Network Algorithms

Chapter 6

Biconnectivity Augmentation

Thomas Böhme
Technische Universität Ilmenau

WS 2022/23

Let $G=(V, E)$ be a finite undirected graph.

- G is connected if for any two distinct vertices $u, v \in V$ there is a path connecting u and v in G.
- A maximal connected subgraph of G is called a component of G.
- G is biconnected if it is connected and for any vertex $v \in V$ the graph $G-v$ obtained from G by deleting v is connected too.
- A maximal biconnected subgraph of G is called a block of G.
- A block B of G is called isolated if it is also a component of G. B is called an end block if it contains exactly one articulation.
- A vertex $v \in V$ is said to be an articulation if $G-v$ has more components than G.

Let $G=(V, E)$ be a finite undirected graph and $v \in V$.

- $c=c(G) \ldots$ number of components of G
- $p=p(G) \ldots$ number of end blocks of G
- $q=q(G) \ldots$ number of isolated blocks of G
- $d(v: G) \ldots$ number of components of $G-v$
- $d=d(G)=\max \{d(v: G) \mid v \in V\}$

Remark. Note that $p=0$ implies $d=1$, and $p>0$ implies $p \geq 2$.

Proposition (1)

Let $=(V, E)$ be a finite undirected graph with c components. The minimal number of additional edges needed to make G connected is $c-1$.

Proposition (2)

Let $G=(V, E)$ be a finite undirected graph and $E^{\prime} \subseteq\binom{V}{2}$ such that G is not biconnected but $G^{\prime}=\left(V, E \cup E^{\prime}\right)$ is biconnected. Then $\left|E^{\prime}\right| \geq \max \left\{d-1, q+\left\lceil\frac{p}{2}\right\rceil\right\}$.
Proof.
(i) Let $v \in V$ be a vertex of G and $A_{1}, \ldots, A_{d(v: G)}$ the components of $G-v$. It follows from Proposition (1) that E^{\prime} contains $d(v: G)-1$ edges connecting the components of $G-v$. Hence, $\left|E^{\prime}\right| \geq d-1$.
(ii) Any isolated block of G is incident with at least two distinct edges in E^{\prime} and any end block is incident with at least one edge in E^{\prime}. Thus $2\left|E^{\prime}\right| \geq 2 q+p$ and so, $\left|E^{\prime}\right| \geq q+\lceil p / 2\rceil$.

Proposition (3)

Let $G=(V, E)$ be a finite undirected graph that is not biconnected. Then there is a set $E^{\prime} \subseteq\binom{V}{2}$ such that $G^{\prime}=\left(V, E \cup E^{\prime}\right)$ is biconnected and
$\left|E^{\prime}\right|=h(G)=\max \{d-1, q+\lceil p / 2\rceil\}$.
Proof.
The proof is by induction on $h(G)$. We let $p^{\prime}=p\left(G^{\prime}\right), q^{\prime}=q\left(G^{\prime}\right)$, $d^{\prime}=d\left(G^{\prime}\right)$, and $h^{\prime}=h\left(G^{\prime}\right)$.

If $h(G)=1$, then $q+\lceil p / 2\rceil \leq 1$. If $p=0$, then $d=1$, and $q=1$. This contradicts the assumption that G is not biconnected. Hence, $p=2$ and $q=0$. Let A, B be the two end blocks of G. Adding an edge that connects a non articulation vertex in A with one in B results in a biconnected graph. This establishes the base case.

For the inductive step we prove that if $h(G) \geq 2$, then there is an edge $e \in\binom{V}{2}$ such that $h\left(G^{\prime}\right)=h(G)-1$ for $G^{\prime}=(V, E \cup\{e\})$.

Case 1: G is not connected.
Let A, B be two distinct components of G and
$a \in V(A), b \in V(B)$ such that

- a and b are not articulations,
- if A is not an isolated block, then a is contained in an end block, and
- if B is not an isolated block, then b is contained in an end block.
Case 1.1: $p=0$
- $d=q$ unless G is edgeless, in which case $d=q-1$.

Consequently, $d-1<q+\lceil p / 2\rceil$.

- $q^{\prime} \leq q$
- If $q^{\prime}=q-1$, then $p^{\prime}=p=0$.
- If $q^{\prime}=q-2$, then $p^{\prime}=p+2=2$.

In either case $q^{\prime}+\left\lceil p^{\prime} / 2\right\rceil=q+\lceil p / 2\rceil-1$. Hence $h^{\prime}=h-1$.

