
Simulative Evaluation of Protocol Functions (SS 2006): Introduction 1

Simulative Evaluation of
Internet Protocol Functions

Introduction

Course Objectives & Introduction

Performance Evaluation & Simulation

A Manual Simulation Example

Resources

http://www.tu-ilmenau.de/fakia/simpro.htmlhttp://www.tu-ilmenau.de/fakia/simpro.html

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 2

You are here to get a “hands-on” experience...

This is a complementary course to our lectures Telematics 1 and
Performance Evaluation:

Can also be taken in parallel to / without performance evaluation course

You should be ready to read some introductory material before the first lab

This practically oriented course is designed to give you a “hands-on”
experience with network protocol functions and simulation studies:

Introduces a simulation environment and lets you add protocol
functionality

Studied protocol functions: forwarding, routing, (interface queues),
connection setup, error-, flow- and congestion control

Requires good programming skills

Knowledge of C++ is an asset (but not a pre-requisite)

Allows you to obtain in-depth knowledge of topics covered in Telematics I
and the techniques and art of simulation studies – because afterwards
“you did it!” :o)

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 3

Example: Evaluation of TCP Congestion Control

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 4

Course Objectives

In this course, you will basically learn about two subject areas:

What are protocol functions and how do they work?

We will explain and experiment with just some of them, but
almost all of our examples are actually deployed in the Internet

How can one evaluate, if one method realizing a protocol function
is good, or, comparatively speaking, better than another one?

In fact, we deal with one specific approach to answer such
questions, namely evaluation by simulation

The good thing about our “simulative approach” to teaching protocol
functions is that you can:

Literally watch the protocol functions “at work”, being able to examine
every single step of their operation

Experiment with protocol functions in “whole networks”, using just one
single (even “disconnected”) PC running either Linux or Windows XP

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 5

Prerequisites

There are a couple of things you need to know about in order to be
able to start with your experiments:

Simple understanding of a network (see lecture Telematics 1)

Performance evaluation methods, especially simulation (today; see also
quick-start material on web page)

Some basic knowledge about the C++ programming language (your task;
see also quick-start material)

Introduction to the OMNet++ discrete event simulation system (also
covered in quick-start material)

Overview of the protocol function simulation framework used in this course
(see quick-start material...)

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 6

What is a Network? (just in case you do not remember... :o)

For our purposes:
A network is a (connected) graph consisting of nodes and edges (the latter
called links)

The nodes can send and receive messages (“communicate”) over the
links directly attached to them

We prefer to deal with connected graphs:

Unconnected graphs can be seen as a collection of connected graphs
which can not communicate with each other

Considering them would allow little additional insight...

Sometimes, we distinguish between;

End systems that are the (ultimate) source and/or destination of a
message

Intermediate systems, that relay messages between nodes, that do
not share a common link

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 7

An Example Network

The above (randomly generated) figure, showing a network with two
(randomly) designated nodes A and B, allows us to raise some (not
randomly generated :o) questions:

How can a message M, that A wants to send to B, make its way through
the network? (→ forwarding, routing)

What can we do, if the M gets accidentally falsified by an error on its way?
(→ error detection and handling)

How can we avoid that A overloads B with its messages? (→ flow control)

How can we avoid overload in intermediate nodes? (→ congestion control)

A

BM

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 8

Protocol Functions Studied in this Course (1)

And this already introduced the protocol functions, we will study in this
course:

Forwarding: an intermediate node receives a message on one link and
sends it on another link (which link is determined using local information)

Routing: determining the forwarding information required in nodes

Error detection: realizing that a message has been (accidentally) altered
while traversing the network (or a link)

Error handling: the measures taken in reaction to a detected error

Flow control: avoiding overload of a slow receiver by a fast sender

Congestion control: avoiding overload in intermediate nodes (= having to
forward more messages than the node is able to)

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 9

Protocol Functions Studied in this Course (2)

Why will we need a whole winter term to study these protocol functions
that can be motivated and defined on only two slides?

Well, we want you to actually understand:

with what “methods” they can be implemented, and

how these “methods” work!

This requires you:

to program them on your own,

to experiment with them and watch them at work, and

to evaluate different parameter settings (more on this below) and
obtain and interpret results on certain performance metrics (also more
on this below) of different methods

And last but not least:

we want you to “have some fun” during this whole exercise, and

fun takes its time at well... :o)

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 10

Performance Evaluation (1)

Given a system, how do you evaluate its performance?

Three classic methods:

Experiments: Use a concrete example of a system and try to measure its
performance

Analysis: Construct a mathematical abstraction of the system and derive
equations describing the system’s performance

Simulation: Build a model (a representation) of the system, along with its
operations, and use this model to numerically evaluate system
performance – usually with the help of computers

In this course, we will use simulation

(Acknowledgement: material on the next slides originally authored by H. Karl)

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 11

Performance Evaluation (2)

Some questions related to this:

What is a system?

