
1Network Algorithms (WS 22/23): 04 – Network Design Problems

Network Algorithms
Chapter 4

Network Design Problems

2Network Algorithms (WS 22/23): 04 – Network Design Problems

Recall our Simple Design Problem (1)

(we will not repeat the meaning of indices every time)

3Network Algorithms (WS 22/23): 04 – Network Design Problems

Recall our Simple Design Problem (2)

4Network Algorithms (WS 22/23): 04 – Network Design Problems

Recall our Simple Design Problem (3)

 Solutions to our optimization problem will have ye equal to the load on
the links, as otherwise we could have lower costs

 We can eliminate the variables ye for the link load by substituting them
in the cost function with the load on the links

with denoting the cost of path p for demand d

 This leads us to the following formulation:

(note that this problem formulation has fewer variables)

5Network Algorithms (WS 22/23): 04 – Network Design Problems

Recall our Simple Design Problem (4)

 Actually, the formulation on the last slide represents a set of
decoupled optimization problems, that is to minimize the cost of the
paths for each of the demands:
 This is due to the linear structure of the objective function
 An optimal solution to these problems will allocate all demand on the

shortest path
 If there are multiple equally shortest paths for one demand, then this

demand can be arbitrarily split among these paths
 In order to generate solutions to the above problem, we need to

specify candidate paths, e.g. using an algorithm for computing the k
shortest (simple) paths

6Network Algorithms (WS 22/23): 04 – Network Design Problems

Capacitated Problems (1)

 Recall our simple capacitated flow allocation problem

7Network Algorithms (WS 22/23): 04 – Network Design Problems

Capacitated Problems (2)

 There is no objective function to optimize, so in this basic form we are
just looking for any solution that satisfies the constraints

 As it may be, that there is no solution, we consider the problem:

8Network Algorithms (WS 22/23): 04 – Network Design Problems

Capacitated Problems (3)

 For this problem, there is always a solution and if z* ≤ 0, then x*
dp

represent a solution to the original PAP
 The fact that PAP is a linear programming problem has an interesting

implication:

If PAP is feasible, then a solution x with at most D + E non-zero flows
exists

 By adding non-negative slack variables se, we obtain the following
linear programming problem in standard form:

 The number of non-zero variables in any basic feasible solution is at
most equal to the number of equations, implying the above result

9Network Algorithms (WS 22/23): 04 – Network Design Problems

Capacitated Problems (4)

 The book [Pioro, p. 114] even states that this implies that if all se > 0 in
the optimal solution (all links are unsaturated), then exactly D flows
suffice (thus a single-path allocation exists)
 Why does this have to be true?

 In many cases, we do not only want to find a feasible solution, but the
best solution according to some objective function:
 Minimizing z in the above example leads to maximizing the minimum

unused capacity (recall that z can be negative, thus the smallest z that
allows to satisfy all capacity constraints maximizes the unused capacity
over all links)

 We can also maximize the total unused capacity after flow allocation:

with re denoting the revenue associated with one unit of unused capacity
on link e (e.g. 1 for all links if no different treatment is desired)

10Network Algorithms (WS 22/23): 04 – Network Design Problems

Capacitated Problems (5)

 We can also consider a variation of a mixed dimensioning/capacitated
problem, where we want to dimension link capacities ye but subject to
some given upper bounds ce

11Network Algorithms (WS 22/23): 04 – Network Design Problems

Path Diversity (1)

 Sometimes, we wish to allocate flows in a way that no single path flow
xdp carries more than a fraction of the demand (expressed by nd = the
number of different paths among which hd is to be split)

12Network Algorithms (WS 22/23): 04 – Network Design Problems

Path Diversity (2)

 If nd is an integer, it will force the demand d to be split among onto at
least nd different paths

 If we supply candidate paths Pdp in a way that all paths belonging to
one demand d are link disjoint, we can guarantee that for each link
failure a demand d can at most loose (100/nd)% of its volume

 We can also formulate the diversity constraint in a stricter way, so that
we can pass arbitrary candidate path lists:

13Network Algorithms (WS 22/23): 04 – Network Design Problems

Path Diversity (3)

 The modified constraint ensures that no link e of a path Pdp caries
more than (100 / nd)% of demand d
 In the book [Pioro, p. 117] it is stated:

