
Simulation Project (WS 2005): 03 – Introduction to OMNet++ 1
© Prof. G. Schäfer

Simulative Evaluation
of Internet Protocol Functions

Chapter 3
Introduction to OMNet++

(Acknowledgement: These slides have been prepared by H. Karl [Karl04])

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 2
© Prof. G. Schäfer

Goals of this chapter

This chapter introduces a simulation tool that allows to:
Specify connections between modules

Use an additional programming style for modules

Structure large simulation programs

Handle random numbers/variates for multiple purposes

Supports debugging

In general, this chapter shows a typical example of a simulation tool

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 3
© Prof. G. Schäfer

Overview

OMNeT++ - Some basic concepts

Specifying module connections/topology

Process-based modules

Multiple random streams

Working with OMNeT++ simulation programs

Some odds and ends

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 4
© Prof. G. Schäfer

OMNet++

Objective Modular Network Testbed in C++ - OMNet++ for short
http://www.omnetpp.org/

General-purpose tool for discrete event simulations
Object-oriented design
General structure:

Modules implement application-specific functionality
Modules can be connected by connections
Modules communicate by exchanging messages via connections
Modules are implemented as C++ objects, using support functions from a
simulation library
Topology of module connections is specified using an OMNeT++-specific
language called NED

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 5
© Prof. G. Schäfer

OMNeT++ - Structure

Overall structure: Modules with connections + simulation kernel

Simulation kernel

Module A

Module B

Module C

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 6
© Prof. G. Schäfer

Modules

All application-specific functionality is put into modules

Modules exchange messages; arrival of a message at a module is an
event

As OMNeT++ is object-oriented, all modules are instances of certain
classes, representing “module types”

These classes must be derived from a specific class,
cSimpleModule, an abstract class which provides basic functionality
for a module

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 7
© Prof. G. Schäfer

Module example

#include “omnetpp.h”
class MyModule : public cSimpleModule
{

// a macro that calls constructor and sets
// up inheritance relationships:
Module_Class_Members (MyModule,

cSimpleModule, 0)
// user-specified functionality follows:
… …

};
// announce this class as a module to OMNeT:
Define_Module (MyModule);

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 8
© Prof. G. Schäfer

Module inheritance

User-defined module types can be used to derive new module types via
standard inheritance techniques

#include “MyModule.h”

class MyDerivedModule : public MyModule

{

Module_Class_Members (MyDerivedModule,
MyModule, 0);

// and again user-specific methods

// follow

};

// and again make this class known as a module

Define_Module (MyDerivedModule);

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 9
© Prof. G. Schäfer

Hierarchical structure of modules

Modules of different types can be aggregated together to form a new,
larger module type: a compound module
From outside a compound module, interior modules are not visible
Compound modules behave just like simple modules
Compound modules do not implement any functionality at all, only
combine their constituent modules into a new module
Derived from cCompoundModule

Both cSimpleModule and cCompoundModule are derived from
cModule

Enable hierarchical structuring of simulation programs

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 10
© Prof. G. Schäfer

OMNeT++ basic event handling

As OMNeT++ is a tool for discrete event simulation, management of
events is a primary task

Including event loop, managing the future event set, executing the next-
event time advance mechanism, etc.
Taken care of by the simulation library itself

Events are generated by modules sending messages to other modules
or to themselves (often interpreted as timeouts)

Arrival of a message is interpreted as an event

Module implementations
Need not concern themselves with the management of events
Only have to implement functionality to process the arrival of messages,
and
Have to send messages themselves (in general)

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 11
© Prof. G. Schäfer

Module event handling

Whenever a message arrives at a module, its handleMessage()
method is invoked (completely analogous to our little simulation tool)
handleMessage() is a virtual method provided by
cSimpleModule, which a derived class has to override to implement
some real functionality
handleMessage() processes the arrived message, potentially
sending new message(s) itself, and returns to the caller (the simulation
library)

To be able to access the arrived message (along with its data),
handleMessage is passed a pointer to the message, commonly
represented by a cMessage object

Protototype is hence: void handleMessage (cMessage *)

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 12
© Prof. G. Schäfer

Processing messages in handleMessage

Processing messages in general depends on the state of a particular
module (e.g., is the server idle or busy?) and also manipulates the
state

Such state variables are part of the information/ knowledge of a
module – hence, they are data members of the corresponding class

Besides actual state information, all kinds of data pertaining to a module
can be stored as data members: parameters for a module, its name or
identification (e.g. server number), statistics about metrics, timer values,
etc.

