
Simulation Project (WS 2005): 02 – Java to C++ Primer 1
© Prof. G. Schäfer

Simulative Evaluation
of Internet Protocol Functions

Chapter 2
Java to C++ Primer

Introduction

Classes

Variables and Memory Management

The C++ Preprocessor

(Acknowledgement: this lecture is basically a shortened slide-version of [CS123])

Simulation Project (WS 2005): 02 – Java to C++ Primer 2
© Prof. G. Schäfer

Introduction

The C++ Programming Language:
Based on the C programming language

C++ adds object oriented features

Thus, programming style is completely different

Often said to be stricter than C and less strict than Java

Large and complicated language

Popular compilers incompatible (at best) or full of bugs (at worst).
Most likely to find both!

Java and C++ Similarities:

Java “looks like C++”

Class structure is very similar

Syntax and keywords are same or similar

“C lets you shoot yourself in the foot. C++ makes it harder,
but when you do, you lose your whole leg”

(Acknowledgement: introductory slide compiled from [Pry, Agg00] with minor modifications)

Simulation Project (WS 2005): 02 – Java to C++ Primer 3
© Prof. G. Schäfer

First Example: Hello World

[Hello.java]

// say that we are part of a package
// named hello:
package hello;

// declare a class called Hello:
public class Hello {

// declare the function main
// that takes an array of Strings:
public static void main(String args[]) {

// call the static method
// println on the class System.out
// with the parameter "Hello world!”:

System.out.println("Hello world!"); }

} // end of <class hello>

[Hello.cc]

// include declarations for the standard
// I/O library where the printf function
// is specified:
#include <stdio.h>

// declare the function main that
// takes an int and an array of strings
// and returns an int as the exit code:
int main(int argc, char *argv[]) {

// call the function printf with the
// parameter "Hello world!\n",
// where \n is a newline character:
printf("Hello world!\n");

} // end of <main()>

Simulation Project (WS 2005): 02 – Java to C++ Primer 4
© Prof. G. Schäfer

Comparison of Hello World in Java and C++ (1)

Key differences:
In C++, there can be global functions, that is functions which are not
methods of a class, such as printf and main

In C++, we have a #include statement, that the compiler to read in a file
that usually contains class or function declarations

The Java program includes a package declaration, in C++ has no
analogous concept of packages (however, there are namespaces...)

Further differences:
Program arguments:

In Java, main takes one parameter, an array of strings

If we want to find out how many elements are in a Java array, we can
query it by accessing the array's length property
In C++, we use a char* instead of a String (will be explained later)

In C++, arrays have no properties or methods; they aren't pseudo-
objects as in Java
For this reason, main takes a second parameter, argc, the number of
arguments contained in the argument array argv

Simulation Project (WS 2005): 02 – Java to C++ Primer 5
© Prof. G. Schäfer

Comparison of Hello World in Java and C++ (2)

Further differences (cont.):
Return value:

In Java the main method does not return a value

In C++ it returns an integer, known as the exit code

The exit code signifies whether or not the program terminated
successfully:

– A value of 0 indicates success

– Any other value means the program failed

– If no value is explicitly returned, it will automatically return a value
indicating success (however, you should always explicitly return
something!)

Simulation Project (WS 2005): 02 – Java to C++ Primer 6
© Prof. G. Schäfer

Classes (1)

This example shows the declaration of:
a class Foo,

with an instance variable of type int, and

the constructor function of Foo initializing the instance variable

[Foo.java]
public class Foo // declare a class Foo
{

protected int _num; // declare an instance variable of type int

public Foo() // declare and define a constructor for Foo
{

_num = 5; // the constructor initializes the _num
// instance variable

}
}

[Foo.java]
public class Foo // declare a class Foo
{

protected int _num; // declare an instance variable of type int

public Foo() // declare and define a constructor for Foo
{

_num = 5; // the constructor initializes the _num
// instance variable

}
}

Simulation Project (WS 2005): 02 – Java to C++ Primer 7
© Prof. G. Schäfer

Classes (2)

[Foo.h]
class Foo // declare a class Foo
{
public: // begin a public section

Foo(); // declare a constructor for Foo
protected: // begin a protected section

int m_num; // declare an instance variable of type int
}; // note the semicolon after the class declaration!

[Foo.h]
class Foo // declare a class Foo
{
public: // begin a public section

Foo(); // declare a constructor for Foo
protected: // begin a protected section

int m_num; // declare an instance variable of type int
}; // note the semicolon after the class declaration!

[Foo.cc]
#include "Foo.h" // include the class declaration

Foo::Foo() // definition for Foo's constructor
{

m_num = 5; // the constructor initializes the _num
// instance variable

}

[Foo.cc]
#include "Foo.h" // include the class declaration

Foo::Foo() // definition for Foo's constructor
{

m_num = 5; // the constructor initializes the _num
// instance variable

}

Simulation Project (WS 2005): 02 – Java to C++ Primer 8
© Prof. G. Schäfer

Classes (3)

In C++, the program is split into two files:
Header file (which we gave the extension .h), and

Program file (which we gave the extension .cc).

The header file contains the class declarations for one or more classes,
and the program file contains method definitions

The program file includes the header file so that it knows about the
declarations

Advantages of splitting program declaration and definition:
One can easily look at a header file and see the interface for a particular
class, without being having to see its implementation

Separating the header and program files can speed program compilation:

When the implementation of a class A changes, as other files
containing classes that make use of A do not need to be recompiled,
as long as the declaration of A has remained unchanged

This can be detected by comparing file dates and times

Simulation Project (WS 2005): 02 – Java to C++ Primer 9
© Prof. G. Schäfer

Classes (4)

In Java, every member variable or method declaration in a class
definition explicitly specifies its visibility by access modifiers

In C++ this is done by the access specifiers:
public: general accessibility

protected: only accessible by instances of the same or derived classes

private: only accessible by instances of the same class

An access specifier defines the visibility of all members until the next
access specifier

The default specifier is private for classes and public for structs

Furthermore, you can declare another class B or global function f to be
a friend of a class A:

In this case all instances of class B and the function f can access all
private and protected members of class A

Friendship is not transitive (as in real life :o)

Simulation Project (WS 2005): 02 – Java to C++ Primer 10
© Prof. G. Schäfer

Classes (5)

Naming convention for member variables:
In C++, "_" and "__" are reserved for the compiler and libraries

Using variables that start with those characters could lead to a crazy
compiler error or worse

The scope operator :: is used when declaring methods:
If a class called Foo has a method called myMethod, when defining the
function in the .cc file, it is called: Foo::myMethod

The scope operator is needed because a .cc file could contain method
definitions for multiple classes, so we need to know for which class each
method is being defined

One minor but important syntax issue:
Remember to finish every class definition in a header file with a ’;’

Otherwise you might get strange errors (sometimes even in other files)

Simulation Project (WS 2005): 02 – Java to C++ Primer 11
© Prof. G. Schäfer

Constructors and Initializer Lists (1)

When an instance of a class is created, it is often required to initialize
various instance variables, some of which are objects

Java allows to initialize those variables and perform other startup tasks
in the constructor

C++ constructors can take a variety of parameters as in Java, plus
there are some special constructors that will be discussed later

In addition, instance variables can be initialized in a so-called initializer
list before the rest of the constructor is called:

Whether to use initializer lists for this purpose is partially a matter of
personal preference

However, knowing the syntax of initializer lists is sometimes needed, such
as when calling superclass constructors