What are operations of a system?

What is performance?

On what does performance depend?

What is a model?

How to build a model?

How to numerically evaluate it?

How to interpret the results of such an evaluation?

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 12

Course Objectives (even more... :o)

At the end of this course, you should furthermore:
know about simulation principles (in particular, the so-called discrete event
simulation)

design and implement simple discrete event simulation programs

have some experience with a modern simulation tool

Emphasis is on practical aspects and questions, not on theory.

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 13

What is a System?

Definition of a system:
American Heritage Dictionary: 1. A group of interacting, interrelated, or
interdependent elements forming a complex whole, 2d. A group of
interacting mechanical or electrical components

Characterized by its parts and their interactions

System as a whole is also defined by its purpose or function

Systems can be part of the real world or virtual entity

System notion depends on abstraction level:
On a higher level, system can be part of another system

On a lower level, parts of a system usually can be regarded as systems as
well (subsystems)

Systems are recursively structured:
In general, no atomic parts

In practice, atomic parts are chosen depending on intentions of usage

Choice of “system” abstraction depends on objective or purpose of usage

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 14

System State

In most systems, different modes or conditions of being can be
distinguished:

The system can be in different states

Because of recursive nature of system, parts also (usually) have a
state

State can be expressed by the values of a set of variables

System state is the aggregation of state of the parts

State can be continuous or discrete

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 15

System State Changes (1)

Interesting (dynamic) systems change their state over time:
Static systems do not change their state, passage of time plays no role

In (time-)continuous systems, the state of the system is a continuous
(in the mathematical sense) function of time:

Examples: airplanes moving, planets turning, cars crashing, etc.

In such systems, state is continuous as well

Discrete state values make little sense for time-continuous systems

In (time-)discrete systems, the state of the system changes
instantaneously at separate points in time:

Examples: a cashier line in a supermarket, computer systems,
communication networks

State can be continuous or discrete

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 16

System State Changes (2)

Which rules govern the process of state changes?
Philosophical questions as well as question of abstraction level

Newtonian physics/mechanics results in precise description of the
development of the world and its objects:

Results in a deterministic concept of a system

Often appropriate

Quantum mechanics:
Everything is a result of random behavior of small particles

Results in a stochastic concept of a system

Often appropriate

Which level to choose? How to describe a system?

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 17

Models

Sometimes, the actual system is available for investigation (at
reasonable cost and effort)

Sometimes, only a model of a system can be used – and usually has
to be constructed explicitly:

A model of a system is also a system

Built to capture some relevant properties of the original system

Simplified with respect to original system, reduced complexity

Models appear in many different kinds, with many different
characteristics

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 18

Types of Models: Physical vs. Mathematical

Physical models:
Scale representation of system

Example: build a little airplane and a wind tunnel to study aerodynamics
with experiments

Mathematical models:
Represent system with appropriate mathematical or logical formalism

An airplane is described by the laws of aerodynamics

Manipulate this representation, e.g., introduce external stimuli

Move the rudders of the airplane = use different laws to represent it

Try to deduce how the real system would react (provided model is valid)

Would such an airplane turn left or right?

We will only consider mathematical models!

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 19

Types of Models: Static vs. Dynamic

Static model:
A model where only a certain, fixed state of a system is considered, state
changes are not taken into account

Evidently appropriate for static systems (one without state changes)

Sometimes appropriate even for dynamic systems, if only system
properties in certain, fixed states are of interest

Dynamic model:
Reflect the system’s state changes as it evolves over time

How to handle continuous or discrete systems?

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 20

Types of Models: Continuos vs. Discrete (1)

(Time-)Continuous models:
A continuous model describes the system such that the state variables are
a continuous function of time

Typical description: differential equation(s), describing relationships
between interdependence of the rate of change of certain state variables
with each other and with time

(Time-)Discrete models:
Change of state only happens at discrete, well separated instances of time
(the set of points in time where the state changes is at most countably
infinite)

In between such times, all state variables maintain their values, the state
does not change

At such points in times, events of the model occur, i.e., the state of the
systems can only change when an event occurs (but need not necessarily
change at every event)

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 21

Types of Models: Continuos vs. Discrete (2)

Remark:
The type of system and does not automatically determine the type of an
appropriate model of the system

For continuous systems, continuous models are not necessarily used:
E.g., voice data is a continuous system, but is – for purposes of
transmission – modeled as a discrete system (quantization, sampling)

For discrete systems, discrete models are not necessarily used:
E.g., traffic flow on a highway – with discrete events of cars entering and
leaving the highway – can be modeled continuously if only the behavior of
large numbers is interesting

