling Design Problems in Node-Link Formulation (6)

minimize (Problem 2)

subject to

17Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Reflection on Notations

 So far, we have used a certain notation to represent nodes, links,
demands and path flows from a node-identifier based perspective

 While this works well for small examples, in larger networks this may
become cumbersome:
 Between some pairs of nodes (i, j) there might be no demand:
 Between most pairs of nodes (i, j) there will be no links:
 In a node-identifier based notation, all such cases have to be explicitly

included in the problem formulation
 Furthermore, the notation of candidate paths is rather clumsy:

 All nodes in a candidate path are included in the variables indices
 This allows for no clean notation of candidate paths in case that candidate

paths with different lengths have to be supported
 The notation can not handle multiple links between a given pair of nodes

(multi-graph case)
 Likewise handling multiple demands between a pair of nodes is impossible
 There is virtually no compact way of writing summations over paths

18Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Link-Demand-Path-Identifier-Based Notation (1)

 In order to avoid these problems, we develop yet another notation:
 Each non-zero demand <i, j> (undirected) or <i:j> (directed) is explicitly

assigned a demand label index (assignments are stored in a table)

 The same is done with all existing links (v, w)

 Candidate paths for each demand d are numbered from 1 to Pd with Pd
being the total number of candidate paths for demand d

 E.g., for the demand h1 = <1, 2> we have a total number of P1 = 2
candidate paths

 The respective path flow variables are indexed by composed indices
consisting of the demand identifier and the candidate path identifier

19Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Link-Demand-Path-Identifier-Based Notation (2)

 Thus, demand and capacity labels each have a single index
 This notation allows us to rewrite our original problem to (Problem 3):

20Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Link-Demand-Path-Identifier-Based Notation (3)

 Note, that this formulation still represents the original problem
(Problem 1) and both are given in link-path representation. The only
difference lies in the simplified indexing of the variables and constants.

 More definitions on notation:
 An undirected demand between nodes v and w is denoted as <v,w>
 A directed demand between nodes v and w is denoted as <v:w>
 An undirected link between nodes v and w is denoted as v-w
 A directed link between nodes v and w is denoted as vw
 An n-hop path between two nodes v1 and vn+1 is an interlacing sequence of

nodes and links (v1, e1, v2, e2, …, vn, en, vn+1)

 In “node representation” we write undirected paths as v1-v2-…-vn+1 and
directed paths as v1v2…vn+1

 In “link representation” we write undirected paths as {e1, e2, …, en} and
directed paths as (e1, e2, …, en)

 We denote nodes with v, links with e, demands with d and paths with p
 The total numbers of nodes, links, demands, paths is given by V, E, D, P

21Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (1)

 Consider the following example of a network with four nodes, in which
there exist demands between three nodes and one node (node 4) is a
pure transit node

Demand

Network

1d

2v

3d

2d

1v 3v

2v

2e 1e

4v

1v
5e 3v

4e 3e

22Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (2)

 The figure on the preceding slide shows in the upper part the demand
view of the dimensioning problem and in the lower part the network
view:
 Demand 1 is between nodes 1 and 2 etc.
 Link 1 is between nodes 2 and 3
 Both links and demands are undirected (no arrows)
 As node 4 has no demand (neither as source nor as sink), it is not shown

in the upper part of the figure
 Concerning link capacities:

 When a capacity for a link e is given, we usually represent it by constant ce

 However, in a dimensioning problem capacities are unknown and will
therefore be represented by variables ye

 Demand and link capacities are represented in generic demand volume
units (DVU) or link capacity units (LCU), respectively

 You can think of DVU and LCU in terms of pps or Mbps, but it really does
not matter as long as all units are equal

23Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (3)

 The refined view on the left adds
further details to our problem:
 Volumes of individual demands hi

are specified
 Costs ξi of links ei are given

 Potential candidate paths for
demands Pij are specified

 Note that demand 1 has only one
candidate path P11 even if others
would be possible

 Demands 2 and 3 have 2 candidate
paths each (P21, P22 and P31, P32)

 The flow on path Pij is denoted by
the path flow variable xij

151 h

2v

103 h

202 h

3v1v
2v

4v

1v 3v

11P
32P 31P

22P

15

34

13

12
21

21P

24Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (4)

 This allows us to write the following equations for path flow variables:

 If we denote the number of candidate paths for demand d with Pd, we
can – due to our link-demand-path-identifier based notation – actually
write these equations in a more concise and uniform way as:

 When it is clear that we sum over all candidate paths for demands:

25Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (5)

 We call the vector of all flows (path flow variables) the flow allocation
vector or short flow vector:

 In this notation, we represent vectors with bold letters x and scalar
components of vectors with normal letters x

 The only exception of this rule is the value of the objective function F
which is a scalar, but nevertheless represented with a bold letter

 We need a second set of constraints for modeling that for each link e
its capacity ce or ye is not exceeded

 Recall, if the capacities are known, they are specified as constants ce

 If capacities are unknown (dimensioning problem) we write them as
variables ye

26Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (6)

 For our four node network example, we obtain the following capacity
constraints:

 In order to write down the capacity constraints we need to know the
relationship between links and paths (link-path incidence relation)

27Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (7)

 The table for the link-path incidence relation contains a 1
whenever a link e is used for satisfying a demand d over a path p, and
0 when the link is not used in that path

 Thus, it is defined as:

 Note, that is not a variable, as it is already fixed which paths are
to be considered as candidate paths for demands d

 This notation allows us to write the load on link e in a compact way:

 With this, we can specify our capacity constraints as:

28Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (8)

 Please note the difference of the actual link loads (determined by
path flow variables xdp of a solution) and the capacity variables
(computed as part of the solution)

 If we denote the cost of a link e by ξe and we are interested in
minimizing the capacity cost, we obtain the following objective
function:

 The general formulation of our simple dimensioning problem is:

29Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (9)

 All in all, we obtain the following problem formulation for our example
(Problem 4):

30Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (10)

 Even though in linear programming all variables are usually written on
the left-hand side of equations or constraints, we keep the yi on the
right hand side for clarity of presentation

 Let us compare Problem 4 to our first example Problem 1:
 In Problem 1, we minimized the total routing cost in a network for which

link capacities were given to carry a given demand using flow variables
 In Problem 4, we minimized the total link capacity cost under the constraint

that the network needs to meet a given traffic demand. Link capacities
were not given, but variables for which optimal values were to be
computed

 Problems that have variable link capacities are referred to as
dimensioning problems or uncapacitated problems

 When variables can take continuous values, then for any optimal
solution the capacity constraints become equalities
 For each link, its load is equal to its capacity because otherwise we would

have to pay for unused capacity (implying the solution is not optimal)

31Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (11)

 This figure shows a set of values for
the flow variables xij

 If we calculate the link loads for this
flow allocation vector, we obtain:

 The total cost for this feasible
solution according to our cost
function is:

 It is easy to see that this is not an
optimal solution, as it uses the
rather expensive path P22 (cost 4)
for parts of demand h2 which could
also completely be routed over the
cheaper path P21 (cost 1)

151 h

2v

103 h

202 h

3v1v
2v

4v

1v 3v

1511 x
532 x

531 x

522 x

15

34
13

12
21

1521 x

15,20,1020,5 54321 yyyyy

11515203102052 F

32Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (12)

 In general, the cost of a path Pdp is given by:

 In our example, it is profitable to move all the flow from path P22 to
path P21 which results in a saving of x22 · (ζ22 - ζ21)= 5 · 3 = 15

 Note that path flow x11 is trivially optimal as there is only one
(considered) candidate path P11 for demand h1

 Also, the two flows x31 and x32 are optimal as they both have the same
cost ζ31 = ζ32 = 2

 Thus for demand 3 any split of its volume h3 = 10 among the two
available paths leads to an optimal solution

 These considerations lead to describing the optimal solution (x*, y*) in
the following way (see next slide)

33Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (13)

 Thus, we can make the following statement in regard to obtaining the
optimal solution to problems like Problem 4:

Shortest-Path Allocation Rule for Dimensioning Problems:

For each demand, allocate its entire demand to its shortest path with
respect to link costs and candidate paths.

If there is more than one shortest path for a given demand, then the
demand volume can be arbitrarily split among the shortest paths.

34Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (14)

 Note that the optimal solution to Problem 4 is not unique, but there are
many solutions with the same optimal cost (F = 100)

 While the shortest path rule works for the simple dimensioning
problem considered so far, this must not necessarily be the case if
further constraints are to be taken into account

 The list of considered candidate paths has a determining influence on
the optimal solution:
 Let us assume that we also have P12 = (e1, e5) with overall path cost

ξe5 + ξe5 = 3 as a candidate path for demand 1

 In this case path P12 is 1 unit cheaper than P11 and we can save 15 units of
cost by routing all traffic of demand 1 over path P12

 Starting with a “good” set of candidate paths is thus essential for obtaining
good solutions, so that “path preprocessing”, i.e. initializing and
augmenting path lists is an important part of the network design process

35Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Dimensioning Problems (15)

 There are cases, in which further constraints are imposed on the
problem:
 One example are so called non-bifurcated flows, in which each demand

has to be satisfied by exactly one path flow
 We could as well imagine cases where demands have to be partitioned

among several (node-disjoint) paths in order to allow for graceful
degradation in case of node or link failures

 When link capacities are given we speak of capacitated design
problems

 Depending on demands and capacities it may happen that non-bifurcated
solutions are not possible even though bifurcated solutions exist

36Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Capacitated Problems

 In some cases link capacities are given, and we are looking for a
solution that satisfies the specified demands while staying within
capacity bounds

 Such problems can be formulated in the following general notation
(Problem 5):

 Sometimes there might even be no objective function, so that any
solution that satisfies the constraints is acceptable

 If flow routing cost is to be minimized, these problems are similar to
problem 1

37Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Shortest-Path Routing (1)

 Shortest-path routing in network design means, that we have to
anticipate that demands will only be routed on their shortest paths

 The path “length” is determined by adding up link costs we according
to some weight system w = (w1, w2, …, wE)

 Let us assume the weight system
(1, 3, 1, 2, 4) for our example network
 With shortest-path routing the entire

demands would be routed over their
respective shortest path:

 However, if we assume capacities
c = (5, 10, 10, 5, 30) this flow vector
x(w) is not feasible, as link load would
be y(w) = (25, 0, 35, 35, 0)

2v

11 w

4v

1v 3v

32 w

13 w

45 w

24 w

38Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Shortest-Path Routing (2)

 Clearly, if we change the link capacities to be equal to the computed
link loads of the shortest-path routing solution, this solution becomes
(trivially) feasible

 In general, however, we are interested in a solution that allows to
respect the given link capacities and instead looks for the appropriate
weight system

Single Shortest Path Allocation Problem
For given link capacities c and demand volumes h, find a link weight
system w such that the resulting shortest paths are unique and the
resulting flow allocation vector is feasible

 This usually is a complex problem:
 A non-bifurcated solution may not exist even when bifurcated solutions do
 Non-bifurcated solutions are usually hard to determine (if they exist)
 Even when a single-path flow solution exists, it might be impossible to find

a weight system to induce this solution

39Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Shortest-Path Routing (3)

 Consider the following network:
 Demands d1 between nodes 1 and 7, and

demand d2 between nodes 2 and 6 both have
volume h1 = h2 = 1

 All link capacities ci = 1

 Two candidate paths for d1:
P11 = 1357 and P12 = 13457

 Two candidate paths for d2:
P21 = 23456 and P22 = 2356

 We are looking for a non-bifurcated (single-
path) solution to Problem 5 (link capacities
given, no objective function)

 x11 = 1 and x21 = 1 is a valid solution

 However, trying to find a weight system to
induce this solution is not obvious (actually,
it is not possible for single shortest paths)

 1

 7

3

5

6

4

2

40Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Shortest-Path Routing (4)

 Let us go back to our four node network
and set all link weights to 1 (like in
standard Internet routing)

 Consider demand d1 between nodes
2 and 1: there are two shortest
paths P11 = {2, 4} and P12={1, 5}

 This raises the question over which path
the demand should be routed
 Often, a rule for splitting demand volumes among multiple shortest

paths is desired
 One such rule, used in OSPF routing, is the “equal-cost multi-

path” rule (ECMP): for a fixed destination the goal of ECMP is to
equally split the outgoing demand volume over all outgoing next
hops with equal cost

2v

11 w

4v

1v 3v

12 w

13 w

15 w

14 w

41Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Shortest-Path Routing (5)

 However, this simple rule may fail if link
weights are not set appropriately

 Assume that in the network on the left
all link weights wi = 1
 there are 3 shortest paths from 6 to 7

 For the directed demand <6:7> paths
6137 and 6147 each carry
25% and path 6257 carries 50%
of the traffic volume if ECMP is used