[Foo.h] // Example Class declaration (see also next slide)
class Foo {
public: Foo();
protected: int m_a, m_b;
private: double m_x, m_y; };

[Foo.h] // Example Class declaration (see also next slide)
class Foo {
public: Foo();
protected: int m_a, m_b;
private: double m_x, m_y; };

Simulation Project (WS 2005): 02 – Java to C++ Primer 12
© Prof. G. Schäfer

Constructors and Initializer Lists (2)

Don't use this inside an initializer list – it doesn't point to this

[Foo.cc] // with initializer list (functional equivalent)
#include "Foo.h"

Foo::Foo() : m_a(1), m_b(4), m_x(3.14), m_y(2.718)
{

printf("The value of a is: %d", m_a);
}

[Foo.cc] // with initializer list (functional equivalent)
#include "Foo.h"

Foo::Foo() : m_a(1), m_b(4), m_x(3.14), m_y(2.718)
{

printf("The value of a is: %d", m_a);
}

[Foo.cc] // without initializer list (functional equivalent)
#include "Foo.h"

Foo::Foo()
{

m_a = 1; m_b = 4; m_x = 3.14; m_y = 2.718;
printf("The value of a is: %d", m_a);

}

[Foo.cc] // without initializer list (functional equivalent)
#include "Foo.h"

Foo::Foo()
{

m_a = 1; m_b = 4; m_x = 3.14; m_y = 2.718;
printf("The value of a is: %d", m_a);

}

Simulation Project (WS 2005): 02 – Java to C++ Primer 13
© Prof. G. Schäfer

Inline Declarations

In Java, methods are declared and defined in the same place

This can be done in C++ as well, by defining methods in the header
file (→ “inline declaration”), but leads to a different compilation result:

Code declared inline is inserted for the method directly in the calling
function, thus avoiding the large overhead of calling a function

Code specified in a .cc file leads to a function being called

Inline declarations are typically used only for very short methods such
as accessors and mutators, as well as other short, frequently called
functions that do not require use of an external library

[Color.h]
class Color {
public:

Color();
int getRed() { return m_red; } // inline declaration
void setRed(int red) { m_red=red; } // inline declaration

protected: int m_red, m_green, m_blue;
};

[Color.h]
class Color {
public:

Color();
int getRed() { return m_red; } // inline declaration
void setRed(int red) { m_red=red; } // inline declaration

protected: int m_red, m_green, m_blue;
};

Simulation Project (WS 2005): 02 – Java to C++ Primer 14
© Prof. G. Schäfer

Overloading (1)

Both Java and C++ allow to declare more than one function with the
same name:

This is called overloading

C++ uses the types of the parameters to determine which version of the
function to call

There are rules about when C++ will do implicit casts, but making use of
these rules requires a thorough understanding (see [Str00]).

Therefore, it is recommended for beginners to avoid ambiguity when
overloading functions:

If possible, only overload on the number of parameters as opposed to
the types of the parameters until you have learned all the rules

Or, if possible, call the functions by different names to avoid
overloading entirely (OpenGL uses this method).

Simulation Project (WS 2005): 02 – Java to C++ Primer 15
© Prof. G. Schäfer

Overloading (2)

On an instance "foo" of type "Foo", calling:
foo.print(5); will output: int a = 5

foo.print(5.5); will output: double a = 5.5

Attention:
When when overloading functions so that they take either a pointer type
(see below) or an integer, the symbol NULL is actually an integer

The workaround is to explicitly cast NULL to the pointer type you want

[Foo.h]
class Foo
{
public:

Foo();

print(int a) { printf("int a = %d \n",a); }
print(double a) { printf("double a = %lf \n",a); }

};

[Foo.h]
class Foo
{
public:

Foo();

print(int a) { printf("int a = %d \n",a); }
print(double a) { printf("double a = %lf \n",a); }

};

Simulation Project (WS 2005): 02 – Java to C++ Primer 16
© Prof. G. Schäfer

Default parameters

It is possible to declare default values for parameters of functions in
the .h file:

If fewer parameters are passed than the function takes, it will use the
default values

Using default values can sometimes help you avoid overloading functions
or constructors

Note that parameters without default values must precede all the
parameters with defaults

For an instance "foo" of class "Foo" the following two examples lead to
the same result:

foo.setValues(4);

foo.setValues(4,5);

class Foo {
public:

Foo();
void setValues(int a, int b=5) { m_a = a; m_b = b; }

protected: int m_a, m_b; };

class Foo {
public:

Foo();
void setValues(int a, int b=5) { m_a = a; m_b = b; }

protected: int m_a, m_b; };

Simulation Project (WS 2005): 02 – Java to C++ Primer 17
© Prof. G. Schäfer

Inheritance (1)

Inheritance is quite similar in Java and C++

A class B can have a public superclass A:
There are types of inheritance other than public, but they are rarely used
in real programs

Furthermore, in C++ a class can inherit from more than one
superclass:

This is called multiple inheritance

However, as multiple inheritance can lead to troubling issues and this
course is not actually a programming course, we will not deal with it

Initialization during instantiation:
Parameters to a superclass constructor can be passed in the initializer list

Simulation Project (WS 2005): 02 – Java to C++ Primer 18
© Prof. G. Schäfer

Inheritance (2)

In this example:
Class B inherits from class A
The parameter something is passed to the constructor of class A

[Foo.h]
class A
{ public: A(int something);
};

class B : public A
{ public: B(int something);
};

[Foo.h]
class A
{ public: A(int something);
};

class B : public A
{ public: B(int something);
};

[Foo.cc]
#include "Foo.h"
A::A(int something)
{ printf("Something = %d\n", something); }

B::B(int something) : A(something)
{ }

[Foo.cc]
#include "Foo.h"
A::A(int something)
{ printf("Something = %d\n", something); }

B::B(int something) : A(something)
{ }

Simulation Project (WS 2005): 02 – Java to C++ Primer 19
© Prof. G. Schäfer

Virtual Functions (1)

Consider the following example in Java:

public void someMethod() {
Object obj = new String("Hello");
String output = obj.toString(); // calls String.toString(),

// not Object.toString()
}

public void someMethod() {
Object obj = new String("Hello");
String output = obj.toString(); // calls String.toString(),

// not Object.toString()
}

The method toString() is defined in class Object and overridden
in class String

In the above example, Java knows that obj is really of type String,
so at it calls the String.toString() method

This is polymorphism at work

It can resolve which method to call at run-time since in Java, all
methods are virtual

In a virtual method, the compiler and loader (or VM) make sure that
the correct version of the method is called for each particular object.

Simulation Project (WS 2005): 02 – Java to C++ Primer 20
© Prof. G. Schäfer

Virtual Functions (2)

In C++, functions are not virtual by default, as making everything
virtual by default adds overhead to a program which would be against
C++'s philosophy:

If you don't declare a function virtual and override it in a subclass, it will
still compile even though the "correct" version of the method may not get
called!

The compiler may give you a warning, but you should simply remember to
do this for any function that you may override later.
In C++, the virtual keyword (the opposite of the Java keyword final),
allows you to say that a function is virtual

If a function is declared virtual in a superclass, it is also virtual in all
derived classes

However, you should always explicitly mark virtual functions in derived
classes as virtual in order to make your code easier to read

Simulation Project (WS 2005): 02 – Java to C++ Primer 21
© Prof. G. Schäfer

Virtual Functions (3)

Destructor functions (explained later) should always be declared virtual:
Otherwise it might happen that not all memory gets released if an instance
of a derived class is to be destroyed (see also memory allocation)

class A
{
public:

A();
virtual ~A();
virtual void foo();

};

class B : public A
{
public:

B();
virtual ~B();
virtual void foo();

};

class A
{
public:

A();
virtual ~A();
virtual void foo();

};

class B : public A
{
public:

B();
virtual ~B();
virtual void foo();

};

Simulation Project (WS 2005): 02 – Java to C++ Primer 22
© Prof. G. Schäfer

Overriding and Scope (1)

Consider a class A and its subclass B
that both have a virtual function foo, and

B wants to call A's foo.