 Does this suffice?
 As multiple candidate paths for one demand may use one specific link, we

need to sum over all candidate paths:

 One drawback of these formulations is that we obtain a lot of
constraints

 The shortest path allocation rule used to obtain solutions to the
original dimensioning problem can be used in a modified version:
 First look up the shortest path for a demand and allocate hd / nd to it

 Then allocate the next fraction hd / nd to the next shortest path and so on

14Network Algorithms (WS 22/23): 04 – Network Design Problems

Lower Bounded Flows (1)

 Sometimes, we want to restrict the flow over a path from
below in order to avoid having a flow to be partitioned among
too many paths
 This is somehow the opposite goal to path diversity when we

wanted to restrict flows to a certain maximum value per utilized
path

 In order to do so, we need to model that once a path flow is non-
zero, it needs to carry at a lower bounded amount of flow

 For this we need to introduce to our formulation:
 Constants bd modeling for each demand d the respective lower

bound
 Binary variables udp modeling the characteristic “once a path flow

is non-zero” (that is they are 1 if the flow is non-zero and 0
otherwise)

15Network Algorithms (WS 22/23): 04 – Network Design Problems

Lower Bounded Flows (2)

 The two last constraints enforce that:
 xdp > 0 if, and only if, udp = 1 and

 the non-zero flows are bounded from below by constant bd

 However, the binary variables make the problem “difficult” to solve
(no methods significantly different from trying out all combinations)

16Network Algorithms (WS 22/23): 04 – Network Design Problems

Limited Demand Split (1)

 Sometimes, we want to directly give a limit kd for the maximum
number of non-zero path flows xdp among which a demand d is split
 One example for this is the single-path allocation (non-bifurcated flows)

with all kd = 1

 This calls for the introduction of binary variables udp that enforce all but one
path flow for each demand to be 0

17Network Algorithms (WS 22/23): 04 – Network Design Problems

Limited Demand Split (2)

 Remarks:
 The second constraint enforces that for each demand exactly one binary

variable udp is 1 and all others are 0

 The first constraint enforces that all flows xdp for which udp is set to 0 are
also 0, and that the flow xdp for which udp is set to 1 satisfies the whole
demand hd

 Difficulty of the Problem:
 Unfortunately, the problem SPA is known to be NP-complete

 Proof idea:
 In order to prove this, we will first consider a more basic problem which is

known under the name D2CIF (decision of the 2-commodity integer flow
problem) and show its NP-completeness

 We will then show that the integral flow version of the pure allocation
problem (PAP) is NP-complete in the special case of unit demands
(all hd = 1)

 This directly implies the NP-completeness of SPA

18Network Algorithms (WS 22/23): 04 – Network Design Problems

Recall the CNF-SAT Problem from Complexity Theory

 A boolean formula f consisting of n variables {x1, …, xn} is in
conjunctive normal form if it is the conjunction (logical and) of
clauses, where each clause Cj is a disjunction (logical or) of variables
xi either in simple (xi) or negated form (xi)

 Example: f(x1, x2, x3) = (x1  x2  x3)  (x1  x2)

 The problem CNF-SAT (conjunctive normal form – satisfiability) is the
problem to decide, if for a given function f there exists a consistent
assignment of the values true and false to the variable xi so that the
value of f under this assignment becomes true
 Consistent assignment means that all instances of a given variable xi in

the formula must be assigned the same value true or false
 The problem CNF-SAT has been shown to be in NP
 S.A. Cook showed in 1971 that every problem in NP reduces to CNF-

SAT (thus CNF-SAT is NP-complete)

(For proofs of these results please see lectures on Complexity Theory)

19Network Algorithms (WS 22/23): 04 – Network Design Problems

The D2CIF Problem (1)

 The D2CIF problem is defined as follows:
 Given a graph G(V, E) with capacities c(e)  {0, 1} for all edges e  E,
 Four special nodes: sources S1, S2, and targets T1, T2

 Two requirements (demands) R1, R2

 The D2CIF is the decision problem asking whether two-commodity flows, f1
from S1 to T1 and f2 from S2 to T2 exist, such that the total flow F1 ≥ R1 and
the total flow F2 ≥ R2 and all x1p and x2p are integers

