
1Network Algorithms (WS 22/23): 05 – Network Resilience

Network Algorithms
Chapter 5

Network Resilience

2Network Algorithms (WS 22/23): 05 – Network Resilience

Introduction and Motivation

 Network resilience denotes the property of a network to sustain the
ability to communicate even if parts (nodes, links) of the network fail
 Failures can occur by random or because of deliberate attacks
 Random failures often have less severe consequences and are thus

easier to account for
 We are thus often interested in quantifying the resilience of a

network to random or intentional failures
 Quantification of random failures often computes the probability of certain

conditions, e.g. partitioning of a network etc.
 Quantification of failures due to deliberate attacks often computes the

worst case damage, e.g. smallest number of attacked/failed links or nodes
so that the remaining network is partitioned etc.

 Likewise, we are interested in computing the smallest number of
additional links (or nodes) that need to be added in order to
increase the resilience of a network against random failures or
deliberate attacks

3Network Algorithms (WS 22/23): 05 – Network Resilience

Some Definitions From Graph Theory (1)

 Two paths p1 and p2 from x to y in G are edge independent if they
have no link in common

 Two paths p1 and p2 from x to y in G are node independent if they
only have nodes x and y in common

 If there is at least one path linking every pair of actors in the graph
then the graph is called connected

 If there are k edge-independent paths connecting every pair, the graph
is k-edge-connected

 If there are k node-independent paths connecting every pair, the graph
is k-node-connected

 The biggest number k for which G is k-edge-connected is called the
edge-connectivity of G

 The biggest number k for which G is k-node-connected is called the
node-connectivity of G
 Graphs that are 2-node-connected are also called biconnected

4Network Algorithms (WS 22/23): 05 – Network Resilience

Some Definitions From Graph Theory (2)

 In any connected component, the path(s) linking two non-adjacent
nodes must pass through a subset of other nodes, which if removed,
would disconnect them
 For two nodes s and t the set T (V \ {s, t}) is called an s-t-

cutting-node-set if every path connecting s and t passes through
at least one node of T, that is there is not path from s to t in G \ T

 A set T is called a cutting-node-set if T is an s-t-cutting-node-set
for two nodes s and t

 For two nodes s and t the set F E is called an s-t-cutting-edge-
set if every path connecting s and t traverses at least one edge of
F, that is there is not path from s to t in G \ F

 A set F is called a cutting-edge-set if F is an s-t-cutting-edge-set
for two nodes s and t

5Network Algorithms (WS 22/23): 05 – Network Resilience

Menger’s Theorem

 Menger’s Theorem (1927):
 For non-adjacent nodes s and t in an undirected graph, the

maximum number of node independent paths is equal to the
minimum size of an s-t-cutting-node-set

 For nodes s and t in an undirected graph, the maximum number of
edge independent paths is equal to the minimum size of an s-t-
cutting-edge-set

 Menger’s Theorem can be interpreted as an early version of the Max-
Flow-Min-Cut-Theorem of Ford and Fulkerson, with the help of which it
can be easily proven

 Menger’s Theorem further allows to obtain the following interesting
result

6Network Algorithms (WS 22/23): 05 – Network Resilience

Whitney’s Theorem

 Whitney’s Theorem (1932):
 An undirected graph with at least k+1 nodes is k-node-connected if

and only if each cutting-node-set in G contains at least k nodes
 An undirected graph is k-edge-connected if and only if each

cutting-edge-set in G contains at least k edges

 Implications for communication networks:
 If a communication network is supposed to allow communication

between arbitrary nodes even in case of failure of r arbitrary
nodes, its topology must be at least (r+1)-node-connected

 If a communication network is supposed to allow communication
between arbitrary nodes even in case of failure of s arbitrary links,
its topology must be at least (s+1)-edge-connected

7Network Algorithms (WS 22/23): 05 – Network Resilience

Interesting Problems Arising From This

 From an algorithmic point of view, this motivates the interest in the
following problems:
 Check for a given graph G and a given number k if G is k-node-

connected and/or k-edge-connected (can be solved in polynomial
time)

 Compute for a given graph G the largest number k for which G is
k-node-connected and/or k-edge-connected (can be solved in
polynomial time)

 Augment a given graph G that is not k-node-connected or k-edge-
connected with the minimum set of edges with which the graph
can be made k-node-connected or k-edge-connected

 For edge-connectivity this can be solved in polynomial time
 For node-connectivity polynomial algorithms are only known for

rather small numbers k (k ≤ 4).
 The weighted variant with the objective of weight minimization

is NP-hard already for k=2

8Network Algorithms (WS 22/23): 05 – Network Resilience

Block Structure of Graphs (1)

 In the following, we consider undirected graphs G = (V, E) with at least 3
nodes, and we are looking for all subgraphs of maximum size that are (at
least) 2-node-connected (biconnected)