In Java, you would use the super command to use A's foo from B's

However, C++ has multiple inheritance, so another way is needed to
specify which foo to call.

This can be achieved with the scope operator ::

[Foo.h]
class A {
public: A();

virtual void foo();
};

class B : public A {
public: B();

virtual void foo();
};

[Foo.h]
class A {
public: A();

virtual void foo();
};

class B : public A {
public: B();

virtual void foo();
};

Simulation Project (WS 2005): 02 – Java to C++ Primer 23
© Prof. G. Schäfer

Overriding and Scope (2)

For an instance b of class B, calling
b.foo();

will output
B::foo() called

A::foo() called

Attention: Overriding an overloaded function in a derived class, also
hides other overloaded versions of the superclass

[Foo.cc]
#include "Foo.h"

A::foo()
{ printf("A::foo() called\n"); }

B::foo()
{ printf("B::foo() called\n");

A::foo(); }

[Foo.cc]
#include "Foo.h"

A::foo()
{ printf("A::foo() called\n"); }

B::foo()
{ printf("B::foo() called\n");

A::foo(); }

Simulation Project (WS 2005): 02 – Java to C++ Primer 24
© Prof. G. Schäfer

C++ Variables and Memory Management (1)

In C++, variables are declared in exactly the same way as in Java.
Declaration of an integer variable would look like this under both
languages:

int myNumber;

You can also assign values to local variables at the time of
declaration, just as in Java:

int myNumber = 0;

Instance variables can not be assigned a value when declared in the
header file; they are initialized in the constructor instead

Thus, C++ and Java declare base type variables in basically the same
way

When it comes to declaring variables that can hold a class, however,
things get a little more interesting

In under to understand these issues, some basic knowledge about
memory management is required

Simulation Project (WS 2005): 02 – Java to C++ Primer 25
© Prof. G. Schäfer

C++ Variables and Memory Management (2)

Memory can be thought of as a very large number of "slots"
Each slot holds 8 bits, or one byte

Current PCs typically have 256 - 1024 megabytes of memory, meaning
they have about as many memory "slots"

To organize all these slots, you can think of the computer as arranging
them in a list – slot 0 is at the beginning, slot 1 follows it, and so on, until
there are no more slots:

Slot 0

Slot 1

Slot 2

...

Slot n-2

Slot n-1

Simulation Project (WS 2005): 02 – Java to C++ Primer 26
© Prof. G. Schäfer

C++ Variables and Memory Management (3)

All slots have a unique number associated with them:
Referring to "slot 5" is always talking about the same slot

Each of these slots can hold a single byte

It is possible to write code like: “add the byte in slot 7 to the byte in slot 20”

Data occupying more than one byte are stored in consecutive bytes:
Integers, for example, take 32 bits to store (4 consecutive bytes)

Larger types, e.g. classes, are similarly stored in consecutive slots

The computer stores an instance of a class in memory by turning it into
several numbers, containing the values of the instance variables of the
class and other such information

Like with integers, it is possible to write code like:

"take the class starting at slot 5 and do something to it"

Since an instance of a class takes several slots, it is dealt with in terms
of the first slot it occupies

The compiler keeps track of how large each class instance is so that it
knows how many slots after the initial one are used.

Simulation Project (WS 2005): 02 – Java to C++ Primer 27
© Prof. G. Schäfer

Pointers (1)

Two definitions:
A memory address is the number of one of the slots mentioned above

A pointer is a memory address (augmented with type information)

So, a pointer to an integer myInt is:
"the number of the slot that stores myInt”,

To declare a pointer to an integer, we place the star symbol * between
the data type and the variable name:

int* myIntegerPointer;

One of the uses of the * is to tell the compiler that we want something to
be a pointer when we are declaring it

So the line above means "I want a pointer to an integer" and not just an
integer

When you declare a pointer, it is pointing to nothing, or even worse, it
often points to a random slot, until it is initialized

Attention: Using an uninitialized pointer, usually causes a program to
crash with a segmentation fault or a bus error

Simulation Project (WS 2005): 02 – Java to C++ Primer 28
© Prof. G. Schäfer

Pointers (2)

In order to make a pointer point to the memory address of a variable,
the variable’s memory address needs to be obtained

To get the memory address of something, we use the & symbol. One of its
meanings is "address of"

The following code declares an integer and lets a pointer point to it:

int* myIntegerPointer;
int myInteger = 1000;
myIntegerPointer = &myInteger;

int* myIntegerPointer;
int myInteger = 1000;
myIntegerPointer = &myInteger;

The following example programs make heavy use of the printf
statement and special formatting characters, such as %p or %d

These will be explained later in the section on the standard I/O library

Simulation Project (WS 2005): 02 – Java to C++ Primer 29
© Prof. G. Schäfer

Pointers (3)

Output (second value is a guessed example value) :
1000

4026529420

[main.cc]
#include <stdio.h>
int main(int argc, char **argv) {
// declare an integer with value 1000:
int myInteger = 1000;

// declare a pointer to an integer
// and make it point to myInteger:
int* myIntegerPointer = &myInteger;

// print the value of the integer:
printf("%d\n", myInteger);

// print the value of the pointer
printf("%p\n", myIntegerPointer);
}

[main.cc]
#include <stdio.h>
int main(int argc, char **argv) {
// declare an integer with value 1000:
int myInteger = 1000;

// declare a pointer to an integer
// and make it point to myInteger:
int* myIntegerPointer = &myInteger;

// print the value of the integer:
printf("%d\n", myInteger);

// print the value of the pointer
printf("%p\n", myIntegerPointer);
}

Simulation Project (WS 2005): 02 – Java to C++ Primer 30
© Prof. G. Schäfer

Pointers (4)

Changing the value to which a pointer points:
Consider a pointer to an integer and that the value of the integer to which
it points needs to be changed

In order to make the compiler to produce code to "set the value of the
integer at memory address x to 50," the compiler has to be told to use the
integer at address x, not the address x itself
For instance, the code myIntegerPointer = 50

does not mean: "set the number that myIntegerPointer points to to 50"

but rather: "set the value of myIntegerPointer to 50"

This will change the memory address that myIntegerPointer actually
points to; myIntegerPointer will now improperly point to "slot 50."

In order to modify the integer, the pointer needs to be dereferenced before
using it. This is where the second use of the "*" comes in:

myIntegerPointer means "the memory address of <myInteger>."

*myIntegerPointer means "the integer at memory address
<myIntegerPointer>."