 Theorem: CNF-SAT reduces to D2CIF
 Proof:

 We have to show that every CNF-SAT problem can be reduced in
polynomial time to a D2CIF problem

 Consider a CNF expression with n variables {x1, …, xn} and thus 2n literals
{x1, …, xn, x1, …, xn}, which are incorporated in m clauses C1, …, Cm

 Recall that CNF-SAT for this expression is true, if and only if, there exists a
consistent assignment of values true/false to all xi and respective false/true
values to all xi such that there is at least one literal assigned true in each of
the m clauses

20Network Algorithms (WS 22/23): 04 – Network Design Problems

The D2CIF Problem (2)

 Proof (continued):
 We will now construct a D2CIF problem that exactly mimics these two

requirements:
 If there is a flow f1 from S1 to T1 with total flow h1 = 1 then the

assignment is consistent
 If there is a flow f2 from S2 to T2 with total flow h2 = m then all m

clauses have at least one literal that is true
 We will create the flow network in a way, that whenever the flow f1 runs

through a node, the flow f2 can not run through the same node by
splitting the nodes into two nodes vs and vt which are connected via a
(bottleneck) link of capacity 1

 Thus, if a solution for the D2CIF is found, the flow f1 runs through
those nodes representing the negated value of the variables xi

 A solution for CNF-SAT can then be easily obtained by setting all
variables to the negated values of the representing nodes along the
path of flow f1 (e.g. if f1 flows through vs(i, j) then set xi = false,
if f1 flows through vs(i, j) then set xi = true)

21Network Algorithms (WS 22/23): 04 – Network Design Problems

The D2CIF Problem (3)

 For every variable xi we create a so-called lobe Li that consists of a
start node as(i) which models a choice of true/false for the variable x i
and that is connected to a series of:
 Node tuples vs(i, j)→vt(i , j) representing either all “positive” instances of xi

in clauses j, or
 Node tuples vs(i, j’)→vt(i , j’) representing all “negated” instances of xi in

clauses j’
 The last nodes vt(i , jh) and vt(, j’g) are connected to a merging node at(i)

...

...

Lobe Li
)(ias)(iat

),(1jivs

)',(1jiv s

),(1jivt

)',(1jivt

),(hs jiv

)',(gs jiv

),(ht jiv

)',(gt jiv

22Network Algorithms (WS 22/23): 04 – Network Design Problems

The D2CIF Problem (4)

 Now, we need to connect all lobes:
 We create a start node S1, connect this to the start node as(1) of the first

lobe L1,

 connect all end nodes at(i) of lobe Li to the start node as(i+1) of lobe
Li+1 (except for the last lobe Ln), and

 connect the end node at(ik) of the last lobe Ln to a newly created end node
T1

 As all link capacities are set to 1, a flow f1 from S1 to T1 of capacity 1
can take one of 2n potential paths through the network

 We now have to enforce that such a flow is only possible if variables in
all clauses have been set consistently to the respective negated value

...1S 1T)1(sa)1(ta)2(sa)2(ta

23Network Algorithms (WS 22/23): 04 – Network Design Problems

The D2CIF Problem (5)

 For this, we create a new start
node S2 and link it to newly
created start nodes bs(j) each
representing one clause Cj

 We now link each start node
bs(j) to the appropriate nodes
vs(i, j) or vs(i , j), respectively,
depending on if the variable xi
occurs “normally” or negated in
clause Cj

 The respective end nodes
vt(i , j) or vt(i , j) are connected
to newly created end nodes bt(j)

 All bt(j) are connected to a
newly created end node T2

(Note that there is only one candidate
path from each bs(j) through every lobe Li)

24Network Algorithms (WS 22/23): 04 – Network Design Problems

The D2CIF Problem (6)

 Example CNF: f(x1, x2) = (x1  x2)  (x1  x2)

 Note, that whenever flow f2 flows through an edge vs(i, j)→vt(i, j) then
flow f1 can not use that edge anymore as all ce = 1