They are created with the corresponding module

In handleMessage, these variables can be accessed and modified

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 13
© Prof. G. Schäfer

Initializing module data members

Commonly, such data members are initialized in the constructor
However, a module constructor is called during the setup of an
OMNeT simulation, when some information might not yet be easily
available (e.g., total number of nodes in a simulation, etc.)
cSimpleModule provides the virtual method initialize() as a
convenient place for setting such data members to well-defined values
Additionally, initialize() can (and should) be used to generate
some initial events

If no module would generate any events at all, no event would ever
happen, and the simulation would be rather static

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 14
© Prof. G. Schäfer

Shutting down modules

As a counterpart to initialize, there needs to be some way to get
data out of modules at the end of a simulation

E.g., statistics gathered about some interesting metrics

As not every module needs to know (or even should know) the stopping
rule, it is not obvious to a module when to output this data

cSimpleModule offers the finish() method as a convenient place

At the end of a simulation run (determined by whatever mechanism),
finish() of all modules is called by the simulation kernel

Allows modules to output statistics, perform clean up, …

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 15
© Prof. G. Schäfer

How to generate events/messages

So far, only the consumption/reception of events/messages is
described
In handleMessage(), a module can decide to

Send a message to some other module: an entire family of send()-like
methods is available
Schedule an event to be delivered to itself: scheduleAt()

E.g., setting a timeout after a packet has been sent
Cancel an event that has before been scheduled with scheduleAt():
method cancelEvent() will delete the specified event from the future
event set

E.g., canceling a timeout when a packet has been received

Question: Why is there no possibility to receive messages within
handleMessage()?

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 16
© Prof. G. Schäfer

Example: Load generator

Consider a simple load generator: send a packet, wait some time, send a
packet, …
Class declaration (e.g., loadgen.h)

Note that there are no data members (no state) needed for this example

#include “omnetpp.h”
class Generator : public cSimpleModule
{

Module_Class_Members (Generator,
cSimpleModule, 0)

virtual void initialize();
virtual void handleMessage (cMessage *m);

};
Define_Module (Generator);

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 17
© Prof. G. Schäfer

Example: Load generator

Implementation (e.g., loadgen.cc)
Initialization:

void Generator::initialize ()
{

scheduleAt (simTime(), new cMessage);
}

First argument of scheduleAt is the time when the event should occur.
Here: simTime(), which gives the current simulated time (akin to “now”)
→ Event will occur immediately, after the initialize method has

finished
Second argument is a pointer to the message to be delivered. Here, just a
pointer to a dynamically created message is inserted
→ message has no data, serves as a plain event

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 18
© Prof. G. Schäfer

Example: Load generator

Handling the event
void Generator::handleMessage (cMessage *m)

{

cMessage *pkt = new cMessage;

send (pkt, “out”);

scheduleAt (simTime() + exponential(1.0), m);

}

First, another message is created (again without data) and sent
“somewhere” (we will talk about the meaning of this shortly)
Second, the message (event) that triggered this handleMessage
invocation is scheduled again, to occur at some time now plus an
exponentially distributed time (with mean 1.0) in the future

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 19
© Prof. G. Schäfer

Adding data to messages

The load generator’s message did not carry any data
How to define messages that can carry data?

Rather: how to define „message types“ ?