 As in OSPF routing is directional, the
directed demand <7:6> is equally split
to the three paths in opposite direction

 Determining weight systems under the ECMP rule encounters similar
difficulties like when determining weight systems for the single-
shortest-path allocation case (~non-bifurcated)

6

5

2

7

43

1

42Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Fair Networks (1)

 In the Internet, traffic demands are often not fixed but elastic, that is
each demand can consume any bandwidth assigned to its path

 In such cases, we have capacity constraints as in Problem 5, but no
particular values hd for demands are assumed

 In order to deal with potential capacity bottlenecks, we are interested
in assigning demand volumes such that fairness is assured among the
different demands
 As an obvious initial solution, we could assign each demand volume on its

lower bound
 If this does not satisfy capacity constraints, then there is no feasible

solution at all
 However, if feasibility is assured, we would like to carry more than the

minimum required bandwidth of demands while at the same time giving a
fair share of bandwidth to all flows

 Furthermore, we want to understand implications of our assignments
on network throughput (= sum of path flows xdp)

43Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Fair Networks (2)

 Consider the above example network with three nodes, three
demands, only one candidate path per demand, and both link
capacities being c1 = c2 = 1.5

 The best-known general fairness criterion is Max-Min Fairness
(MMF), also called equity:
 If no lower bounds are specified, assign the same maximal value to all

demands
 If there is still capacity left, assign the same maximal value to all demands

that can still make use of that capacity

 Under MMF, we obtain x11 = x21 = x31 = 0.75 (all capacity used)

1v 3v 2v
1e 2e

3d

2d 1d

44Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Fair Networks (3)

 Let us assume now, that c2 has been increased to 2:
 After the initial MMF allocation link 2 still has 0.5 LCU available
 As only demand 2 can make use of this unused capacity, we can increase

h2 to 1.25

 Fair from the user’s point of view (nobody else can use this capacity)
 Let us look at network throughput:

 The first MMF solution leads to throughput x11 + x21 + x31 = 2.25

 The second MMF solution (with c2 = 2) leads to throughput 2.75

 A rather unfair solution (for c2 = 1.5) would be x11 = 1.5, x21 = 1.5,
x31 = 0, leading to throughput 3.0

3d

1v 3v 2v

2d 1d

5.11 c 22 c

45Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Fair Networks (4)

 This last unfair solution would be obtained if we used the objective
function

 Clearly, setting all path flow variables of one flow to 0 is not desirable if
we aim to assure some kind of fairness in the network
 However, if a demand is routed over a longer path, it uses more link

resources than demands that are routed over shorter paths
 We would like to find a compromise between MMF and greedily

maximizing network throughput:
 One such fair allocation principle is called Proportional Fairness (PF) and it

is realized by maximizing the following logarithmic revenue function

with rd being the revenue associated with demand d
(e.g. ri = 1 if all demands are of equal importance)

 Note, that this is not a linear function
 This function ensures that no demand is allocated an overall path flow sum

of 0 and makes assigning (unfairly) high values “unattractive”

46Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Fair Networks (5)

 The above PF problem can be solved by introducing a linear
approximation of the logarithmic function and solving the resulting
linear programming problem (explained later)

 Solving the MMF capacitated problem is more complicated:
 In general, it is not enough to find a flow allocation vector that

maximizes the minimal flow Xd over all demands d

 If such a flow vector X is found then in general some link
capacities might still be free and can be used to increase flow
allocations for at least a subset of demands

 However, depending on the initial flow allocation vector, we may be
able to extend some flows or not (leading to different overall
network throughput)

47Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Fair Networks (6)

 Applying solution x1 leaves room
for further increase in flow for
demand 1
 In this case x1

12 = 1 can be
additionally routed over path
{1, 3}

 Applying solution x2 does not
leave room for further
improvement:
 Link 3 is exhausted, routing

demand 2 over this link was not
a good decision

 Remaining capacity of
link 1 can not be used

 The final total flow allocation
vector is X = (X1, X2) = (2, 1)

1 1 1
11 21

2 2 2
11 21

: 1 2 , 1 1,4

: 1 1,3 , 1 2,3,4

Solution x x on path x on path

Solution x x on path x on path

1e
1v 3v

4e
4v

1 2c 4 1c

3e

2e
2 1c

2v

1d

2d

3 2c
13 c

48Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Topological Design (1)