1S)1(sa

)1,1(sv

)2,1(sv

)1,1(tv

)2,1(tv

)1(ta)2(sa

)2,2(sv

)1,2(sv

)2,2(tv

)1,2(tv

)2(ta 1T

2S

2T

)1(sb)2(sb

)2(tb)2(tb

25Network Algorithms (WS 22/23): 04 – Network Design Problems

The D2CIF Problem (6)

 Please note:
 The demand f2 can only reach the value m if there is a flow of value 1

between all start nodes bs(i) and end nodes bt(i) for i = 1, …, m

 Usually one lobe Li has multiple tuples vs(i , j)→vt(i , j) in the upper part as
well as multiple tuples vs(i , j)→vt(i , j) in the lower part

 If a “solution attempt” for demand f2 tries to make use of an inconsistent
assignment of values to a variable xi in distinct clauses j, then the demand
f1 can not be fulfilled anymore, as this utilizes all “path capacity” through
the corresponding lobe Li

 In order to “read” the result of the corresponding CNF-SAT after the D2CIF
has been solved, just look up the path of demand f1 through the lobes Li
and assign all values of variables to their negated value for variables xi

 As such a D2CIF can be constructed in polynomial time for every
CNF-SAT, we have shown that CNF-SAT reduces to D2CIF and that
D2CIF is thus NP-complete

 A corresponding result can be shown for undirected graphs

26Network Algorithms (WS 22/23): 04 – Network Design Problems

The Integral Flow Pure Allocation Problem

 The integral flow PAP is defined as follows:

Integral Flow PAP
For a set of demands find an integral solution (all xdp are integers) so
that capacity constraints of all edges are not exceeded

 Theorem: In the special case of homogenous unit demands
(all hd = 1), the Integral Flow PAP is NP-complete

 Proof: Modify the construction of the D2CIF proof as follows:

 Instead of having one source node S2 for demand f2 with h2 = m, we
introduce m new source nodes that are connected with an edge of
capacity 1 to S2 and that each have a demand of hi1 = hi2 = … = him = 1

 Thus, if we could solve Integral Flow PAP in polynomial time then we could
also solve CNF-SAT in polynomial time

 Our result for Integral Flow PAP directly implies that the problem SPA
of finding non-bifurcated flows is also NP-complete, as the Integral
Flow PAP for homogenous demands is a special case of an SPA

27Network Algorithms (WS 22/23): 04 – Network Design Problems

Limited Demand Split (3)

 We can simplify our SPA formulation by eliminating the flow variables
xdp:

 For this, we used the equality and replaced xdp
appropriately in our capacity constraints

28Network Algorithms (WS 22/23): 04 – Network Design Problems

Limited Demand Split (3)

 The use of binary variables enables us to formulate also that a
demand d has to be equally split among kd candidate paths

 To see that the two constraints enforce the equal split of flows
 Consider additional variables xdp and constraints

 This would lead to usual constraints

29Network Algorithms (WS 22/23): 04 – Network Design Problems

Limited Demand Split (4)

 The second and third constraint jointly enforce that for each demand d
non-zero flows can be assigned to at most kd paths

 As in this problem flows xdp can be of different volumes, we can not
eliminate the path flow variables xdp like in the two preceding examples

30Network Algorithms (WS 22/23): 04 – Network Design Problems

Modular Flow Allocation (1)

 In transport networks, demand volumes are usually given in
terms of modular units, e.g.
 Plesiochronous Digital Hierarchy (PDH) PCM primary trunks (each

offering 32 * 64kbit/s = 2048 kbit/s), or
 Synchronous Digital Hierarchy (SDH) STM-1 (155 MBit/s), STM-4

(622 Mbit/s), STM-16 (2.4 GBit/s), or STM-64 (9.6 GBit/s) trunks

 In such cases, we model demands d as a number Hd of demand
modules each with capacity Ld (thus, hd = Ld Hd)

 Flows xdp are then forced to be either of capacity Ld or 0 (again
using binary variables udp)

31Network Algorithms (WS 22/23): 04 – Network Design Problems

Modular Flow Allocation (2)

 As xdp = Ld · udp we can eliminate the variables xdp like we did before
and obtain the simpler formulation shown on the next slide

32Network Algorithms (WS 22/23): 04 – Network Design Problems

Modular Flow Allocation (3)

 If the demand modules are of same size for all demands, this
formulation can be further simplified by replacing ce with ce / Ld and
eliminating Ld from the second constraint