 Recall: G is biconnected if and only if (iff) either
 G is a single edge, or
 for each tuple of vertices u, v there are at least two node disjoint paths

5

1

8

1

6

2

4

3
5

7

8

1

2

2

3

4
6

5

7

G

Biconnected Components of a Graph

9Network Algorithms (WS 22/23): 05 – Network Resilience

Biconnected Components Meet at Articulation Nodes

 The intersection of two maximum size biconnected components
consists of at most one vertex called an
articulation node
 Example: 1,2,5 are articulation points

 More formally:
 A node a in G is called articulation node

if {a} is a separating node-set in a
connected component of G

 Obviously, a graph G with at least 3 nodes
is biconnected, if and only if it is connected
and does not contain an articulation point

 Furthermore, a graph G with at least 3 nodes
is biconnected, if and only if G does not contain
isolated nodes and every pair of nodes is on
a common single cycle

1

6

2

4

3
5

7

8

G

10Network Algorithms (WS 22/23): 05 – Network Resilience

Blocks of a Graph

 For two edges e1, e2 E, we define the relation such that e1 e2 if
e1 and e2 lie on a common simple cycle

 It is easy to see that defines an equivalence relation on the set of
edges, that is E is partitioned into sets E1, E2, Eh for a suitable h such
that for e, f Ei we always have e f

 Let Gi = (Vi, Ei) be the subgraphs induced by Ei for all i = 1, …, h

 These subgraphs are called blocks, and blocks that contain at least 2
edges are the maximum sized biconnected components of G

 The graph on the right consists
of 3 biconnected components
of maximum size with different
line styles visualizing the
different components

11Network Algorithms (WS 22/23): 05 – Network Resilience

Block Structure of a Graph

 Lemma 1: Let Gi = (Vi, Ei) be the blocks of G, then we have

 For all i ≠ j: | Vi Vj | ≤ 1
 A node a V is an articulation node if and only if

Vi Vj = {a} for suitable i ≠ j

 The graph on the preceding slide has two articulation points that are
each member of exactly two biconnected components
 Note, that an articulation node can be a member of more than two

biconnected components (see next example)

12Network Algorithms (WS 22/23): 05 – Network Resilience

Block Structure Graph B(G) of an Undirected Graph G

 We can describe the block structure of a graph with a so-called block
structure graph B(G) that contains nodes va for each articulation node
a and nodes vb for each block b with each va being connected to the
nodes vb denoting the respective biconnected components b that node
a is connected to in the original graph

 Lemma 2: G is an undirected graph B(G) does not contain any cycle
 Proof: If B(G) contained a cycle, we could find a simple cycle in G

that contains nodes from different blocks

13Network Algorithms (WS 22/23): 05 – Network Resilience

Computing the Block Structure of a Graph

 Why are we interested in articulation nodes and blocks of a graph?
 If we could identify articulation nodes then we could also compute the

blocks of a graph
 Furthermore, in networking applications we would know which nodes are

more important to protect, or between which components of the network
we need additional links (however, we would not yet know which links
might be wise choices)

 Articulation vertices can be found in O(|V| (|V| + |E|)):
 Just delete each node and do a depth first search DFS (see below) on

the remaining graph to see if it is (still) connected
 We will see that the articulation nodes and blocks of a graph can also

be computed more efficiently by a modified DFS, first proposed by
Tarjan in 1972 [Tar72]:
 For reasons of simplicity, we assume that the graph is connected
 The blocks of unconnected graphs can be computed by performing the

algorithm for each connected component

14Network Algorithms (WS 22/23): 05 – Network Resilience

Depth First Search

 We start with an arbitrary node s and mark it as visited (all other nodes
have been marked unvisited before)
 If (and as long as) the currently considered node v has an unvisited

neighbor w:
 The edge (v, w) is called a tree edge, and v is called parent node of w

in the DFS tree
 We continue our search at w, that is we mark w as visited and it

becomes the new current node
 If (when) the currently considered node v has no (more) unvisited

neighbors, we are done in this part of the graph and the parent node of v
becomes the new current node

 Runtime: As all nodes and all edges have to be considered exactly
once, each time requiring a constant amount of effort, the running time
is O(|V| + |E|).