 When installing a link in a network, usually a fixed cost has to be
invested (e.g. cabling cost) independent of the capacity of the link

 In order to account for this, we have to model this “opening cost”
in the objective function (which is to be minimized):

where the binary variable ue is 1 if link e is installed and 0 if not

 In order to force the capacity ye of link e to be 0 whenever the link e is
not installed, we introduce the following additional constraints:

49Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Topological Design (2)

 Assume, that the installation
costs are (50, 1, 1, 1, 50)

 Then the optimal network
topology becomes a tree
consisting of links {2, 3, 4}
with link installation costs 3
and capacity dependent costs
summing up to 160

 The difficulty of solving such
problems is considerable and
comparable to the case of
uncapacitated problems with
modular links (= links of
various fixed capacity values)

 A variation of such problems
considers node locations

1 50

151 h

2v

103 h

202 h

3v1v
2v

4v

1v 3v

1511 x
532 x

531 x

522 x

15

34
13

12 21

1521 x

1 50

3 1
4 1

2 1

5 50

50Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Restoration Design (1)

 So far, we have considered the network to be in normal operational
state, that is no link or node failure has been taken into account

 Let us now assume the following failure model:
 Links can be either fully functional or completely failed
 No more than one link fails at a time
 For our example network consisting of four nodes and five links, we can

therefore model the following 6 failure states or failure situations:
 In failure state 0 no link, in failure state s link s has failed (1 ≤ s ≤ 5)

 Suppose, we want to solve the restoration design problem
(RDP) for our four network example (with two candidate paths
for demand 1), so that all demands can be fully satisfied in all
failure states:
 In order to account for failure situations, we introduce an

additional index s to our path flow variables xdps referring now to
that particular flow in case of failure state s

 E.g. for demand 1 we obtain:
(note that due to our assumptions S = E in this example)

51Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Restoration Design (2)

 Furthermore, we have to
reformulate our capacity
constraints:

 We introduce notation αes to
denote if link e is up (1) or not
(0) and obtain the following:

151 h

2v

103 h

202 h

3v1v
2v

4v

1v 3v

11P
32P 31P

22P

15

34

13

12
21

21P

12P

52Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Restoration Design (3)

 If we can fully re-arrange flows, we obtain the following optimal flows:

 The optimum capacity y*
e of link e implied by the above flows is

computed as the maximum load of the link e over all states s:

 This results in the optimal cost F* = 245
 Thus, a robust network can be considerably more expensive than the

cheapest network without failure considerations (F* = 85)
 In this example, we obtained only non-bifurcated flows which must not

always be the case

53Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Restoration Design (4)

 Assume the above network with two nodes, three links and one demand:
 If we allow for bifurcated solutions we obtain cost F* = 4.5

XX X

(1.5) (1.5) (1.5) (1.5) (1.5) (1.5) (1.5)(1.5) (1.5) (1.5) (1.5)

1.5 1.5 1.5 1.5 1.5 1.51 1 1 0 0 0

(1.5)capacities

flows

s
sss

10 3demand h 11 3demand h 12 3demand h 13 3demand h

0s 1s 2s 3s

t t
tt

54Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Restoration Design (5)

 For the optimal non-bifurcated solution we obtain cost F* = 6
 Our example considered the path protection mechanism

(other mechanisms are possible, e.g. link protection)

XX X

(0) (3) (0) (3) (0) (3) (0)(3) (3) (0) (3)

3 0 0 3 0 30 3 0 0 0 0

(3)capacities

flows

s
sss

10 3demand h 11 3demand h 12 3demand h 13 3demand h

0s 1s 2s 3s

t t
tt

55Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Intra-Domain Traffic Engineering for IP-Networks (1)

 Let us consider now, optimizing intra-domain routing in the Internet
 Intra-domain routing is operated by an ISP that has control over the

network topology, routing algorithm, and link weight system

56Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Intra-Domain Traffic Engineering for IP-Networks (2)

 Due to either contracted service level agreements or experience
obtained via measurements the ISP knows the demands between
nodes of his network

 A common objective of intra-domain routing optimization is to minimize
the (average) delay experienced by data packets
 Recall the relationship between link utilization and average delay
 Thus, we would like to minimize the maximum utilization over all links

