
Simulation Project (WS 2005): 04 – Overview of the protsim Framework 1
© Prof. G. Schäfer

Simulative Evaluation
of Internet Protocol Functions

Chapter 4
Overview of the protsim

Framework

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 2
© Prof. G. Schäfer

Introduction

A semester may look like a bunch of time at first, but you will soon see
that it is not long enough to write the complete simulation, especially
since you

may have never been in touch with networking

may have never programmed in C++

probably have never written a simulation

Therefore, we developed the protsim framework for you, that already
offers you the overall architecture of the simulation programm, as well
as some already written support functions.

Thus, you can concentrate on the interesting stuff by extending the
protsim framework

The following slides will give you a short overview over protsim

Detailed information on the available classes, their attributes and
methods can be found in the online API documentation that can be
generated from the sources

You are encourage to read the sources to learn from them

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 3
© Prof. G. Schäfer

Network

A network is set of connected NetworkNodes
Although OMNeT++ connections are uni-directional we usually use
them in pairs to imitate bi-directional links
The connections may be attached propagation delay, throughput and
errors
A network is defined in a ned file

Network
Node

Network
Node

Network
Node

Network
Node

Network
Node

Network
Node

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 4
© Prof. G. Schäfer

Network Node

Each NetworkNode is identified by a node address (type
NodeAddressT which is defined as a long)
A NetworkNode consists of a NetworkStack and multiple instances
of subclasses of Application
Network interfaces of the node are represented by the gate arrays
netOut[] and netIn[] which are connected to the NetworkStack

NetworkNode

Application

NetworkStack
netOut[] netIn[]

toAppl[]fromAppl[]

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 5
© Prof. G. Schäfer

The Network Stack

The network stack is responsible for forwarding packets between
network interfaces and applications

It contains
a table of local applications that is automatically set up

a table of neighbor nodes and links to these nodes (automatically set up)

a forwarding table associating an outgoing link to each destination (empty
by default, must be maintained by a routing daemon)

methods for maintaining the above tables

some support methods

stubs for the methods implementing the forwarding engine (it will be your
task to fill them with life)

For a detailed reference on the available methods and fields, please
look into the online API documentation

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 6
© Prof. G. Schäfer

Applications

Each application is identified within a NetworkNode by its application
address (type ApplicationAddressT which is defined as a long)

Note: The application address is unique only within a node. To identify
an application network-wide (e.g. as a destination of a packet) use a
combination of node and application address.
Application is only an abstract base class. Real applications must
be derived from it.
Each application possesses an in and an out gate connected to the
local NetworkStack

Routing daemons are also just applications
identified by the special address ROUTING_DAEMON

calls the appropriate methods of NetworkStack to configure the
forwarding table

gets local messages if a link changes

at most one routing daemon per node possible

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 7
© Prof. G. Schäfer

Messages

Messages are used to carry application data or application-specific
signaling (e.g. used by routing daemons)
All messages in protsim are subclassed from NetworkPacket

NetworkPacket contains the following informations:

Packet ID (can be used by the application)

Source address (node and application address)

Destination address (node and application)
An alert flag that tells the NetworkStack to send the message to the
application on each hop, not only at the destination

The node address of the last hop

A time-to-live field counting the number of hops

Application messages additionally contain application-specific fields

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 8
© Prof. G. Schäfer

Topology

Represents a network graph

Consists of nodes and links connecting the nodes

You can construct a topology in two ways:
Copy it from an OMNeT++ cTopology instance

Create it from scratch
The latter is not possible with cTopology (you will need this for the
implementation of some routing algorithms, that is why Topology was
developed)

Topology, TopologyNode and TopologyLink offer methods to

iterate over nodes or get nodes by node address

add a node for a node address

iterate over links starting at a certain node or get links by destination node
address

add a link between two nodes

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 9
© Prof. G. Schäfer

Directory Hierarchy of protsim Framework

doc/api
By pointing a browser (e.g. konqueror) to the index.html in this directory, you get
the online API documentation of the framework.
Please use it frequently!

common
Here you find the files for the Application base class and for the
NetworkStack

messages
Contains the msg-files for network packets

nodes
Contains the ned-files for the compound modules of nodes (e.g. NetworkNode)

networks
Contains the ned-files for network topologies

routing
Files describing and implementing routing daemons

userapps
Files describing and implementing user applications

support
Support classes, such as Topology, Parser, ForwardingTable and files
defining metrics