Message types are defined using a small definition language
Definitions are put in *.msg files
C++-code is generated automatically, child class of cMessage
Each message type ultimately corresponds to a separate C++ class

Example: Create a message type „customer“
Contains a field „paylod“ of type integer
File: customer.msg

message customer {
{

fields:
int payload;

};

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 20
© Prof. G. Schäfer

Message inheritance

Message types can be inherited

Example: VIP customers with priority
message VIPCustomer extends Customer

{

fields:
int priority;

};

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 21
© Prof. G. Schäfer

Using messages classes in code

Example customer
#include „customer_m.msg“

Customer newCustomer = new Customer
(„someCustomer“);

newCustomer->setPayload (42);

....

int pl = newCustomer->getPayload();

Getter and setter methods are automatically generated for each field

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 22
© Prof. G. Schäfer

Detecting message type

All generated message classes are descendants of cMessage
In handleMessage, dynamic cast can be used to detect which type
of message has actually arrived
void dispatcher::handleMessage (cMessage *msg) {

if (dynamic_cast<VIPCustomer *>(msg) != NULL) {
VIPCustomer *vipMsg = (VIPCustomer *) msg;
// do something for important customers

} else if (dynamic_cast<Customer *>(msg) != NULL) {
Customer *nMsg = (VIPCustomer *) msg;
// normal customers ...

}
// ...

}

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 23
© Prof. G. Schäfer

Remark: Complete FSM API in OMNeT++

Besides the simple mechanism to code a finite state machine oneself
based on the handleMessage() method, OMNeT++ provides an
additional API to simplify the programming of finite state machines

Sets of states and actions for entering and leaving these states can be
specified

API is realized as a set of macros – certainly possible to do it oneself,
just a help to structure the code

Have a look at the manual

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 24
© Prof. G. Schäfer

Overview

OMNeT++ - Some basic concepts

Specifying module connections/topology

Process-based modules

Multiple random streams

Working with OMNeT++ simulation programs

Some odds and ends

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 25
© Prof. G. Schäfer

Specifying module connections

Is there a nice way to specify which module is connected to which
other module?

Basic idea: somehow specify connections between modules

But: How can a module distinguish which connection leads to which
module?

Module 1

Module 2 Module 3

Module 4

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 26
© Prof. G. Schäfer

Gates as connection points for modules

Additional construct: Module can have (an arbitrary number of) gates
Gates are identified by a number or by an index in a named array of gates

Gates are unidirectional: either an in-gate or an out-gate

A connection simply connects an out-gate to an in-gate

Module 1

Module 2 Module 3

Module 4

“out”
gate

“in”
gate

“load”
gate

“loadarrives”
gate

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 27
© Prof. G. Schäfer

Why use gates?

Adding gates is just another level of complexity

Why not have the module send directly to the peer module?
Reusability: a module should be useful in many contexts, without referring
explicitly to other modules directly

Gates encapsulate the knowledge “where to” within the module

Why not send directly to a connection?
Similar reason: connections can change, and do not have a real identity of
their own (only specified by the two modules they are connecting)

Gates turn modules into black boxes with well defined
interfaces/”service access points with protocols”

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 28
© Prof. G. Schäfer

Communicating using gates

Modules can send messages directly to a specific out gate: send
(pkt, “myoutgate1”);

Modules can find out on which in-gate a message has arrived
cMessage objects represent not only the message as such, but also meta
information about the particular message
E.g., cMessage provides a method
cGate *arrivalGate()
which returns a pointer to the gate at which the message arrived
cGate is a class representing gates in OMNeT++

In send, the string name of a gate will implicitly be converted to the
corresponding pointer

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 29
© Prof. G. Schäfer

How to specify gates and their connections?

So far, we have not seen any constructions in the class definition that
would specify a gate or a connection between gates
In fact, OMNet++ uses a separate language to specify topology of an
entire network of modules: the NEtwork Description language (NED)
For each simulation program, a NED file is required
It describes

Channels (to be used as connections between modules)
Simple modules (declarations, to be implemented as a C++ class)
Compound modules (discussed later)
Connections between modules within compound modules

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 30
© Prof. G. Schäfer

NED channel definition

Channels represent types of connections
Parameterized by delay, error rate (uniformly distributed), and data rate
Example:

channel DialUpConnection
delay normal (0.004, 0.0018)
error 0.00001
datarate 14400

endchannel

DialUpConnection can later be used as a connection type
Note: delay is parameterized with a normal distribution, not a specific value ->
for every connection of this type, a new delay is randomly chosen from a
normal distribution with these parameters
General concept of NED: where a value is legal, a random distribution is also
acceptable