Choice depends on intentions, objectives, feasibility

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 22

Types of Models: Deterministic vs. Stochastic

A model where the evolution of state is completely described such that
it only depends on the initial state is a deterministic model:

E.g., a set of differential equations describing concentration of different
substances in a chemical reaction

A model where the evolution of state depends on random events
(random in both time of occurrence or nature) is a stochastic model:

E.g., model of a highway where the times when cars enter the highways
are described by a random variable

Output/results for such models do not only depend on initial state, but also
on the values of random variables -> no fixed or single result for such
models

Again note difference between system and its model:
Sometimes, stochastic systems are modeled deterministically

Example: chemical processes are actually random by their very nature
(quantum mechanics), yet they are usually modeled deterministically
(appropriate because of the large number of particles involved)

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 23

Model Criteria

Good models should be:
Appropriate representation of the system (depending on purpose of
investigation)

As simple as possible without impeding appropriateness

Reusable for similar systems / models, as a part in other models

Parameterizable

Amenable to appropriate investigation method:

In acceptable time, with acceptable effort, with desired accuracy

Method also depends on desired results

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 24

System Overview

Dynamic

Continuous Discrete

Static

System

Deterministic DeterministicStochastic Stochastic

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 25

Model Overview

Model

Physical Mathematical

Static Dynamic

Continuous Discrete

Deterministic DeterministicStochastic Stochastic

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 26

A Simple Example: Problem Statement (1)

Perform a performance evaluation of a checkout counter in a store

Objectives – find answers to the following questions:
How long do customers have to wait?

How many customers are in line?

How much of the time is the cashier busy?

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 27

A Simple Example: Problem Statement (2)

What are relevant parts?
The person at the counter

People waiting in line

What are relevant parameters?
How do customers arrive at the queue?

How long does it take to serve a customer?

How is the queue organized?

Metrics = objectives in this example

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 28

A Simple Model

Map the real-world system parts to abstract representations

Server

Queue

Customer

New customers Customers
leave
system

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 29

A Simple Model – Algorithm

How does such a checkout queue work?

Server is idle (no customer present)
If customer arrives, customer is serviced immediately, until completion

Server is then busy until customer is completely served

Server is busy
If customer arrives, the customer joins the end of the queue

When server becomes idle (a customer has been finished), server checks
the queue

If one or more customer waits in queue, the first customer leaves the
queue and is now serviced

If no customer in queue, the server becomes idle

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 30

Performing a Simulation: Manual Simulation (1)

Let us start the simulation at some arbitrary time, say t=0

Initially, the server is idle, no customers are waiting

Observe the model in its operation as customers enter and leave the
model, as the model changes its state

Server

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 31

Performing a Simulation: Manual Simulation (2)

At some point in time, a customer A arrives, say t=2.1

The server is now busy

Assume this customer needs 1.2 time units to be served

Server

A is being served

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 32

Performing a Simulation: Manual Simulation (3)

At t=3.3, the customer leaves the system

The queue is empty, the server becomes idle again

Server

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 33

Performing a Simulation: Manual Simulation (4)

At t=4.5, the next customer B arrives

The server is idle, the customer begins service immediately, the server
is then busy

Assume this customer needs 3.7 time units for service

Server

B is being served

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 34

Performing a Simulation: Manual Simulation (5)

At t=4.9, the next customer C arrives at the counter

Server is busy, customer joins the queue

Assume this customer will need 1.8 time units for service

Server

B is being served

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 35

Performing a Simulation: Manual Simulation (6)

When does this third customer start service?

Wait a second: When did the other guy finish?
Oh, it arrived at 4.5, it will take 3.7 time units, so it will leave at t=8.2

Maybe it would be more convenient to write down the time the currently
serviced customer will finish (= time the server can accept the next
customer)!

Server

Will finish: 8.2

B is being served

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 36

Performing a Simulation: Manual Simulation (7)

Did I mention that customer D will arrive at t=5.6 (requiring 3.5 units of
service time)?

So at that time, a new customer enters the queue
I guess the server was busy at that time?

Maybe it would be a good idea to write down the time which is
represented by these figures!

Server

Will finish: 8.2Clock: 5.6

B is being served

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 37

Performing a Simulation: Manual Simulation (8)

By the way, the next customer E will arrive at t=9.3

But that is only after the second customer has already finished its
service

So have a look first what happens at t=8.2, then consider the next event

At 8.2, customer leaves system, next one is taken into service, and that
will finish after (oh, what was it) 1.8 time units

Let’s write down the required time units as well

Server

Will finish: N/AClock: 8.2

B leaves
the system

1.83.5

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 38

Customer
will arrive: 9.3

Performing a Simulation: Manual Simulation (9)

Start to serve customer C, set the time it will finish

Now what was the next thing that will happen?
Add a customer? Finish customer?