 A commonly used intra-domain routing protocol is OSPF which is
based on Dijkstra’s algorithm:
 Dijkstra’s algorithm calculates for each destination the shortest path

according to some weight system w
 Thus, we have to solve a variant of a shortest path problem, that is

identifying a weight system w:
 such that the maximum link utilization of our network is minimized,
 while satisfying all given demands, and
 staying within capacity constraints

57Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Intra-Domain Traffic Engineering for IP-Networks (3)

 How can we formulate this problem as a multi-commodity flow
problem?
 We know our demands hd and link capacities ce

 The sum over all path flows for a given demand must meet the demand:

 Furthermore, the link load on link e induced by the link metric system w
should not be greater than the link capacity:

 The maximum r over all link utilizations can be computed as follows:

 We now need to ensure that all link loads stay below

58Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Intra-Domain Traffic Engineering for IP-Networks (4)

 All in all, we obtain the following optimization problem:

 For this to work, we need to find k shortest candidate paths for every
attempted weight system vector w

 If r* < 1 then no link will be overloaded (congestion is likely to occur if r*
is close to 1)

59Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Tunnel Optimization for MPLS Networks (1)

 Multi-Protocol Label Switching (MPLS) is an approach that introduces
virtual connections into packet switched networking in order to:
 speed up processing times in routers, and to
 allow for traffic engineering
 For details on basic MPLS principles and protocol functions please refer

also to the respective chapter of the Telematics 2 course
 In order to transport traffic in an MPLS network, a so-called label

switched path needs to be set up from the source (ingress MPLS
node) to the destination (egress MPLS node)

 In order to allow for “similar” traffic to be handled in an aggregated
way, tunnels can be set up (by making use of label stacking)

 Tunneling offers promising traffic engineering capabilities:
 put traffic with same QoS characteristics into one tunnel and treat this in a

similar fashion
 simple re-routing in case of local congestion/link failures

60Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Tunnel Optimization for MPLS Networks (2)

 The figure above illustrates tunnels in an MPLS network consisting of
label edge routers (LER) and label switch routers (LSR)

 Note the tunnel aggregation inside the network

LER

LER

LER

LER

LSR

LSR

LSR

LSR

61Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Tunnel Optimization for MPLS Networks (3)

 However, in order not to overload routers with too many tunnels
(leading to high processing overhead), it is desirable to limit the
number of tunnels per router and/or link

 Thus, we face the following optimization challenge:
 How to carry different traffic classes in an MPLS network through the

creation of tunnels in a way that the number of tunnels per node/link is
minimized and the load is balanced among routers/links?

 We use basically the same notation as before with one difference:
 The path-flow variable xdp now denotes the fraction of demand hd that is

routed over path Pdp

 Thus, we obtain the demand constraint:
 As we are not interested in obtaining path-flows that carry a very low

fraction, we:
 require a lower bound ε for the fraction xdp, and for this

 introduce the binary variables udp that are set to 1 if the lower bound is
satisfied and 0 otherwise

62Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Tunnel Optimization for MPLS Networks (4)

 We need two constraints to model this:

 The book (Pioro, page 83) gives the first formula as:

Seems to be a typo…

 Furthermore, we have capacity feasibility constraints

 The number of tunnels on link e will be:

 We aim to minimize the number r representing the maximum number
of tunnels over all links

63Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Tunnel Optimization for MPLS Networks (5)

 Altogether, we obtain the following optimization problem:

64Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Tunnel Optimization for MPLS Networks (6)

 This problem has both continous and discrete variables while the
constraints and the objective function are linear

 It is an example for a mixed-integer linear programming problem (MIP)
 Finding exact solutions for MIP problems is more difficult than for

(plain) linear optimization problems:
 Established techniques are branch-and-bound, and branch-and-cut (to be

treated later)

65Network Algorithms (WS 22/23): 02 – Modeling Design Problems

Summary

 This chapter has introduced various simple network design problems:
 Minimizing routing cost
 Uncapacitated network dimensioning
 Shortest-path routing
 Fair networks
 Topological design
 Restoration design
 Delay minimization in IP networks with shortest path routing
 Minimizing the number of tunnels per link/node in MPLS networks

 We also introduced a notation to formulate such problems as multi-
commodity flow problems:
 Link-path formulation
 Node-link formulation
 Refined notation to be able to deal with non-trivial examples

 We are now all curious how to solve these problems! :-)