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 31
© Prof. G. Schäfer

NED simple module definitions – Parameters

Simple modules are defined in NED file by their
Parameters
Gates

Parameters of simple modules
Values that can be set from outside the simulation program, e.g., in
configuration files
Parameters can be easily accessed from the C++ code using
cModule’s method par(“parametername”)

Example:

simple LoadGenerator
paramers:

interarrival_time : numeric const;
gates: …

endsimple

Using the parameter in LoadGenerator::someMethod():
float intarrtime = par(“interarrival_time”);

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 32
© Prof. G. Schäfer

NED simple module definitions – Gates

In NED, the gates of simple modules are defined as well, as either in
or out gates

Example
simple DataLinkProtocol

parameters: …
gates:

in: from_upper_layer,
from_physical_layer;

out: to_upper_layer,
to_physical_layer;

endsimple

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 33
© Prof. G. Schäfer

NED simple module definitions – Gates

Gates can also be defined as arrays:
simple RoutingModule

parameters: …
gates:

in: input[];
out: output[];

endsimple

Size of the vectors need not be defined immediately but can be
supplied later

Size can be different for multiple instances of the same type
Example: different RoutingModules have different numbers of in and out
links

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 34
© Prof. G. Schäfer

NED compound modules

Compound modules consist of one or more submodules

To the outside: behave like any other modules -> must offer gates

To the inside: composing modules must be able to communicate somehow ->
their gates must be connected

Relating outside and inside: gates of the compound module are connected to
(some) gates of (some) of the composing modules

Module 1

Module 2 Module 3

Module 4

Compound Module

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 35
© Prof. G. Schäfer

NED compound modules – Syntax

module SomeCompoundModul
parameters: …
gates: …
submodules: …
connections:

endmodule

Parameters of compound modules are similar to simple modules
Can be used to set parameters of contained modules

Can be used to compute connections (see below)

Gates of compound modules are identical to simple module gates

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 36
© Prof. G. Schäfer

NED compound modules – Submodules

Submodules section of a compound modules defines which modules (and
their module types) constitute the compound module
For parameterized module types, the parameters have to be provided

General parameters as well as sizes of gate vectors (if any)

Submodules can be written as vectors of modules
module BigCompound

parameters:
num_of_submods: const;

submodules:
manyparts: Node[num_o_submods/2];

endmodule

Module type of submodules need not be specified explicitly, can be left as a
parameter

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 37
© Prof. G. Schäfer

NED compound modules – Connections

Specify connections between gates
Of the compound modules to gates of its constituent modules

Of the constituent modules themselves

Connections can not “cross border lines” of modules

Connections can be endowed with parameters (delay, error,
bandwidth) or channel types

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 38
© Prof. G. Schäfer

NED compound modules – Connections

Simple programming constructs (for loops, if conditions) allow to
construct complicated topologies of connections

Example: Normally, all gates must be connected after program has
initialized. Sometimes, however, only partially connectivity is desired ->
“nocheck” primitive

module Stochastic:
connections nocheck:

for i=0 .. 9 do
Sender.outgate[i] Receiver[i].ingate if

uniform(0,1) < 0.3;
endfor

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 39
© Prof. G. Schäfer

Relating NED file to C++ classes

Compound modules do not have a corresponding C++ class at all

Simple modules of name X are implemented by a C++ class of
name X

Recall the macro Define_Module (X) after the definition of a C++ class

This macro couples the class to the NED module type

Usually put in file X.h and X.cc, but that is not required

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 40
© Prof. G. Schäfer

Relating NED file to C++ classes

A module type can be implemented by different classes which share
the same interface

Define_Module_Like (X, Y): class X implements NED module Y’s interface
Example: Different types of MAC layers all sharing the same interface

Define_Module_Like (Ethernet_MAC, General_MAC);
Define_Module_Like (TokenRing_MAC, General_MAC);
Define_Module_Like (FDDI_MAC, General_MAC);