Maybe it’s a good idea to write down the time the next customer will arrive
as well!

Server

Will finish: 10Clock: 8.2

C is being served

3.5

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 39

Performing a Simulation: Manual Simulation (10)

Compare the time the current customer will finish with the time the
next customer will arrive

Next event that changes the state of the model is the arrival of a new
customer at t=9.3

Set the clock to this time and update the state

Server

Will finish: 10Clock: 8.2

C is being served

Customer
will arrive: 9.3

3.5

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 40

Performing a Simulation: Manual Simulation (11)

At t=9.3, customer E arrives and is put into the queue
E will need, say, 0.7 time units for processing by the server

Write down the arrival of the next customer at, say, t=12.2

Next event to process is the finishing of customer C at t=10

Server

Will finish: 10Clock: 9.3

C is being served

Customer
will arrive: 12.2

3.50.7

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 41

Performing a Simulation: Manual Simulation (12)

C finishes, remove D from queue and put it on the server

Write down the finish time of D, which took 3.5 time units

Next event would be at t=12.2, arrival of a new customer

Server

Will finish: 13.5Clock: 10

D is being served

Customer
will arrive: 12.2

0.7

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 42

Extracting the Structure: What did we do here? (1)

You got the idea! Generalize?

We observed the model only at the points in time when the state of the
model changed

These points in time were explicitly represented by the simulation
clock variable

The state of the model changed due to two different kinds of events:
Arrival of customers

Customers finishing service and leaving the server

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 43

Extracting the Structure: What did we do here? (2)

Both kinds of events were processed = the state was manipulated according
to the algorithms describing the model (see slide 27)

Two variables were used to determine which kind of event is the next one
(arrival or departure of customer)

In a nutshell: we advanced time from one event to the next, checking to see
which kind of event would be the next one

This is the essence of the “next-event time advance algorithm”

Note: time was incremented as necessary, not in fixed amounts

Fixed-increment algorithms are also possible, yet rarely used

Result: periods of inactivity are skipped with next-event algorithms

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 44

Next-Event Time Advance Algorithm

Initialize simulation clock to 0

Determine time of occurrence of future events (might be infinite for
some events)

Might be arbitrarily many – stored in the future event list

As long as there are events to be processed
Increment the simulation clock to the time of the next, most imminent
event

Update the system state as required by the occurrence of this event
(usually done by an event routine specific for each kind of event)

Compute times for future events

Timee1 e2 e3 e4
e5

e6 e7
e8

e9 e100

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 45

Simulation Time and Simulated Time

Carefully distinguish between

Simulated time:

The time as measured by the simulation clock,

Virtual time within the simulated system.

Units can be chosen arbitrarily

Simulation time:

Time that is necessary to run a given simulation

Depends on parameters, models, equipment used, accuracy, …

Ideally, simulation time should be much shorter than simulated time

Do not let the common term “simulation clock” confuse you: it is
measuring simulated time

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 46

Some Books Recommendations (1)

[LK00] Averill M. Law, W. D. Kelton, Simulation, Modeling and
Analysis. 784 pp., McGraw-Hill Education, 2000.

General book on
simulation, both excellent
overview and in-depth
treatment. Not oriented
towards a single problem
area.

If you want to buy only one
book, get this one.
Expensive, though.

Main source for the first
part of this course!

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 47

Some Books Recommendations (2)

Very good book on
performance analysis in
general

Treats simulation as well as
mathematical tools
(queuing theory) and
experimental design

Examples heavily focus on
computer systems and their
architecture.

The treatment of simulation
is not as thorough as in
[LK00], but also very good.

Unfortunately, currently out
of print

[J91] R. Jain, The Art of Computer Systems Performance Analysis.
Wiley, 1991.

Simulative Evaluation of Protocol Functions (SS 2006): Introduction 48

Further References

H. Karl. Praxis der Simulation. course slides, Universität Paderborn.

Good course on performance evaluation by simulation, material is included in our
performance evaluation course with kind permission by H. Karl

A. Varga, OMNeT++: Object-Oriented Discrete Event Simulator,
http://www.hit.bme.hu/phd/vargaa/omnetpp.htm

Homepage for the simulation tool recommended in this class. Contains the manual in an
online version, also links to other web sites relevant to this simulation tool.

B. Stroustrup, The C++ Programming Language. Addison-Wesley, 2000.

Good book on C++, yet not for the faint of heart. :o) If you have mastered it, you have
probably understood C++ quite well. Make sure you read a recent edition, though – old
versions to not match the current language definition.

M. A. Weiss. C ++ for Java Programmers. Addison-Wesley, 2003.

A C++ textbook for readers with knowledge of the Java programming language.

CS123 TA Staff. Java to C++ Transition Tutorial.

http://www.cs.brown.edu/courses/cs123/javatoc.shtml