33Network Algorithms (WS 22/23): 04 – Network Design Problems

Non-Linear Link Dimensioning, Cost and Delay Functions

 So far, we have mostly assumed that link capacities are equal to the
link loads for uncapacitated problems

 Typically, the link cost function is build upon the notion of the link
dimensioning function Fe(ye) which determines the relationship
between the link load ye and the minimal required link capacity ye

 Link cost has been computed as capacity times a cost coefficient ξe

 Thus, so far we mainly considered linear link cost functions ξe ye

 We now want to extend this by considering also modular links, links
with convex cost and links with concave cost

34Network Algorithms (WS 22/23): 04 – Network Design Problems

Modular Links (1)

 As we have already seen in our example on modular flow allocation, in
practice links are often of modular size

 Let us assume that the size of one link capacity module is M
 The variable ye denotes the number of link capacity modules

 In this case the link dimensioning function is (note that ye, denotes the
load on the link e, and is not to be mixed up with the variable ye):

35Network Algorithms (WS 22/23): 04 – Network Design Problems

Modular Links (2)

36Network Algorithms (WS 22/23): 04 – Network Design Problems

Modular Links (3)

 A heuristic for solving this problem could be assuming a linear
approximation of the link dimensioning function
solving the respective linear programming problem and then to round
up the obtained link capacities

 Unfortunately, this may lead to solutions that are far from optimal
 Example:

 Assume a fully meshed network with V nodes each requesting 1 unit of
flow between each pair of nodes D = V · (V - 1) / 2

 The cost of one module on each link is ξe = 1 and the link capacity module
M equals to D flow units

 In this case every optimal solution corresponds to a spanning tree T with ye
= 1 if e  T and ye = 0 otherwise

 The minimal cost of such a solution is V - 1 as every tree has V - 1 links
 If the above heuristic was applied this would result in a fully meshed

network with cost V (V - 1) / 2, thus V / 2 times higher!
 Thus, it may be cheaper to use longer paths if they have still capacity left

37Network Algorithms (WS 22/23): 04 – Network Design Problems

Modular Links (4)

 Difficulty of the problem:
 The dimensioning problem with modular links ML is NP-complete

 Proof:
 We will show that the problem can be used to solve the Steiner tree

problem (STP) which is known to be NP-complete
 The STP can be stated as follows: For a Graph G = (V, E), and given a

subset V’  V and link weights ξe find a subgraph T  G so that T contains
a path for each pair of nodes in V’ and the following cost is minimized:

 In other words, STP consists of finding the lightest tree spanning subset V’
 This solution can (and usually will) contain some but not necessarily all

nodes in V \ V’ and is thus not equivalent to simply finding the lightest
spanning tree in V (which can easily be solved by Prim’s or Kruskal’s
algorithm)

 To reduce STP to ML, we assign in ML a demand d with volume hd = 1 to
each pair of nodes in V’ and set M = V’ (V’ – 1) / 2

38Network Algorithms (WS 22/23): 04 – Network Design Problems

Modular Links (4)

 We can also generalize the ML formulation to cover multiple module
sizes M1, …, Mk where K is the number of module types and variable
yek denotes the number of modules of size Mk installed on link e

39Network Algorithms (WS 22/23): 04 – Network Design Problems

Modular Links (5)

 Note, that modeling K different module sizes increases the number of
required variables by a factor of K, as one set of variables is needed
for each modular unit type

 Yet another way of introducing modular cost functions with different
modules is the incremental characterization:
 K denotes the number of steps, and
 The incremental sizes of the link capacity module of type k are modeled

with m1, m2, …, mk (if the load on a link passes one of these values, the
respective cost function for this link “jumps”)

 The cost of each incremental module mk on link e is ξek

 We use binary variables uek to indicate whether the incremental module of
type k is installed on link e (1) or not (0)

 Note that uncapacitated modular design is related to topological
design treated earlier, as the first step of the modular capacity function
can represent the cost of introducing a new link

40Network Algorithms (WS 22/23): 04 – Network Design Problems

Modular Links (6)

41Network Algorithms (WS 22/23): 04 – Network Design Problems

Convex Cost and Delay Functions (1)