Such a module type can not directly be used within a compound module,
however, it can be used as a placeholder to be instantiated with the actual
type of the submodule from some initialization mechanism
Example:
submodules:
mac : mac_type like General_MAC

mac_type can later be assigned any of Ethernet_MAC,
TokenRing_MAC, FDDI_MAC

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 41
© Prof. G. Schäfer

Overview

OMNeT++ - Some basic concepts

Specifying module connections/topology

Process-based modules

Multiple random streams

Working with OMNeT++ simulation programs

Some odds and ends

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 42
© Prof. G. Schäfer

Reconsider the load generator module

The load generator module has been implemented as a finite state
machine:

Upon receipt of a message (where the content of the message is
irrelevant), generate a “load” message to be delivered immediately and a
self message to be delivered some time later

The self message only serves to trigger a new cycle

What the load generator actually does:
Repeatedly wait some random time, then send a message

Modeling such a process as a finite state machine is somewhat awkward

Would it not be nice to be able to explicitly model such processes that
have a distinctive flow of control?

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 43
© Prof. G. Schäfer

Processes in a simulation

Such a process should be able to
Receive messages

Manipulate inner state

Send messages

And wait for some arbitrary amount of time

Example: To model the time necessary to analyze a message, a
process-based simulation would just wait

During such waiting, the process would not be able to react to any
messages

In contrast to a finite-state simulation, which is “always” able to receive
messages, as the processing of messages and performing state
transmission takes zero simulated time

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 44
© Prof. G. Schäfer

Using processes in OMNeT++

OMNet++ supports both finite state/event-based simulation as well as
process-based simulation

A module can implement a single process
Instead of implementing handleMessage, a process-based module
class implements the activity method

Strictly exclusive: a module is either event- or process-based

Different modules can use different paradigms (one of OMNeT’s main
advantages!)

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 45
© Prof. G. Schäfer

Process-based modules

Within activity, a module can
receive messages (different functions available)

send messages (different functions available)

wait – to suspend its own execution for a specified amount of simulated
time

scheduleAt – module sends a message to itself

cancelEvent – delete an event scheduled with scheduleAt

end – terminate its own execution

Not available in handleMessage
receive – useless, as handleMessage already is the reaction to the
reception of a message

wait – processing event takes no time for a finite state machine

end – due to implementation issues

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 46
© Prof. G. Schäfer

Process-based modules

Typical structure of activity: Infinite loop, containing at least a single
wait or receive call

What if both are absent?

Local state of a module can be put into data members of the class
as in the event-based case, here, an alternative exists

activity is run as a coroutine, having its own stack, for each module
instance
Think of activity as a thread running in parallel with all other parts of
the simulation
Hence, activity has local variables which maintain value even
across receive and wait calls
Local module state can be stored in local variables of activity

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 47
© Prof. G. Schäfer

Process-based modules

Running activity as a coroutine requires to set aside memory for the stack
Stack is specified in the constructor for a module, called by the
Module_Class_Members macro:

class ProcessModule : public cSimpleModule {

public:

Module_Class_Members (ProcessModule, cSimpleModule, 8192)

Specifying a stack in this macro distinguishes between an event- and process
based module implementation

initialize() is not necessary, can be done at the start of activity

finish() is required to output statistics at end of simulation

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 48
© Prof. G. Schäfer

Process-based modules – typical setup

class MyProcessBasedModule : public cSimpleModule {
variables for statistics gathering
activity();
finish();

}
MyProcessBasedModule::activity () {

declare local variable to hold state, initialize them
initialize statistics gathering variables
while (true)
{ … (usually send, receive, wait, …}

}
MyProcessBasedModule::finish() {

record statistics data into a file
}

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 49
© Prof. G. Schäfer

Comparing event and process style

Advantages of process-based
style

initialize() is not required

State can be stored in local
variables of activity()

Process-based style can be
natural programming model

Advantages of event-based
style

Lower memory overhead (no
separate stack required)

Faster: switching to coroutines
takes longer than just calling a
method (handleMessage)