 Memory: In the worst case, the procedure call stack has a depth of |V|

15Network Algorithms (WS 22/23): 05 – Network Resilience

Depth First Search

 For each node GetPre() & GetPost() return the value of the preorder
and postorder number, respectively, in the example above:
 Preorder: A, B, C, D, E, F, H, I
 Postorder: B, E, D, H, I, F, C, A

B

A

C

D

E

F

H I

int pre = 1, post = 1;

DFS(Node node) // visits all nodes & compute T
{ Node v;
 node.SetPre(pre++);
 for (v = node.First(); v = v.Next(); v != NULL) {
 if (v.GetPre() == -1)
 { node.addTreeChild(v); DFS(v); } }
 node.SetPost(post++);
}

16Network Algorithms (WS 22/23): 05 – Network Resilience

For Connected Graphs DFS Computes a Spanning Tree

 If G is connected, the algorithm DFS(s) computes a spanning tree T of
G starting at the start node s (we consider directed edges in the tree
T)

 Classification of edges of G with respect to a spanning tree:
 An edge (v, w) of T is called a tree edge
 An edge (v, w) of G \ T is called a back edge if v is a descendent or

ancestor of w
 Else (v, w) is called a a cross edge (can not exist in DFS-computed T)

4

1

6

2

3

5

7

8

root

tree edge back edge

17Network Algorithms (WS 22/23): 05 – Network Resilience

No Cross Edges in DFS Trees for Undirected Graphs

 Corollary 1: If DFS is run on an undirected graph, the resulting tree is
of a form that there are no edges in G \ T to be classified as cross
edges

 Proof idea:
 Assume that we obtain a tree, so that the edge (b, e) in G \ T is to be

classified as a cross edge
 In this case, we should have considered (b, e) when dealing with b
 Thus, the tree has to look differently

a

c fd

b e

a

c

f

ed

b

18Network Algorithms (WS 22/23): 05 – Network Resilience

Resulting Tree, Tree Edges & Back Edges for a Graph G

(a) Original graph (DFS computed from node s)

(b) Classifying edges into tree edges (solid) and back edges (dashed)
(c) Resulting DFS tree

19Network Algorithms (WS 22/23): 05 – Network Resilience

Verifying Descendant Relationships via Preordering

 If there is a directed path from a node u to a
node v in T:
 u is called an ancestor of v
 v is called a descendant of u

 Suppose we preorder-number a tree T

Let Dv = # of descendants of v

 Lemma 3:

w is descendant of v

 v.pre < w.pre v.pre + Dv

 In the following, we will further
consider single back edges from a
descendant w of v to potential
ancestors u of v

u → v : (u, v) is tree edge of T

u → v : u is an ancestor of v

w --- u : (w, u) is back edge if

(w, u) G \ T with

either w → u or u → w

*

* *

Dv w

v

u
*

20Network Algorithms (WS 22/23): 05 – Network Resilience

Testing for Proper Ancestors via Preordering

 Lemma 4:

If w is descendant of v and
(w, u) is back edge such that u.pre < v.pre

 u is a proper ancestor of v

 Theorem 1:

In a DFS tree T, a node v other than the
root is an articulation node if and only if
 v is not a leaf, and
 some subtree of v has no back edge incident

to a proper ancestor of v
 In the example, x is an articulation node, as

its right subtree does not have a back edge
incident to a proper ancestor of x

 We have to deal specifically with the root
as it does not have any ancestors (later)

Dv w

v

u
*

21Network Algorithms (WS 22/23): 05 – Network Resilience

Articulation Nodes and Back Edges to Ancestors

 Proof:
 If v is an articulation node then v cannot be a leaf in T. Why?

 Deleting v must separate a pair of vertices x and y. Because of the
other tree edges, this cannot happen unless y is a decendant of v.

 Let v be a non-root articulation point that
separates the nodes x and y

 Thus, there can not exist a back edge
from the subtree that contains y to a
proper ancestor of v as this would
enable an alternative path between x and y

 If conditions are met for a node v, then it
separates any ancestor of v from any
descendant in the appropriate subtree, thus v
has to be an articulation node

 In order to explain how to efficiently implement this test, we first define
the so-called low value for every node v

22Network Algorithms (WS 22/23): 05 – Network Resilience

Low Value of Nodes

 Definition:

For each vertex v, we define low(v) = min ({v.pre} {w.pre | v --- w})
 By v --- w we mean that v is connected to w through a path of tree edges

and potentially one additional back edge as the last edge

 Lemma 5:

low(v) = min ({v.pre} {low(w) | v w} {w.pre | v--- w})

 Note:
 While in the original definition of low(v), the second set considers tree paths

of arbitrary length, the terms in the lemma only consider tree paths of
length one, that is direct descendants of v (plus potentially one additional
back edge)

 Also, in the second set of the term in the lemma, it is assumed that low(w)
has been properly computed for all direct descendants w of v
(this calls for a nice induction proof that actually delivers the algorithm idea)

*

*

23Network Algorithms (WS 22/23): 05 – Network Resilience

Example Graph with DFS Preorder and Low Values

7[5]

1[1]

2[2]

4[2]

3[2]

5[1]

8[1]
6[5]

v.pre[low(v)]