 A real-valued function f defined on the interval [0, ∞) is called convex,
if for any two points z1, z2  [0, ∞) and any  in [0, 1], we have:

 Pictorially, a function is called convex if the function lies below or on
the straight line segment connecting two points, for any two points in
the interval

 If in the above equation the strong
inequality (>) holds for all  in (0, 1)
the function is called strictly convex

 In networks, convex functions appear
to describe delay, e.g. the average
delay on a link is a convex function
of the link load (recall M/M/1 system):

42Network Algorithms (WS 22/23): 04 – Network Design Problems

Convex Cost and Delay Functions (2)

 Even though the functions Fe() are not constant, we list them under
constants to avoid creating yet another category of parameters

43Network Algorithms (WS 22/23): 04 – Network Design Problems

Convex Cost and Delay Functions (3)

 If we use the functions

then the resulting objective is proportional to the average network
delay experienced by the packets
 These cost functions are not meaningful outside the interval [0, ce]

 Convex functions can also be used to convert capacitated flow
allocation problems to uncapacitated ones by using penality
functions
 We ensure that the penality cost function is convex and incurs a high cost

if the link capacity is violated
 E.g. we define a large link dependent penality coefficient ξe and define

 We obtain the uncapacitated problem from CCF by omitting constraints

44Network Algorithms (WS 22/23): 04 – Network Design Problems

Convex Cost and Delay Functions (4)

 Solving convex optimization problems (here: optimizing a convex
objective function under linear constraints) requires different
techniques than those used for linear optimization problems

 However, if we approximate the convex function with a piecewise
linear approximation, we can solve a “corresponding” linear problem:

 Example:

 We approximate:

45Network Algorithms (WS 22/23): 04 – Network Design Problems

Convex Cost and Delay Functions (5)

 In the general case, we consider
the function defined as:

with s1 = 0 and sK = ∞

 Suppose, we are given a number
y ≥ 0

 Due to the convexity of g (!),
the following equation holds:

 Hence, the optimal solution of the following LP problem will return the
correct value for g(y), i.e. r = g(y)

46Network Algorithms (WS 22/23): 04 – Network Design Problems

Convex Cost and Delay Functions (6)

 As a linear programming problem has its optimum solutions in the
edges of the polytope describing the area of valid solutions, the
solution computed will be a point yg* (= si , 0 ≤ i ≤ K) where the value
of the approximation function is equal to the value of the approximated
function: g(yg*) = f(yg*)

 Thus, an optimal solution to the approximative problem is also a
valid solution to the (original) approximated problem

 However, it might be not an optimal solution to the original problem
 Approximation error:

 Let us assume that yg* = sk. The maximum approximation error depends on
where the original problem has its optimum solution yf*

 It might happen that an approximation with different points s’i leads to a
different optimum solution and there is no simple way (simple enough for
this course) to compute the approximation error

 For many practical applications/problems, a fine-grained choice of sk
leads to rather good approximation results

47Network Algorithms (WS 22/23): 04 – Network Design Problems

Convex Cost and Delay Functions (7)

48Network Algorithms (WS 22/23): 04 – Network Design Problems

Convex Cost and Delay Functions (8)

 Thus, convex mathematical programming problems can be
transformed into linear programming (LP) problems
 If the piecewise linear approximation has the same number K of pieces for

every link, the corresponding LP program has E additional variables and
E · K additional constraints (compared to the original convex program)

 In many applications, it is not important to know the exact equations of
the linear pieces of the approximation
 Only the slopes aek and points sk where they change matter

 Thus, we obtain a problem like:

49Network Algorithms (WS 22/23): 04 – Network Design Problems

Convex Cost and Delay Functions (9)

 Due to convexity we have that
This is why the optimization works.