Simulation Project (WS 2005): 02 – Java to C++ Primer 31
© Prof. G. Schäfer

Pointers (5)

The output is:
1000

1005

// declare an integer and a pointer pointing to it:
int myInteger = 1000;
int *myIntegerPointer = &myInteger;

// print the value of the integer before changing it:
printf("%d\n", myInteger);

// dereference the pointer and add 5 to the integer
// it points to:
*myIntegerPointer += 5;

// print the value of the integer after changing it
// through the pointer:
printf("%d\n", myInteger);

// declare an integer and a pointer pointing to it:
int myInteger = 1000;
int *myIntegerPointer = &myInteger;

// print the value of the integer before changing it:
printf("%d\n", myInteger);

// dereference the pointer and add 5 to the integer
// it points to:
*myIntegerPointer += 5;

// print the value of the integer after changing it
// through the pointer:
printf("%d\n", myInteger);

Simulation Project (WS 2005): 02 – Java to C++ Primer 32
© Prof. G. Schäfer

Pointers (6)

The output is:
1000

1005

1000

// declare an integer and a pointer pointing to it:
int myInteger = 1000;
int *myIntegerPointer = &myInteger;

// declare another integer whose value is the
// same as the integer at memory address <myIntegerPointer>:
int mySecondInteger = *myIntegerPointer;

// print the integer and then change it through the pointer:
printf("%d\n", myInteger);
*myIntegerPointer += 5;

// print the value of the integer of both integers:
printf("%d\n", myInteger);
printf("%d\n", mySecondInteger);

// declare an integer and a pointer pointing to it:
int myInteger = 1000;
int *myIntegerPointer = &myInteger;

// declare another integer whose value is the
// same as the integer at memory address <myIntegerPointer>:
int mySecondInteger = *myIntegerPointer;

// print the integer and then change it through the pointer:
printf("%d\n", myInteger);
*myIntegerPointer += 5;

// print the value of the integer of both integers:
printf("%d\n", myInteger);
printf("%d\n", mySecondInteger);

Simulation Project (WS 2005): 02 – Java to C++ Primer 33
© Prof. G. Schäfer

Pointers (7)

Example on previous slide:
Experiment:

dereference a pointer myIntegerPointer, pointing to the memory
address of a variable myInteger ,

store it in another variable mySecondInteger, and

change the value of myInteger

Question:
will the value of mySecondInteger also change?

Answer:

no it will not, as the second integer pointer contains another memory
address, that contains a copy of the original value

Can more than one pointer point to the same address?
It is possible to have multiple pointers point to the same address

In such a case, changing the value of the number at that address changes
the values the other pointers are pointing to, since it is the same address

Simulation Project (WS 2005): 02 – Java to C++ Primer 34
© Prof. G. Schäfer

Pointers to Pointers

Since pointers are just numbers in memory (e.g. 32-bit integers on x86
machines), it's possible to have pointers to these pointers:

int myInteger = 1000;
int* myIntegerPointer = &myInteger;

int** myIntegerPointerPointer;
myIntegerPointerPointer = &myIntegerPointer;

int myInteger = 1000;
int* myIntegerPointer = &myInteger;

int** myIntegerPointerPointer;
myIntegerPointerPointer = &myIntegerPointer;

myIntegerPointerPointer is a pointer to a pointer to an integer:
A pointer to an integer is of type int *

So, a pointer to a pointer to an integer is of type int **.

Dereferencing myIntegerPointerPointer once gives a pointer to an
integer:
(*myIntegerPointerPointer) == myIntegerPointer

Dereferencing myIntegerPointerPointer twice gives an integer

(**myIntegerPointerPointer) == myInteger

Simulation Project (WS 2005): 02 – Java to C++ Primer 35
© Prof. G. Schäfer

Pointers To Objects (1)

Consider the following simple class declaration:

[Foo.h]
class Foo {
public:

Foo(); // default constructor
Foo(int a, int b); // another constructor
~Foo(); // destructor

void bar(); // random method

int m_blah; // random public instance variable
};

[Foo.h]
class Foo {
public:

Foo(); // default constructor
Foo(int a, int b); // another constructor
~Foo(); // destructor

void bar(); // random method

int m_blah; // random public instance variable
};

Declaring a variable to this class and creating the class in Java:
Foo myFooInstance = new Foo(0, 0);

In C++:
Foo* myFooInstance = new Foo(0, 0);

In C++, new operator returns a pointer to whatever follows it

Simulation Project (WS 2005): 02 – Java to C++ Primer 36
© Prof. G. Schäfer

Pointers To Objects (2)

Calling the method bar on the instance in Java:
myFooInstance.bar();

In C++, myFooInstance is a pointer, and pointers need to be
dereferenced before being used:

myFooInstance->bar(); // dereference the pointer and
// call the method

Public instance variables of instances of Foo could be accessed
likewise (of course, you would never do that...):

myFooInstance->m_blah = 5;

The arrow operator -> does two things:
it dereferences the pointer, and then

it calls a method on the instance or accesses a member variable.

This is shorthand for saying:
(*myFooInstance).bar();

Simulation Project (WS 2005): 02 – Java to C++ Primer 37
© Prof. G. Schäfer

Instances (1)

In Java, the only way to create an object is to new one and store a
reference to it in a variable

In C++, it is possible to declare objects without “newing” them explicitly:
Foo myFooInstance(0, 0);

This line of code creates a variable of type Foo and passes the specified
parameters to its constructor.

If we wanted to create a Foo instance using the default constructor
instead, we could say:

Foo myFooInstance; // same as Foo myFooInstance();

In Java, myFooInstance would be a null reference

In C++, it's an actual instance

If we don't want to refer to the instance later, say, because it is being
passed as a parameter, we can leave out the variable name:

bar.setAFoo(Foo(5,3)); // pass an instance of Foo

Simulation Project (WS 2005): 02 – Java to C++ Primer 38
© Prof. G. Schäfer

Instances (2)

Calling methods and accessing public instance variables of an
instance has the same syntax that you're used to in Java:

myFooInstance.bar();

myFooInstance.m_blah = 5;

Like pointers, instances may be local variables or member variables
If an instance is a member variable of a class, its constructor can be called
in the class's constructor's initializer list (see next slide)

Simulation Project (WS 2005): 02 – Java to C++ Primer 39
© Prof. G. Schäfer

Instances (3)

[Bar.cc]
#include ”Bar.h”

// call Foo::Foo(int,int) and initialize m_foo:
Bar::Bar(int a, int b) : m_foo(a,b) {
// create another instance of Foo, this time as a local var:
Foo fooLocal;
// do something with the two Foos, m_foo and fooLocal
}

[Bar.cc]
#include ”Bar.h”

// call Foo::Foo(int,int) and initialize m_foo:
Bar::Bar(int a, int b) : m_foo(a,b) {
// create another instance of Foo, this time as a local var:
Foo fooLocal;
// do something with the two Foos, m_foo and fooLocal
}

[Bar.H]
#include "Foo.h" // Required since an instance of Foo is created

class Bar {
public:

Bar(int a, int b);
protected:

Foo m_foo; // declare an instance of Foo
};

[Bar.H]
#include "Foo.h" // Required since an instance of Foo is created

class Bar {
public:

Bar(int a, int b);
protected:

Foo m_foo; // declare an instance of Foo
};

Simulation Project (WS 2005): 02 – Java to C++ Primer 40
© Prof. G. Schäfer

References (1)

Sometimes, it may be useful to refer to block of memory created for an
object with more than one name:

This can, for example, be done with pointers, since multiple pointers can
point to the same object

There is a second way to do it without using pointers: we can use
something called references instead:

[main.C]
#include <stdio.h>

int main(int argc, char **argv) {
int foo = 10;
int& bar = foo;
bar += 10;
printf("foo is: %d\n", foo);
printf("bar is: %d\n", bar);
foo = 5;
printf("foo is: %d\n", foo);
printf("bar is: %d\n", bar);

}

[main.C]
#include <stdio.h>

int main(int argc, char **argv) {
int foo = 10;
int& bar = foo;
bar += 10;
printf("foo is: %d\n", foo);
printf("bar is: %d\n", bar);
foo = 5;
printf("foo is: %d\n", foo);
printf("bar is: %d\n", bar);

}

Simulation Project (WS 2005): 02 – Java to C++ Primer 41
© Prof. G. Schäfer

References (2)

In the above example, memory has been allocated to hold an integer
and named it foo

The & sign in the second line declares a reference to an integer

By assigning foo to bar, bar does not become a copy of foo, but
instead refers to the same memory location as foo.