Case 1.2: $p>0$

- There is an articulation x such that $d(x: G)=d$.
- It follows $d^{\prime}=d-1$.

As in case 1.1, $q^{\prime}+\left\lceil p^{\prime} / 2\right\rceil=q+\lceil p / 2\rceil-1$. Hence $h^{\prime}=h-1$.

Case 2: G is connected. Since G is not biconnected, $q=0$. Thus $h=h(G)=\max \{d-1,\lceil p / 2\rceil\}$. Furthermore, if G^{\prime} is obtained from G by adding an arbitrary edge, then $q\left(G^{\prime}\right)=q=0$.

- If $d-1<\lceil p / 2\rceil$, then adding an edge connecting two non articulation vertices in two distinct end blocks of G results in a graph G^{\prime} with $p^{\prime}=p\left(G^{\prime}\right)=p-2$. It follows $h^{\prime}=h-1$.
For the remaining case $d-1 \geq\lceil p / 2\rceil$ some preparation is needed.
Let u be an articulation of G and A_{1}, \ldots, A_{k} the components of $G-u$. If F is an end block of G, then there is exactly one component A_{i} of $G-u$ such that A_{i} contains $F-u$. Conversely, for any component A_{i} there is at least one end block F such that A_{i} contains $F-u$. Let a_{i} denote the number of end blocks F such that A_{i} contains $F-u$. Clearly, $a_{1}+\cdots+a_{k}=p$ and $a_{i} \geq 1$ for all $i=1, \ldots, k$.

Suppose that $d(u: G)-1=d-1 \geq\lceil p / 2\rceil$. Since $a_{1}+\cdots+a_{d}=p$ and $a_{i} \geq 1$ for all $i=1, \ldots, d$, it follows that $\max \left\{a_{i} \mid i=1, \ldots, d\right\} \leq p-(d-1)$. This implies that
$-\max \left\{a_{i} \mid i=1, \ldots, d\right\} \leq\lceil p / 2\rceil$, and that
$-\max \left\{a_{i} \mid i=1, \ldots, d\right\}<\lceil p / 2\rceil$ if $d-1>\lceil p / 2\rceil$, or, if $d-1=\lceil p / 2\rceil$ and p is odd. Thus $\max \left\{a_{i} \mid i=1, \ldots, d\right\}=\lceil p / 1\rceil$ if and only if $d-1=\lceil p / 2\rceil$ and p is even. We also conclude that in this case exactly one a_{i} is $p / 2$ and all other a_{i} 's are one.

Let y be an articulation of G different from u such that
$d(y: G)=d=d(x: G)$. Assume w.l.o.g. that y is contained in A_{1}. Let B_{1}, \ldots, B_{d} be the components of $G-y$, and let b_{1}, \ldots, b_{d} be the number of end blocks F such that B_{i} contains $F-u$. Suppose that u is contained in B_{1}. Then $b_{1} \geq a_{2}+\cdots+a_{d}$ and $a_{1} \geq b_{2}+\cdots+b_{d}$. Hence, $d(y: G) \leq 1+b_{2}+\cdots+b_{d} \leq 1+a_{1}$. Consequently, $d(y: G)-1=d(u: G)-1=d-1 \geq\lceil p / 2\rceil$ implies that $a_{1}=b_{1}=\lceil p / 2\rceil$ and $d(y: G)=d(u: G)=d=\lceil p / 2\rceil$. In this case is $a_{1}=b_{2}+\cdots+b_{d}$. It follows that B_{1}, \ldots, B_{d} are exactly the end blocks contained in A_{1}. Furthermore, it follows that $a_{2}=\ldots=a_{d}=b_{2}=\ldots=b_{d}=1$ and no A_{i} with $i \neq 1$ can contain an articulation v with $d(v: G)-1=d-1=\lceil p / 2\rceil$. We conclude that adding an edge connecting a non articulation vertex in an end block that intersects A_{1} with one in an end block intersecting A_{2} (or any other A_{i} with $i \neq 1$) results in a graph G^{\prime} with $d^{\prime}=d\left(G^{\prime}\right)=d-1$ and $p^{\prime}=p\left(G^{\prime}\right)=p-2$, i.e. $h^{\prime}=h\left(G^{\prime}\right)=h-1$. (Note that this is also true if u is the only articulation with $d(u: G)-1=d-1=\lceil p / 2\rceil$.)