 If the minimization will set z1 to s1, z2 to s2 - s1, …,
zk-1 to sk-1 - sk-2 , and zk to y - sk-1, all remaining zj will be set to 0

 Thus the problem can be written in a simpler form:

with mk = sk - sk-1 denoting the distance between two consecutive
break points of the piecewise linear approximation

50Network Algorithms (WS 22/23): 04 – Network Design Problems

Convex Cost and Delay Functions (10)

 We may also face problems with a linear cost function, but convex
constraints

 One example is to minimize capacity cost for a fixed routing under the
constraint that a given average acceptable delay has to be met

 As the expected delay at a router is a convex function of link
utilization, we obtain a convex constraint

 The resulting problem can be solved by various methods:
 Karush-Kuhn-Tucker conditions (not treated here)
 Classical Lagrangian multiplier method (not treated here)
 Piecewise linear approximation as described before

51Network Algorithms (WS 22/23): 04 – Network Design Problems

Convex Cost and Delay Functions (11)

52Network Algorithms (WS 22/23): 04 – Network Design Problems

Concave Link Dimensioning Functions (1)

 A real-valued function f defined on the interval [0, ∞) is called
concave, if for any two points z1, z2  [0, ∞) and any  in [0, 1], we
have:

 Pictorially, a function is called concave if the function lies above or on
the straight line segment connecting two points, for any two points in
the interval

 If in the above equation the strong
equality (>) holds for all  in (0, 1)
the function is called strictly concave

 In networks, concave functions appear
to describe link dimensioning functions,
as growth in link costs often adheres to
the following relation:

53Network Algorithms (WS 22/23): 04 – Network Design Problems

Concave Link Dimensioning Functions (2)

 In networks concave dimensioning functions arise, for example, when
dimensioning telephone networks (computing ye = Fe(ye) from the
inverse of the Erlang Loss Formula)

54Network Algorithms (WS 22/23): 04 – Network Design Problems

Concave Link Dimensioning Functions (3)

 Because of the property

of the dimensioning function, the optimal solutions to these kinds of
problems are non-bifurcated (which is desirable as it enables some
heuristics for finding flow allocations; see section 5.6 in the book of
Pioro et. al.)

 As these problems require minimizing a concave objective function
subject to linear constraints, they in general can have numerous local
minima (far away from the global minimum) on the extreme points
(“corners”) of the feasible region defined by the constraints

 Thus, finding the global minimum can be a very difficult task
 For convex objective functions, we have seen how to transform the

problems into linear programming problems by a piecewise linear
approximation of the objective function

 Unfortunately, this technique does not work in the same simple way for
concave functions, as

55Network Algorithms (WS 22/23): 04 – Network Design Problems

Concave Link Dimensioning Functions (4)

 However, we can transform the
problem into a mixed-integer
programming approximation

 Consider, for example, the
concave square root function
and a piecewise linear
approximation consisting of
four pieces:

56Network Algorithms (WS 22/23): 04 – Network Design Problems

Concave Link Dimensioning Functions (5)

 In general, let g(z) be defined as:

 First, consider the following formulation:

 As the approximation g(z) is concave, this formulation returns the
correct value of g(y) for any given y ≥ 0
 By minimizing the above sum, we force that the right piece of the

approximation function is selected for computing g(y)
 However, if we treat y as a variable (see next problem), then the

objective contains multiplications of two variables (uk and y) which is
not allowed in mixed integer programming problems

57Network Algorithms (WS 22/23): 04 – Network Design Problems

Concave Link Dimensioning Functions (6)

 We will thus introduce some auxiliary variables yk and additional
constraints, and use them to avoid these multiplications

 The additional constraints force that exactly (and the right) one value
yk will be non-zero and equal to y in the optimal solution

 Note that for convex functions we minimized over all values of pieces gk(z)
at point y, and thus also the maximum of such values which equals g(y)

 Here, we minimize over the sum of all gk(y) and we need to force that all
but the right gk do not contribute to the solution

58Network Algorithms (WS 22/23): 04 – Network Design Problems

Concave Link Dimensioning Functions (7)

59Network Algorithms (WS 22/23): 04 – Network Design Problems

Concave Link Dimensioning Functions (8)

 Assuming that the piecewise linear approximation involves the same
number K of pieces for every link, the above problem contains:
 E  K additional continues variables yek

 E  K additional binary variables uek

 E  (K + 2) additional constraints
 This already indicates that the problem is difficult to solve

 In fact, there are no algorithms known that are significantly better than the
full search in the space of binary variables

 As with approximation of convex functions, in many cases it is not
necessary to consider the exact piecewise approximations but only
the slopes ak are of interest and the points sk where they change (and
the functions are identical for all links)
 In such cases we can obtain a very similar formulation than the one we

have obtained before (see next slide)