When you change the value of bar, it also changes the value of foo
and vice versa

References are essentially the same as pointers, except that they:
are dereferenced implicitly (code looks like code for an instance),

can never be NULL, and

can only be assigned to once, at creation

This makes references "safer" than pointers

Simulation Project (WS 2005): 02 – Java to C++ Primer 42
© Prof. G. Schäfer

References (3)

The output of the above program should look like:
foo is: 20

bar is: 20

foo is: 5

bar is: 5

Since references can be assigned to only at creation, references that
are members of a class must be assigned to in the constructor's
initializer list:

[Bar.H]
class Foo;

class Bar {
protected:

Foo & m_foo; // declare a reference to a Foo
public:

Bar(Foo & fooToStore) : m_foo(fooToStore) {}
};

[Bar.H]
class Foo;

class Bar {
protected:

Foo & m_foo; // declare a reference to a Foo
public:

Bar(Foo & fooToStore) : m_foo(fooToStore) {}
};

Simulation Project (WS 2005): 02 – Java to C++ Primer 43
© Prof. G. Schäfer

Converting between Pointers and Instances (1)

The * and & operators “convert” between pointers and instances

Example 1 (making a pointer from a local variable):
Foo myFooInstance(0, 0);

Foo* fooPointer;

// set the value of the pointer to the address of foo:

fooPointer = &myFooInstance;

The following two statements have the same effect:
myFooInstance.bar(); // call bar through the instance

fooPointer->bar(); // call bar through the pointer

Example 2 (making a copied local variable from a pointer, don’t do it):
// create a pointer to Foo and give it a value:

Foo* fooPointer = new Foo(0, 0);

// dereference the pointer and assign it:

Foo myFooInstance = *fooPointer; // copy is made (!)

Simulation Project (WS 2005): 02 – Java to C++ Primer 44
© Prof. G. Schäfer

Converting between Pointers and Instances (2)

The second example may not have the result that you expect:
If you remember from earlier, we had an example of a pointer to an integer
that we dereferenced and stored in a second integer variable

We discovered that the second integer was actually a copy of the first

A similar thing is happening here: the instance that fooPointer points to
and myFooInstance are actually two separate instances

The first line news an instance and assigns the address of that instance to
the pointer

The second statement dereferences the pointer and assigns the instance
to myFooInstance

Here, the compiler performs a bitwise copy of the instance pointed to
by fooPointer and assigns it to myFooInstance, or, if you have
defined an assignment operator, it is called instead
So, saying fooPointer->m_blah = 5; would not change the value
of blah in myFooInstance

Doing things like this yields really confusing code and is a potential source
of hard to find errors. For this reason, it is usually a bad idea to do this.

Simulation Project (WS 2005): 02 – Java to C++ Primer 45
© Prof. G. Schäfer

Copy Constructors

A copy constructor is a constructor that is invoked when one instance
of a class is initialized with another instance of the same type

The syntax for a copy constructor is:

A copy constructor usually assigns all the values of instance variables
in the class that is passed in to the instance variables that this
constructor is called on
Note: the keyword const will be explained later

class Foo {
Foo(const Foo &classToCopy); // copy constructor

};

class Foo {
Foo(const Foo &classToCopy); // copy constructor

};

Simulation Project (WS 2005): 02 – Java to C++ Primer 46
© Prof. G. Schäfer

Memory Management

Declaring and using variables is a major aspect of programming

The memory needed to store these variables varies with the type of
the variable and where it is declared

There are three major categories of storage:
Local storage: valid only within a certain scope; also known as automatic
memory or storage on the stack

Global storage: valid throughout the execution of the program;

Dynamic storage: valid from being allocated to being deallocated; also
called free store, dynamic memory, or storage on the heap

Simulation Project (WS 2005): 02 – Java to C++ Primer 47
© Prof. G. Schäfer

Local Storage

The following block of code shows an integer and a instance of the
class Bar being allocated in local storage:

{
int myInteger; // memory for an integer allocated
// ... myInteger is used here ...

Bar bar; // memory for instance of class Bar allocated
// ... bar is used here ...

}

{
int myInteger; // memory for an integer allocated
// ... myInteger is used here ...

Bar bar; // memory for instance of class Bar allocated
// ... bar is used here ...

}

The { and } symbols mark the beginning and the end of a block:
When program flow enters the block, memory needed to store an integer
is allocated for myInteger, and memory needed to store the class
instance is allocated for the variable bar

When the end of the block is reached, this memory used to store
myInteger and bar is freed up and those variables cease to exist

Trying to use the variables after the block is closed will yield compile
errors, just as in Java

Simulation Project (WS 2005): 02 – Java to C++ Primer 48
© Prof. G. Schäfer

Allocating Memory with New (1)

In the above example, if the variable bar is required outside of its
block, it needs to be bar in global storage instead

In C++, a block of memory can be requested for certain data types in
dynamic storage by using new, and be returned by using delete

The following C++ code shows how you can allocate memory and use
it later (continued on next slide):

[Bar.h]
class Bar {
public:

Bar() { m_a = 0; }
Bar(int a) { m_a = a; }
void myFunction(); // this method will be defined in Bar.cc

protected:
int m_a;

};

[Bar.h]
class Bar {
public:

Bar() { m_a = 0; }
Bar(int a) { m_a = a; }
void myFunction(); // this method will be defined in Bar.cc

protected:
int m_a;

};

Simulation Project (WS 2005): 02 – Java to C++ Primer 49
© Prof. G. Schäfer

Allocating Memory with New (2)

[main.cc]
#include "Bar.h"

int main(int argc, char *argv[])
{
// declare a pointer to Bar; no memory for a Bar instance
// is allocated now, so that p currently points to garbage:
Bar * p = NULL;

{
// create a new instance of the class Bar (*p)
// store pointer to this instance in p:
p = new Bar();
}

// since Bar is in dynamic storage, we can still call
// methods on it so that this method call will be successful:

p->myFunction();
}

[main.cc]
#include "Bar.h"

int main(int argc, char *argv[])
{
// declare a pointer to Bar; no memory for a Bar instance
// is allocated now, so that p currently points to garbage:
Bar * p = NULL;

{
// create a new instance of the class Bar (*p)
// store pointer to this instance in p:
p = new Bar();
}

// since Bar is in dynamic storage, we can still call
// methods on it so that this method call will be successful:

p->myFunction();
}

Simulation Project (WS 2005): 02 – Java to C++ Primer 50
© Prof. G. Schäfer

Deallocating Memory with Delete (1)

In Java, memory for an object is allocated with new, and a garbage
collector frees the memory automatically when no existing object
references it

In C++, whatever memory is allocated in dynamic storage, must
explicitly be deallocated:

Otherwise the program will swell in size and contain what are called
memory leaks

To avoid memory leaks, you need to keep track of all the memory you
have newed and free it when you no longer need it

In the example on the last slide, the following line should be added at
the end of the function in order to free the memory allocated for p:

delete p; // memory pointed to by p is deallocated

p = NULL; // to avoid multiple deletes or later usage

// that could corrupt the heap

Simulation Project (WS 2005): 02 – Java to C++ Primer 51
© Prof. G. Schäfer

Deallocating Memory with Delete (2)

Attention:
Only objects created using new should be deleted with delete!