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 10
© Prof. G. Schäfer

Example – Overview

This picture shows a simple
example consisting of

two directly connected network
nodes

a simple sender application

a simple receiver application

two network stacks

The direction from receiver to
sender is not used

The example is a bit simplified
as compared to the real
framework

NetworkNode
ExampleReceiver

NetworkStack
netIn[] netOut[]

fromAppl[]toAppl[]

in out

NetworkNode
ExampleSender

NetworkStack
netOut[] netIn[]

toAppl[]fromAppl[]
out in

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 11
© Prof. G. Schäfer

Example – Simple Modules – NED Files

[ExampleSender.ned]
simple ExampleSender
parameters:
applAddr: numeric;

gates:
in: in;
out: out;

endsimple;

[ExampleSender.ned]
simple ExampleSender
parameters:
applAddr: numeric;

gates:
in: in;
out: out;

endsimple;

[ExampleReceiver.ned]
simple ExampleReceiver
parameters:
applAddr: numeric;

gates:
in: in;
out: out;

endsimple;

[ExampleReceiver.ned]
simple ExampleReceiver
parameters:
applAddr: numeric;

gates:
in: in;
out: out;

endsimple;

[NetworkStack.ned]
simple NetworkStack

gates:
in: netIn[], fromAppl[];
out: netOut[], toAppl[];

endsimple;

[NetworkStack.ned]
simple NetworkStack

gates:
in: netIn[], fromAppl[];
out: netOut[], toAppl[];

endsimple;

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 12
© Prof. G. Schäfer

Example – Sender Implementation

[ExampleSender.cc (includes omitted)]

class ExampleSender : public Application {
public:
Module_Class_Members(ExampleSender,Application,16384);

protected:
virtual void activity();

};

Define_Module(ExampleSender);

void ExampleSender::activity() {
while (true) {

NetworkPacket * packet = new NetworkPacket("Ping",NETWORK_PACKET);
packet->setLength(8000);
send(packet,"out");
wait(1.0);

}
}

[ExampleSender.cc (includes omitted)]

class ExampleSender : public Application {
public:
Module_Class_Members(ExampleSender,Application,16384);

protected:
virtual void activity();

};

Define_Module(ExampleSender);

void ExampleSender::activity() {
while (true) {

NetworkPacket * packet = new NetworkPacket("Ping",NETWORK_PACKET);
packet->setLength(8000);
send(packet,"out");
wait(1.0);

}
}

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 13
© Prof. G. Schäfer

Example – Receiver Implementation

[ExampleReceiver.cc]
#include <omnetpp.h>
#include "protsim_defines.h"
#include "Application.h"

class ExampleReceiver : public Application {
public:
Module_Class_Members(ExampleReceiver,Application,0);

protected:
virtual void handleMessage(cMessage * msg);

};

Define_Module(ExampleReceiver);

void ExampleReceiver::handleMessage(cMessage * msg) {
ev << "Message " << msg->name() << " received\n";
delete msg;

}

[ExampleReceiver.cc]
#include <omnetpp.h>
#include "protsim_defines.h"
#include "Application.h"

class ExampleReceiver : public Application {
public:
Module_Class_Members(ExampleReceiver,Application,0);

protected:
virtual void handleMessage(cMessage * msg);

};

Define_Module(ExampleReceiver);

void ExampleReceiver::handleMessage(cMessage * msg) {
ev << "Message " << msg->name() << " received\n";
delete msg;

}

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 14
© Prof. G. Schäfer

Example – NetworkStack Implementation

[NetworkStack.h / NetworkStack.cc]
class NetworkStack : public cSimpleModule {
public:
NetworkStack(const char *name, cModule *parentmod)

: cSimpleModule(name, parentmod, 0) {}
protected:
virtual void handleMessage(cMessage * msg);

};

Define_Module(NetworkStack);

void NetworkStack::handleMessage(cMessage * msg) {
if (msg->arrivalGate() &&

strcmp(msg->arrivalGate()->name(),"fromAppl")==0) {
send(msg,"netOut",0);