60Network Algorithms (WS 22/23): 04 – Network Design Problems

Concave Link Dimensioning Functions (9)

 The constraints
 imply that if uk = 1 and uk+1 = 0 then u1 = u2 = … = uk = 1, and

 force zj = mj for all j < k, 0 ≤ zk ≤ mk and zj = 0 for all j > k
(where mk = sk – sk-1)

61Network Algorithms (WS 22/23): 04 – Network Design Problems

Concave Link Dimensioning Functions (10)

 This again can also be rewritten in a more compact form:

 The requirement is redundant and has thus been
dropped from the problem formulation

62Network Algorithms (WS 22/23): 04 – Network Design Problems

Budget Constraints (1)

 So far, we have often minimized cost when choosing from a set of
feasible solutions

 In many cases, however, it is sufficient or even better just to stay
within a given budget constraint and chose a different optimization
goal

 Example: throughput optimization
 We maximize the proportion r, in how far all demands can be satisfied

 The link capacities ye are variables (capacities should not be exceeded)

 Overall cost for all links should stay within a budget B

63Network Algorithms (WS 22/23): 04 – Network Design Problems

Budget Constraints (2)

64Network Algorithms (WS 22/23): 04 – Network Design Problems

Incremental Network Design Problems (1)

 Often networks are not designed from scratch, but have to be
extended with additional resources

 In such cases, there are already existing link capacities ce and the
task is to add additional capacities ye to account for an increase in the
demand volume

 The network design problems considered so far can be easily
extended to cope with such situations:
 In the capacity constraints we simply have to add the existing capacities ce

which are constants in the formulation of the optimization problem (see
next slide)

 Note, that the optimal solution to an incremental network design
problem can be (read: usually is) higher than the optimal solution of a
pure network design problem
 The reason for this is, that the existing capacities ce can not be changed,

so there is less freedom for the optimization

65Network Algorithms (WS 22/23): 04 – Network Design Problems

Incremental Network Design Problems (2)

66Network Algorithms (WS 22/23): 04 – Network Design Problems

Representing Nodes (1)

 In our examples so far, we have only considered link capacities as key
network resources and mainly ignored the fact that node capacities
can be limited or imply costs as well

 In order to allow for a more realistic modeling, we can help ourselves
with the following constructions

 For directed graphs, we split up nodes v into two nodes v’ and v’’ and
introduce a directed internal link (v’, v’’)
 Incoming links are connected to v’ and outgoing links to v’’

67Network Algorithms (WS 22/23): 04 – Network Design Problems

Representing Nodes (2)

 For undirected graphs (as in most link-path formulations), we simply
introduce additional (articial) links e(v) = (v, v) and define the
coincidence coefficients as follows:

 The load a node v, defined as

can be used for various purposes, e.g. to impose an upper bound for
the node load:

 The cost of a node v, depending on its load, can appear in the
objective function of the design problem

68Network Algorithms (WS 22/23): 04 – Network Design Problems

Representing Nodes (3)

 The concept of node-internal links is also useful for modeling node
failures: to fail a node, we simply fail its internal link

 If we extend our diversified link-path formulation to encompass node
failures as well, then the diversity constraints may get less numerous
(but we impose tighter diversity constraints!):

where sd and td denote the source and target nodes of a demand d

 Recall that in the original formulation, we have the following
constraints:

 Thus, the “node-variant” requires fewer constraints in sparse graphs

69Network Algorithms (WS 22/23): 04 – Network Design Problems

Summary

 Formulating network design problems as linear or mixed-integer
programming problems allows for use of the large body of
optimization algorithms developed for such problems

 Sometimes even simple looking problems like the single-path
allocation problem or the dimensioning problem with modular
links turn out to be NP-complete

 Problems with convex objective functions or convex constraints
can be transformed into linear programming problems by piecewise
linear approximation of the convex functions involved

 Piecewise linear approximation can also by applied for problems with
concave objective functions or concave constraints, however, this
leads to mixed-integer programming problems

 Resource restrictions of nodes can be easily modeled by introducing
additional artificial links in case of undirected graphs, and by splitting
nodes and introducing additional internal links in directed graphs