Instances created in local storage are automatically recycled and should
not be deleted explicitly

For example, the following code will make a program crash:
Bar bar; // bar not created with new

// ... use the instance of Bar ...

delete &bar; // EEK! bar is in local storage...

Arrays and single instances are deleted differently:
See the arrays section for more information on deleting arrays

Simulation Project (WS 2005): 02 – Java to C++ Primer 52
© Prof. G. Schäfer

Managing Memory in Classes: Destructors

Class destructors have already been mentioned earlier, but their
principal use in C++ has not yet been explained

In Java, you don't have to deallocate memory, so you seldom need to
fill in the finalize() method for an object.

In C++, memory that is newed is not deallocated automatically, so you
have to explicitly free it:

Since you can free memory at any time your program is running, the
question is when to do it

The following is a good rule of thumb:
Memory allocated in a constructor should be deallocated in a destructor

Memory allocated in a function should be deallocated before it exits

Attention:
If you later (accidentally) access memory, that has already been
deallocated, you can expect everything from strange behavior to crashes

Memory errors are among the hardest to find, as they often can stay
undetected for a long time and often imply errors in other program parts

Simulation Project (WS 2005): 02 – Java to C++ Primer 53
© Prof. G. Schäfer

Managing Memory: Parameters (1)

In Java, parameters are passed by reference:
When you pass a reference to an object in Java, you can change the
actual object by calling methods on it or accessing its public instance
variables

In C++, parameters can be passed either by reference or by value:
Think of passing by value as passing a copy instead of the real variable

Here's an example of passing by reference:
The function IncrementByTwo is defined to take a reference to an integer

void IncrementByTwo(int & foo) { foo += 2; }

Since the function has a reference, it can alter the integer that is passed in
to it and you can increment an integer variable by calling:

int bar = 0;
IncrementByTwo(bar);

The variable bar will now have been increased by two

Simulation Project (WS 2005): 02 – Java to C++ Primer 54
© Prof. G. Schäfer

Managing Memory: Parameters (2)

The following definition defines the parameter to be passed by value:

void IncrementByTwo(int fooVal) { fooVal += 2; }

If the function is called as shown on the preceding slide, bar will still be 0
after IncrementByTwo has returned

This is because the formal parameter fooVal contains a copy of bar

So, passing by value will not give the intended result

A third way to pass parameters is to pass pointers to them:

void IncrementByTwo(int* fooPtr) { *fooPtr += 2; }

The function is then called by passing a pointer:

int bar = 0;
IncrementByTwo(&bar); // note the & sign;

Since we passed a pointer to bar, it will be incremented by two

Simulation Project (WS 2005): 02 – Java to C++ Primer 55
© Prof. G. Schäfer

Managing Memory: Parameters (3)

How to pass objects as parameters in C++?
Objects can be passed by reference, by value, or by passing a pointer to
the object

Since objects are often “newed”, meaning that you have a pointer to them,
they are most commonly passed by a pointer

Of course, they can be passed by reference as well

However, objects are generally not passed by value, since that implies
that a copy of the object is being made

For small types like integers, making a copy is not a big deal; but for
objects, this can take up a lot of time (and memory).

If you're passing by value to make sure that the object you passed in
won't be changed, instead make the input parameter const (see
below for a description of const parameters.)

Simulation Project (WS 2005): 02 – Java to C++ Primer 56
© Prof. G. Schäfer

Managing Memory: Return Values (1)

Return values can be passed in all the ways discussed above

However, a common C++ pitfall should be noted:
Passing a local variable outside of its scope

Variables in local storage are automatically destroyed when the block they
are located in closes

Thus, if a pointer or reference to a variable declared in this manner is
returned, and the variable leaves scope at some time, the pointer or
reference will point to “nirvana”

Foo* FooFactory::createBadFoo(int a, int b) {
// create a local instance of the class Foo:
Foo aLocalFooInstance(a,b);

// return a pointer to this instance:
return &aLocalFooInstance;

} // EEK! aLocalFooInstance leaves scope and is destroyed!

Foo* FooFactory::createBadFoo(int a, int b) {
// create a local instance of the class Foo:
Foo aLocalFooInstance(a,b);

// return a pointer to this instance:
return &aLocalFooInstance;

} // EEK! aLocalFooInstance leaves scope and is destroyed!

Simulation Project (WS 2005): 02 – Java to C++ Primer 57
© Prof. G. Schäfer

Managing Memory: Return Values (2)

Returning a reference to a local variable also leads to errors:

Foo& FooFactory::createBadFoo(int a, int b) {
// create a local instance of the class Foo:
Foo aLocalFooInstance(a,b);
// return a reference to this instance:
return aLocalFooInstance;

} // EEK! aLocalFooInstance leaves scope and is destroyed!

Foo& FooFactory::createBadFoo(int a, int b) {
// create a local instance of the class Foo:
Foo aLocalFooInstance(a,b);
// return a reference to this instance:
return aLocalFooInstance;

} // EEK! aLocalFooInstance leaves scope and is destroyed!

The solution to this problem is to either return a pointer to an instance
in dynamic storage, or to return an actual instance:

Foo* FooFactory::createFoo(int a, int b) {
// return a pointer to an instance of Foo:
return new Foo(a,b);

}

Foo FooFactory::createFoo(int a, int b) {
return Foo(a,b); // return an instance of Foo

}

Foo* FooFactory::createFoo(int a, int b) {
// return a pointer to an instance of Foo:
return new Foo(a,b);

}

Foo FooFactory::createFoo(int a, int b) {
return Foo(a,b); // return an instance of Foo

}

Simulation Project (WS 2005): 02 – Java to C++ Primer 58
© Prof. G. Schäfer

Managing Memory: Arrays (1)

In C++, arrays behave like pointers but they are not exactly the same:
Pointers are variables which contain a changeable address

Arrays are "array-typed" addresses that can't be changed

As with most types in C++, arrays can be allocated either in local
storage or in free storage using new:

<type> *arrayName = new <type>[array size];

For example, declaring an array of 100 integers looks like this:
int* integerArray = new int[100];

We can also declare an array in local storage as follows:
<type> arrayName[array size];

Declaring that 100 element integer array in local storage:
int integerArray[100];

With both declarations, the value of integerArray is the memory
address of the first element contained within it

However, there are subtle differences in the type of the variable!

Simulation Project (WS 2005): 02 – Java to C++ Primer 59
© Prof. G. Schäfer

Managing Memory: Arrays (2)

The remainder of the array elements are stored in consecutive memory
locations following the first element

To access a particular element in the array, the syntax is:
arrayName[element]

Arrays are indexed from 0, just as in Java. So, to access the fourth
element in the array, we say:
arrayName[3]

When you index into an array, it is dereferenced automatically
Thus, even though integerArray is a pointer to integers, accessing
one of its members returns an integer (int) not a pointer to one
(int *)

Therefore, the following straightforward code works as expected:

integerArray[10] = integerArray[42] + integerArray[0] - 5;

Simulation Project (WS 2005): 02 – Java to C++ Primer 60
© Prof. G. Schäfer

Managing Memory: Arrays (3)

If we have the array of 100 integers integerArray, what happens when
we access element -10, or element 200?