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 50
© Prof. G. Schäfer

Comparing event and process style

Event-based is usually better if
Module has little or no state (e.g., data sinks)

Module has large state space, where many arbitrary transitions between
any two states exist, i.e., there is no clear succession from one state to a
successor state – typical for communication protocols

Rule of thumb:
If activity looks like a loop which only switches on the message type,
convert it to handleMessage

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 51
© Prof. G. Schäfer

Overview

OMNeT++ - Some basic concepts

Specifying module connections/topology

Process-based modules

Multiple random streams

Working with OMNeT++ simulation programs

Some odds and ends

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 52
© Prof. G. Schäfer

Using multiple random streams

As mentioned already, different random number streams must be used
for

Different simulation runs

Different sources of randomness within a simulation

to avoid unwanted correlation

OMNeT++ provides 32 independent random number generators (by
default, can be extended)

Most simply, one generator can be accessed with
intrand() – produces an integer between 1..INTRAND_MAX-1

randseed(x) – set seed of first generator to x

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 53
© Prof. G. Schäfer

Using multiple random streams

To access another one of the 32 available generators, use:
genk_intrand (k) – random number from generator k

genk_randseed (k, x) – set seed of generator k to x

To obtain double randoms between 0 and 1:
dblrand() and genk_dblrand()

To obtain numbers from certain distributions
double genk_uniform (…)

double genk_intuniform (…)

double genk_exponential (…)

double genk_normal (…)

double genk_truncnormal (…)

Additional distributions can be implemented, and, when registered
using Register_Function, even used in NED expressions

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 54
© Prof. G. Schäfer

Choosing seeds

Choosing good seeds for RNGs is a difficult problem

seedtool can be used to generate sufficient number of seeds

Example: four runs of a simulation that need two different RNGs, each
needing at most 10,000,000 random numbers

seedtool g 1 10000000 8 will generate the required eight seed
values for streams that are 10,000,000 values apart

Details see manual

How to easily use these seed values in simulations runs will be
described later

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 55
© Prof. G. Schäfer

Overview

OMNeT++ - Some basic concepts

Specifying module connections/topology

Process-based modules

Multiple random streams

Working with OMNeT++ simulation programs
Building and running

Debugging support

Collecting and displaying measurements

Some odds and ends

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 56
© Prof. G. Schäfer

Parts of Omnet programs

An Omnet program consists of a collection of modules
Set of bla.cc and bla.h file for each class bla

A *.ned file is required to specify network connectivity
Strictly speaking, not really required: a program can generate the entire
network (modules+connections) dynamically – check the manual on how
to do this

Additionally, the file omnetpp.ini is required, containing general
settings about the execution of the simulation

More details later

How to turn this into an executable?

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 57
© Prof. G. Schäfer

Bulding an Omnet program

Usually, a makefile is required, listing dependencies between separate
files and instructions about libraries to include in a program

Omnet provides a little tool makemake to generate a makefile
Usage: call makemake (or opp_nmakemake, respectively)
Call make depend to generate dependencies on .h-files
make will build the program

makemake collects all *.cc files in the current directory and includes
them in the program-to-be-built

Required libraries and theirs paths are also bound to the program
Possible to select between statically and dynamically linked programs

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 58
© Prof. G. Schäfer

Running an Omnet program

Omnet programs can be run under two user interfaces: command-line
oriented or graphical user interface

Selected as a parameter to makemake

Graphical user interface
Represents modules and connections, messages traveling along
connections

Single-step from event to event or run the program with different animation
speeds

Inspectors for most objects (e.g., double-click on modules)

Command-line interface
Rather uncomfortable, use it to run a program at maximum speed after it
has been debugged with the graphical interface

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 59
© Prof. G. Schäfer

omnetpp.ini

Initialization file, contains several sections
General settings: warning levels, names for output files, seed selection,
limits on the simulation and simulated time, maximum memory usage,
using parallel execution, etc.
Environment-specific settings

Command-line: which runs to execute (see below), level of verbosity
Graphical environment: speed and level of detail of animation, etc.