}
else {

send(msg,"toAppl",0);
}

}

[NetworkStack.h / NetworkStack.cc]
class NetworkStack : public cSimpleModule {
public:
NetworkStack(const char *name, cModule *parentmod)

: cSimpleModule(name, parentmod, 0) {}
protected:
virtual void handleMessage(cMessage * msg);

};

Define_Module(NetworkStack);

void NetworkStack::handleMessage(cMessage * msg) {
if (msg->arrivalGate() &&

strcmp(msg->arrivalGate()->name(),"fromAppl")==0) {
send(msg,"netOut",0);

}
else {

send(msg,"toAppl",0);
}

}

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 15
© Prof. G. Schäfer

Example – ExampleNode

[ExampleNode.ned (imports and ExampleReceiverNode omitted)]

module ExampleSenderNode
parameters:
nodeAddr: numeric;

gates:
in: netIn[];
out: netOut[];

submodules:
networkStack: NetworkStack
gatesizes:
netIn[sizeof(netIn)],
netOut[sizeof(netOut)],
fromAppl[1],
toAppl[1];

app: ExampleSender
parameters:
applAddr = 1;

connections:
netIn[0] --> networkStack.netIn[0];
netOut[0] <-- networkStack.netOut[0];
networkStack.toAppl[0] --> app.in;
networkStack.fromAppl[0] <-- app.out;

endmodule ExampleSenderNode;

[ExampleNode.ned (imports and ExampleReceiverNode omitted)]

module ExampleSenderNode
parameters:
nodeAddr: numeric;

gates:
in: netIn[];
out: netOut[];

submodules:
networkStack: NetworkStack
gatesizes:
netIn[sizeof(netIn)],
netOut[sizeof(netOut)],
fromAppl[1],
toAppl[1];

app: ExampleSender
parameters:
applAddr = 1;

connections:
netIn[0] --> networkStack.netIn[0];
netOut[0] <-- networkStack.netOut[0];
networkStack.toAppl[0] --> app.in;
networkStack.fromAppl[0] <-- app.out;

endmodule ExampleSenderNode;

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 16
© Prof. G. Schäfer

Example – ExampleNetwork

[ExampleNetwork.ned]
import "../nodes/ExampleNode.ned";

module ExampleNetworkModule
submodules:
Sender: ExampleSenderNode;
parameters:
nodeAddr = 1;

gatesizes:
netIn[1],
netOut[1];

Receiver: ExampleReceiverNode;
parameters:
nodeAddr = 2;

gatesizes:
netIn[1],
netOut[1];

connections:
Sender.netOut[0] --> delay 0.001 datarate 1E6 --> Receiver.netIn[0];
Sender.netIn[0] <-- delay 0.001 datarate 1E6 <-- Receiver.netOut[0];

endmodule;
network ExampleNetwork : ExampleNetworkModule
endnetwork;

[ExampleNetwork.ned]
import "../nodes/ExampleNode.ned";

module ExampleNetworkModule
submodules:
Sender: ExampleSenderNode;
parameters:
nodeAddr = 1;

gatesizes:
netIn[1],
netOut[1];

Receiver: ExampleReceiverNode;
parameters:
nodeAddr = 2;

gatesizes:
netIn[1],
netOut[1];

connections:
Sender.netOut[0] --> delay 0.001 datarate 1E6 --> Receiver.netIn[0];
Sender.netIn[0] <-- delay 0.001 datarate 1E6 <-- Receiver.netOut[0];

endmodule;
network ExampleNetwork : ExampleNetworkModule
endnetwork;

Simulation Project (WS 2005): 04 – Overview of the protsim Framework 17
© Prof. G. Schäfer

Example – Initialization File (omnetpp.ini)

include general.ini
include seeds.ini

[General]
network = ExampleNetwork

[DisplayStrings]

[Parameters]
*.applAddr = -1;

[Run 1]
snapshot-file = protsim.sna
output-vector-file = protsim.vec
output-scalar-file = protsim.sca

include general.ini
include seeds.ini

[General]
network = ExampleNetwork

[DisplayStrings]

[Parameters]
*.applAddr = -1;

[Run 1]
snapshot-file = protsim.sna
output-vector-file = protsim.vec
output-scalar-file = protsim.sca