In Java, a java.lang.ArrayIndexOutOfBoundsException would be thrown.

In C++, there is no such luxury

Using the indexing scheme mentioned above, integerArray[-10]
translates to the memory address: (integerArray - 10)

What does that point to? Who knows. It could point to some data of a
class, a program instruction, there is really no way of knowing

If you write to arbitrary memory addresses, your program may behave
in a strange way, or you could get a "segmentation fault", a "bus error",
and your program crashes

So, when using arrays, you must be very, very careful not to index
beyond their bounds, or your program will crash in general

Attention:
If you declare, e.g., int i[10]; then i[10] is beyond the array!

Simulation Project (WS 2005): 02 – Java to C++ Primer 61
© Prof. G. Schäfer

Managing Memory: Multidimensional Arrays (1)

In C++, multidimensional arrays can not be declared in dynamic
storage, but there you can emulate them with arrays of arrays

So, where in Java you could declare a 10x10 array like this:
int twoDArray[][] = new int[10][10];

In C++, you have to do it another way, by declaring a 10 element
array, whose elements are 10 element arrays of integers

As you recall, an “array of int” is like a "int *". We want an array of arrays
of integers, so prefixing another "*" will give us something of type "int **".

So, declaring the array would look like this:
int** twoDArray;

To make twoDArray be an array of arrays, we just have to new 10 arrays
of pointers to integers:
twoDArray = new int*[10];

Ok, now we have an array of 10 pointers to int, each of which we want to
point to an actual array:
for(int i=0; i < 10; i++) twoDArray[i] = new int[10];

Simulation Project (WS 2005): 02 – Java to C++ Primer 62
© Prof. G. Schäfer

Managing Memory: Multidimensional Arrays (2)

In reality, our 2d (10x10) array does not really need to be 2d

We have 100 integers, and we want to index the integer at location
(row, col) at any given time:

To do this, we could declare a 100 element array of integers and index it
ourselves:
int* myArray = new int[100];

To index myArray, let's say row 0 of the 2d matrix is the first 10 elements
in this array. Row 1 is the next 10, and so on. Given this scheme, we can
find the correct element in the array using the formula:
myArray[row * 10 + col]

Here, we multiply row by 10, since this is how much we have to move in
the array to find the first element of row row. We add col to it to specify
how far in the row of 10 elements we move to find the col'th element in
that row.

Advantage of indexing by yourself: the array is stored in one
continuous block of memory leading to better cache hits in the CPU

Simulation Project (WS 2005): 02 – Java to C++ Primer 63
© Prof. G. Schäfer

Managing Memory: Deleting Arrays

In Java, you did not need to delete arrays

In C++, this has to be done explicitly for arrays declared in dynamic
storage

If you recall, deleting a single element looks like this:
delete <pointer>;

To delete an array, we need to tell the compiler we are deleting an
array, and not just an element. The syntax is:

delete [] arrayName;

Deleting 2d arrays takes a little more work:
Since a 2d array is an array of arrays, we must first delete all the elements
in each of the arrays, and then we can delete the array that contains them:
for(int i=0; i < (number of arrays); i++)

delete [] 2dArray[i];

delete [] 2dArray;

Simulation Project (WS 2005): 02 – Java to C++ Primer 64
© Prof. G. Schäfer

Polymorphy (1)

As you probably know from Java, you can use instances of subclasses
as if they were instances of a (direct or indirect) base class

This is called polymorphy
polymorphism only works with pointers and references to objects in C++,
not with the objects as value

all methods that may be overridden in subclasses should be virtual

Dynamic cast
Sometimes you have a pointer or reference of base class type but you
know that it really points to an instance of a subclass

If you want to access methods only present in the subclass you need
to perform a dynamic cast

A dynamic cast is checked at runtime. If the cast is not possible (the
object is not of the given type) NULL will be returned (in the case of
pointers) or an exception is thrown (in the case of references)

Simulation Project (WS 2005): 02 – Java to C++ Primer 65
© Prof. G. Schäfer

Polymorphy (2)

You can assign a pointer of type B* (pointer to B) to a variable a of
type A*, because B is a subclass of A
As C++ has static type checking, you are only allowed to access fields
of A through a (Generally, the compiler can not know that it contains a
pointer to a B at the moment)
To access fields of B you must dynamically cast a to B*
Dynamic means that it is checked at runtime that a indeed points to a
B as you claim in the cast, otherwise NULL is returned

[AB.h]
class A {
public: A();

virtual void foo();
};

class B : public A {
public: B();

virtual void bar();
};

[AB.h]
class A {
public: A();

virtual void foo();
};

class B : public A {
public: B();

virtual void bar();
};

[x.cc]
#include “AB.h”
void someFunction() {
A * a = new B();
// a->bar(); // ERROR
B * b = dynamic_cast<B*>(a);
if (b != NULL) {

b->bar();
}

}

[x.cc]
#include “AB.h”
void someFunction() {
A * a = new B();
// a->bar(); // ERROR
B * b = dynamic_cast<B*>(a);
if (b != NULL) {

b->bar();
}

}

Simulation Project (WS 2005): 02 – Java to C++ Primer 66
© Prof. G. Schäfer

C++ Strings: Character Arrays

There is no string base type in C++, so arrays of characters, or char*s,
are used instead

A "string" contains all of the characters that make it up, followed by '\0'
to denote the end of the string.
'\0' is the ASCII NUL character which has a decimal value of 0, as
opposed to the ASCII '0' character which has a decimal value of 48

Declaring a string:
const char* myString = "Hello, this is a string.";

This creates an array of 25 chars: 24 for the characters above, and one at
the end with the value of '\0' to denote the end of the string
Since strings are arrays, you cannot concatenate them using + or
compare them using ==

Instead, there are special functions to perform these tasks in the standard
C library

The C++ standard library has a string class (std::string) that can make
your life a lot easier

Simulation Project (WS 2005): 02 – Java to C++ Primer 67
© Prof. G. Schäfer

Enumerated Types

C++ allows to define enumerated types using the enum keyword

Enumerated types are sometimes useful for expressing a value that
has a limited range

For example, the following code creates an enum for the life cycle of a
caterpillar:

enum CatLifeCycleType

{

LARVA,

CATERPILLAR,

PUPA,

BUTTERFLY

};

You can now create a variable of type CatLifeCycleType and assign to
it values such as LARVA or PUPA

Simulation Project (WS 2005): 02 – Java to C++ Primer 68
© Prof. G. Schäfer

The Keyword “const”

In C++, the keyword const means different things according to its
context:

When you add const in front of a variable, it means that variable is
treated like a constant. You will not be able to change the value of a
const variable once you assign it:

const float PI = 3.14156;

If an object is declared as const, then only the const functions may be
called
If const is used with a member function, that means the function can only
be called for const objects

Parameters in a function may be declared const, which means that those
parameters will not be changed during the function call:
int multiply(const int a, const int b) { return a*b; }

This means that during this function, the parameters a and b will be
treated as constants
Declaring things that should not change as const is good practice

Simulation Project (WS 2005): 02 – Java to C++ Primer 69
© Prof. G. Schäfer

Standard I/O Library (1)

C++ allows to make use of the stdio library known from C
To use it: #include <stdio.h>

The printf function is used to send output to your shell, called stdout
Unlike many other functions, printf takes an arbitrary number of
parameters

It first takes a string that can contain special characters describing the
format of the output