Parameters: any parameters that were unspecified in the ned-file can be
set here

Any parameter left unset will be requested from the user at program
startup

Runs: the same program can be executed multiple times with different
parameter settings – a run
Possible to specify when to start/stop taking measurements

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 60
© Prof. G. Schäfer

Debugging aids

Printf-style debugging is supported with the ev object, using normal <<
I/O operator

Can be collected in different ways for compound modules
Do never use printf, cout etc. as this will conflict with the graphical
environment (will appear in xterm from which program is started)
setPhase() to set title of windows

Watches
A watch can be declared for primitive variables

Watched variables can be inspected/changed in the GUI and output into a
snapshot
Syntax: int i; WATCH (i);

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 61
© Prof. G. Schäfer

Debugging aids

Snapshots
Dump status of the entire (or selected parts of) simulation into a text file
(default: omnetpp.sna)

Modules, queues, message queues, watched variables, etc. can be
included

Breakpoints
In activity(), breakpoints can be set by calling function breakpoint,
execution will be suspended

Only available if user interface supports debugging

Warnings can be disabled

Stack usage can be checked
Can be substantial with coroutines/activity() as they need a lot of
space on the stack

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 62
© Prof. G. Schäfer

Collecting measurements

Omnet provides several classes to collect results
cStdDev collects samples, computes mean, standard deviation, number
of samples, min, max

cWeightedStdDev: similar, but weighted, e.g. to compute time-
averaged statistics

cLongHistogram/cDoubleHistogram: additionally store an
approximated density

These classes also provide hooks to interact with classes for transient
detection and accuracy estimation of results

Details later

Some other classes – read the manual!

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 63
© Prof. G. Schäfer

Extracting measurements

Two main supporting mechanisms are offered:
Outputting scalar measurements at the end of a simulation run
Outputting vector-like measurements during a simulation

Scalar measurements
recordScalar (“bla”, value) writes an entry into omnetpp.sca
recordStats (“bla”, statobject) writes an entire statistics
collection object into omentpp.sca
Usually done in finish() methods of a simple module

Vector measurements
Class cOutVector provides functionality
Create an object e.g. value_vector of this class, along with a name
Call value_vector.record(value) to write an entry into
omnetpp.vec
Generates a single line in this file
Note: vector file is deleted at the beginning of each run

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 64
© Prof. G. Schäfer

Visualizing measurements

General remark:
Make SURE you can generate visualizations automatically
You are going to run many many different simulation experiments with
identical result formats
You do not want to point-and-click every time the same sequence of
commands
Hence, visualizations MUST be batch-able!

Main keywords: perl and gnuplot
Or equivalent tools, but nothing GUI-point-and-click-ish!

One nice intermediate tool provided by Omnet: plove
Knows how to “read in” Omnet’s vector output
Acts as a wrapper around awk and gnuplot
Interactively edit the way the graph looks, then safe a script that will
recreate the graph when applied to data

And even better:
add some little script code that generates LaTeX-wrappers for the figures
as well

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 65
© Prof. G. Schäfer

Some odds and ends

Above all: READ THE MANUAL!

Omnet has an extensive simulation library
Contains container classes like queues (cQueue) and other useful stuff

The way messages have been described here is rather inefficient
Handling cPar objects to manipulate data of a message is processing
intensive
Subclassing of cMessage can provide immense speedup

Look at coding conventions and tips for speeding up the simulation in
the manual

Omnet can make use of PVM-based parallel execution

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 66
© Prof. G. Schäfer

Conclusions

OMNeT++ is an extensive discrete event simulation system
Cleanly structure object-oriented design

Provides access to both event- and process-based programming style

A lot of support functionality

Does

Experience is needed to make best use of its potential
But has a comparatively smooth learning curve (other tools are much
worse)

Simulation Project (WS 2005): 03 – Introduction to OMNet++ 67
© Prof. G. Schäfer

Additional References

[Karl04] H. Karl. Praxis der Simulation. course slides, Technische Universität Berlin.

[Var04] A. Varga. OMNeT++: Object-Oriented Discrete Event Simulator.
http://www.omnetpp.org/