24Network Algorithms (WS 22/23): 05 – Network Resilience

Computing Low Values of Nodes

 Lemma 5 enables us to compute low(v) for all nodes v by using DFS
and evaluating preorder values of incident nodes as we visit each
node

 For each node v that is visited during a DFS we set v.pre, initialize
v.low := pre.v and consider all edges of v:
 For tree edges to unvisited nodes w, we perform a recursive call

and after it returns and w.low has been computed properly, we set
v.low := min (v.low, w.low)

 For back edges to nodes w that have already been visited, we set
v.low := min (v.low, w.pre)

 The following theorem tells us how to use the values low.v and pre.v in
order to determine the articulation nodes of G

25Network Algorithms (WS 22/23): 05 – Network Resilience

Computing Articulation Nodes (1)

 Theorem 2:

A node a is an articulation node if and only if either
 The node a is the DFS tree root with ≥ 2 tree children, or
 The node a is not the DFS tree root but it has a tree child v with

low (v) ≥ a.pre
 Proof:

 Assume that node a is the DFS tree root with at least two tree children. As
in a DFS tree there are no cross edges (corollary 1), all paths between
nodes in the subtrees originating at node a have to go over a. Thus, node
a is an articulation node.

 Assume that node a is not the root of the DFS tree but it has a tree child v
with low(v) ≥ a.pre. This implies that there is no back edge from nodes
below node a to a proper ancestor of node a. By theorem 1 we know that
node a has to be an articulation point.

26Network Algorithms (WS 22/23): 05 – Network Resilience

Computing Articulation Nodes (2)

 Proof (continued):
 If node a is the DFS tree root and is an articulation node, it must have ≥ 2

tree edges to two distinct biconnected components. Otherwise the graph
would remain connected after removal of node a (and node a was no
articulation node).

 If node a is not the DFS tree root and is an articulation node, node a must
have a child node b, such that the subtree originating in node b contains
all nodes of a connected component of graph G \ {a}. For this node b, it
must hold that b.low ≥ a.pre

 Thus, we can compute the articulation nodes of a graph with a slightly
modified DFS in time O(|V| + |E|)

27Network Algorithms (WS 22/23): 05 – Network Resilience

Computing the Blocks of a Graph

 In order to also compute the blocks of graph G while computing its
articulation points we introduce an additional stack s of edges:
 Whenever we find a tree edge (v, w), we push it to the stack s prior to

making the recursive call DFS(w)
 Whenever we find a back edge, we also push it to the stack s
 Whenever a recursive call for node w returns to the parent node v and we

have w.low ≥ v.pre, then all edges on top of the stack up to the edge (v, w)
form the next identified block

 As for each node and for each edge we only have to perform a
constant number of steps the overall running time of the algorithm is
O(|V| + |E|)

28Network Algorithms (WS 22/23): 05 – Network Resilience

bicon(s, s) computes set A of articulation nodes and set B of blocks

procedure bicon(Node v; Node pv) { // v current node, pv parent of v

v.visited = true;

v.pre = v.low = current++;

int c = 0; // counts number of children of node v in DFS tree

foreach (neighbor edge e = (v, w) of v) {
 if (w.visited == false) { // tree edge

 s.push(e); c++; bicon(w, v); // recursive call

 v.low = min(v.low, w.low);

 if ((w.low ≥ v.pre) and ((v != s) or (c = 2))) { A.insert(v); } // v is articulation node

 if (w.low ≥ v.pre) {

 Edge f; Set C := ;

 for (f = s.pop(); f != e; f = s.pop()) {C.insert(f);}

 C.insert(f);

 B.insert(C); } // of tree edge

 else if ((w.pre < v.pre) and (w != pv)) { // back edge
 S.push(e); v.low = min(v.low, w.pre); }

 } // of for all neighbor edges

} // of bicon(Node v, Node pv)

29Network Algorithms (WS 22/23): 05 – Network Resilience

Algorithm
Pseudocode from
[ERL02]

30Network Algorithms (WS 22/23): 05 – Network Resilience

Additional References

[Erl02] Thomas Erlebach. Algorithmen für Kommunikationsnetze. Lecture Script, ETH
Zürich, 2002.

[Tar72] Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM
Journal of Computing, 1, pp. 146-160, 1972.

[ET76] Kapali P. Eswaran and Robert Endre Tarjan. Augmentation Problems. SIAM
Journal of Computing, 5(4), pp. 653-665, 1976.

[NI92] Hiroshi Nagamochi and Toshihide Ibaraki. Computing Edge-Connectivity in
Multigraphs and Capacitated Graphs. SIAM Journal of Discrete Mathematics,
5(1), pp. 54-66, February 1992.

[SW97] Mechthild Stoer and Frank Wagner. A Simple Min-Cut Algorithm. Journal of the
ACM, 44(4), pp. 585- 591, July 1997.