Next it takes the variables which are to be printed:
printf("Hello world\n");

printf("Hello %d.\n",42);

leads to:
Hello World

Hello 42

Simulation Project (WS 2005): 02 – Java to C++ Primer 70
© Prof. G. Schäfer

Standard I/O Library (2)

The function scanf is used for getting input from the user in a shell

The scanf function works the same way as printf, except that you
must pass the address of the variable you want it to copy the input
into:

int x;

scanf("%d", &x); // note the &x!

printf("Your number was %d\n",x);

You can also get a line of input with the gets() function. You have to
allocate a buffer in advance for it to copy the input into

Attention:
There are many pitfalls and vulnerabilities resulting from the fact, that stdio
functions accept a variable number of arguments

A good overview on this can be found in [Sch04]

Simulation Project (WS 2005): 02 – Java to C++ Primer 71
© Prof. G. Schäfer

Flow of Control & Iteration

Flow of control constructs (if, switch) are very similar in Java and
in C++ with one difference:

Java has a boolean type, and

C++ has a bool type with implicit conversion that maps any non-zero
value to true and the value zero to false

Loops in Java and in C++ are practically identical:
for(<init counter>; <predicate>; <incr counter>)

<statement>

while(<predicate>)
<statement>

do
<statement>

while(<predicate>);

A predicate is any bool expression

As far as syntax goes, C++ and Java predicates are identical

Simulation Project (WS 2005): 02 – Java to C++ Primer 72
© Prof. G. Schäfer

The Preprocessor (1)

Before the "real" compiler actually compiles your program, a program
called the preprocessor processes it:

The job of the preprocessor is to do simple text substitutions and the like
Preprocessor commands all start with the # character

The preprocessor allows you to include the contents of one file in another
file using the #include statement

If the name of the file to be included is enclosed in angle brackets
< >, the compiler will search a standard list of directories

You can add entries to this list with the compiler flag -I

If the name of the file is in quotes " ", it will search the current
directory for the files in addition to the other directories

The #define preprocessor directive will tell the preprocessor to do text
substitution:

#define PI 3.14159265

The #define statement can also do substitution with parameters,
allowing to write simple macros

Simulation Project (WS 2005): 02 – Java to C++ Primer 73
© Prof. G. Schäfer

The Preprocessor (2)

You can use the preprocessor to conditionally compile code:
The statements used to do this are #if, #ifdef, or #ifndef as well as a #endif
following the conditionally compiled section:

#define COMPILE_SECTION
// ...
#ifdef COMPILE_SECTION
// some code here
// this code would be compiled
#endif

#define COMPILE_SECTION
// ...
#ifdef COMPILE_SECTION
// some code here
// this code would be compiled
#endif

Conditional compilation can be used for:
avoiding circular includes (see below),

writing code for multiple platforms, or

optionally showing debugging messages

Simulation Project (WS 2005): 02 – Java to C++ Primer 74
© Prof. G. Schäfer

Circular Include Directives

In general, things can't be defined twice in C++

This means that two files cannot include each other:
For example, if Foo.h does a #include "Bar.h" then Bar.h cannot
#include "Foo.h”. Even if the restriction on multiple definitions didn't
exist, this would clearly lead to infinite recursion

Therefore, all header files should contain something like this:

[Foo.h]
#ifndef Foo_Header
#define Foo_Header

// put all of the header file in here!!

// remember this endif or you will have big problems!
#endif

[Foo.h]
#ifndef Foo_Header
#define Foo_Header

// put all of the header file in here!!

// remember this endif or you will have big problems!
#endif

The first time the file is read, Foo_Header isn't defined, so it defines it and
reads the code in the header file

The second time, Foo_Header will already be defined, so your code will be
skipped, making your class declaration defined only once

Simulation Project (WS 2005): 02 – Java to C++ Primer 75
© Prof. G. Schäfer

Forward Declarations

In order to deal with two classes that actually need to know about each
other, forward declarations can be very useful:

It turns out that you don't need to know anything about a class other than
its name in order to declare a pointer to it

So, if a class contains a pointer to another class, instead of including the
first class' header in the second's header, simply make a forward
declaration, and include the both header files in the .cc file:

[Foo.h]
#ifndef FOO_H_ALREADY_INCLUDED_
#define FOO_H_ALREADY_INCLUDED_
class Bar; // forward declaration; says: "class Bar exists,

// but we don't know anything about it"
class Foo { // ...
protected:

Bar* m_bar; // We can declare a pointer to a bar. We can't
// call any methods or declare a non-pointer
// bar until we include its header file.

};
#endif

[Foo.h]
#ifndef FOO_H_ALREADY_INCLUDED_
#define FOO_H_ALREADY_INCLUDED_
class Bar; // forward declaration; says: "class Bar exists,

// but we don't know anything about it"
class Foo { // ...
protected:

Bar* m_bar; // We can declare a pointer to a bar. We can't
// call any methods or declare a non-pointer
// bar until we include its header file.

};
#endif

Simulation Project (WS 2005): 02 – Java to C++ Primer 76
© Prof. G. Schäfer

Build Process (1)

For each .cc file in your project, the preprocessor copies in all the .h
files that are #included and creates a large temporary files

Each expanded temporary file (from the preprocessor) is compiled into
an object (.o) file, which contains the methods and data in the .cc file
in a format that can be executed

There is also a table of symbols (variables and functions) that are
referenced but not defined in this particular .o file. (e.g. C Library
functions, stuff from the support code, et cetera)

In order to resolve all of these symbol references, the final step is to
link the .o files together into an executable

The linker needs all of the .o files and any external libraries (e.g.
libcs123.so) that have any referenced but unresolved symbols

The executable is basically a concatenation of your .o files with some
information about external libraries

Simulation Project (WS 2005): 02 – Java to C++ Primer 77
© Prof. G. Schäfer

Build Process (2)

When you run your program, any external libraries that were linked in
dynamically will be dynamically loaded

In order to properly build a program, you need to:
find out which files need to be recompiled,

build them, and then

rebuild your linked object (executable)

every time you make any modifications to source

To make this process easier, the tool make can be used
This tool needs a “description” of the program, called Makefile, listing the
program’s components together with the dependencies that exist between
them, in order to automate the build process

In this course, the Makefiles will be provided to you (in fact, they will also
be generated by yet another tool)

Simulation Project (WS 2005): 02 – Java to C++ Primer 78
© Prof. G. Schäfer

Additional References

[Agg00] N. Aggarwal. Java Compared to C++. JAMM Consulting, Inc., Plano, Texas,
USA, 2000.
http://www.jammconsulting.com/ Presentations/JavaComparedToC++.ppt

[CS123] CS123 TA Staff. Java to C++ Transition Tutorial. Department of Computer
Science, Brown University, Providence, Rhode Island, USA.
http://www.cs.brown.edu/courses/cs123/javatoc.shtml

[Eck00] Bruce Eckel. Thinking in C++. electronic version available for free download at:
http://mindview.net/Books/books.html#ThinkingInCPlusPlus

[Pry] N. Pryce. Introduction to C++. Distributed Software Engineering Group,
Department of Computing, Imperial College, London, UK.

[Sch04] G. Schäfer. Security Aware System Design & Implementation. Chapter 4 of the
course Protection of Communication Infrastructures,
http://www.tkn.tu-berlin.de/curricula/Protection/Handouts/04_System_2Up.pdf

[Str00] B. Stroustrup. The C++ Programming Language. 3rd edition, Addison-Wesley,
2000.

[Wei03] M. A. Weiss. C ++ for Java Programmers. Addison-Wesley, 2003.

