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Obtaining Data From Simulations
& Short Probability Primer

(Acknowledgement: these slides have mostly been compiled from [Kar04, Rob01, BLK02])



Introduction

� So far, we have mainly used the OMNet++ simulation environment 
as a tool to set up a kind of “playground” for instructive illustration of 
and experimentation with networking algorithms:
� While this is a worthwhile way of using a simulation environment, this is 

not the original purpose for which simulations are usually build 
� Most of the times, a simulation program is build in order to help answer 

a series of (quantitative) questions
� This leads us to an inevitable excursion into the topics of model 
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� This leads us to an inevitable excursion into the topics of model 
parameters, metrics and measurements... :o)

� Parameters, metrics, and measurements:
� Parameters and metrics
� How to measure typical types of metrics
� On the meaning of measurements

(compiled from [Kar04])



System, Load, and Fault Models (1)

� System model:
� Describes the composition of an entire system out of simpler subsystems
� Represents the behavior, the way a system works

� In communication networks:
� Entities communicate by exchanging messages over links
� Protocols implemented in entities, can have parameters like processing 

delays, limited queue length
Links can have parameters like bandwidth and delay
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� Links can have parameters like bandwidth and delay



System, Load, and Fault Models (2)

� Load model:
� Describes the pattern with which requests are made to the system to 

perform different kinds of activities
� When do such requests occur? 
� What is the time between requests?
� What are the parameters of such a request? 

� In communication networks:
Load is the desire of a “user” to send a packet to another user
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� Load is the desire of a “user” to send a packet to another user
� Example parameter: how big is the packet

� On a coarser abstraction level: 
� how often are connections established, 
� how much data is transmitted within a connection, 
� what is the mix between different types of connections (QoS) within a 

session, etc. 



System, Load, and Fault Models (3)

� Fault model:
� Describes which parts of a system can deviate from their 

proscribed/desired behavior, and in which form
� When do such deviations occur? 
� Can they be repeated (are faulty entities repaired)? 
� How long do deviations last? 
� Which kind of faulty behavior occurs?

In communication networks:
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� In communication networks:
� Entities can be faulty (e.g., a node can crash, often considered a 

permanent error)
� Communication links can be faulty (e.g., some bits are not transmitted 

correctly, due to electromagnetic noise, usually considered a transient 
error)



System, Load, and Fault Models (4)

� Neither the arrival of requests nor the occurrence of faults can be 
described deterministically 

� Random distributions needed to model these events along with their 
parameters:
� What distributions are available, appropriate and easy to use in 

simulations?
� How can random numbers be generated such that the simulated events 

occur according to these distributions? (Based on general-purpose 
random number generators?)
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random number generators?)
� How well do standard distributions match observed behavior of real 

(communication) systems? How to choose parameters for distributions to 
model real systems?

� What to do if no simple standard distributions can be found that match a 
real system’s behavior?

� Is it sufficient to just look at distributions?

� And what exactly is a “distribution”???
� Later in this chapter, we will review some basics of probability



Back to Basics: A Simple Model

� In order to discuss parameters and metrics in more detail, let us recall 
our simple model of the introduction chapter:
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Server

Queue

Customer

New customers Customers 
leave 
system



(Simulation) Model Parameters

� In our introductory manual simulation example, parameters have not 
been taken into account

� Parameters are:
� Pattern of customer arrival

� Deterministic modeling impossible
� Stochastic modeling: consider the time between customers as a 

random variable, choose a suitable distribution for this variable (by the 
way: what are random variables and distributions? → see later)
Common case: interarrival time of customers is exponentially 
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� Common case: interarrival time of customers is exponentially 
distributed (explained later), characterized by the distribution’s mean

� Pattern of service times
� Similar to arrival patterns
� Service time modeled as a random variable, e.g. also with an 

exponential distribution
� Speed of the server

� Can arbitrarily be set to 1 by scaling the time
� Direct representation is simple, too



And What About Metrics?

� The initial goal was to investigate:
� Utilization of the server (“what percentage of time is the server busy”)
� Length of the queue (“how much space do we need in the store?”)

� What does this mean? At most? On average?
� Waiting time of customers

� Again: At most? On average? Fridays?

How to capture such information from a simulation?
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� How to capture such information from a simulation?



Measuring Server Utilization (1)

� Directly measuring utilization is difficult
� Simple to measure the absolute time the server has been busy, and at 

the end divide it by the total time that has been simulated
� Introduce a counter “busytime”, initialize to zero
� At every event: if the server has been busy in the time before this event, 

add the time since the last event to “busytime”
� Easy to check the “old” server state if this check is done before the 

state is updated according to the current event
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state is updated according to the current event
� Additional counter “time_of_last_event” necessary

� Trivial to compute time since last event from this
� Before setting the simulation clock to the new time, store it in 

“time_of_last_event”



Measuring Server Utilization (2)

server
busy

Time
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Time
time_of_last_event = 0

busy_time = 0

time_of_last_event = 2
busy_time = 4

time_of_last_event = 6
busy_time = 4

time_of_last_event = 9
busy_time = 7



Measuring Customer Waiting Time (1)

� How much time does a customer spend in the queue?
� When putting customer in the queue, mark it with the time this was 

done
� When retrieving a customer from the queue, take difference between 

current simulation clock and time of entry into queue
� If customer does not enter queue, waiting time is 0
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Measuring Customer Waiting Time (2)

� Example from above: waiting time for customer C

Server
C

4.9

B is being served

Will finish: 8.2Clock: 4.9

Customer 
will arrive: 5.6
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Server
D

5.6

C is being served

Will finish: 10Clock: 8.2

Customer 
will arrive: 9.3

• Waiting time for C is current simulation clock – time of 
enqueuing = 8.2 – 4.9 = 3.3



Measuring Customer Waiting Time (3)

� This yields waiting times for each customer
� How to aggregate this information?
� Build the average!

� Let Di stand for the delay of customer i (possibly 0)
� Compute the usual arithmetic average of the Dis

∑
n

iDn/1
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� Note: (Arithmetic) average over a discrete number of data

∑
=i

i
1



Measuring Queue Length (1)

� How does the number of customers in the queue behave?

# of custom
ers in

queue

1

2

3
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� Discrete-valued function over time, changing at arbitrary points in time 
(customers joining and leaving)

# of custom
ers in

Time

1



Measuring Queue Length (2)

� Appropriate representation: average of this function over time 

# of custom
ers in

queue

1

2

3
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� Area of this curve = 17 between time 0 and 16.9
� Average length of the queue is hence roughly 1.006

# of custom
ers in

queue

Time

1



Measuring Queue Length (3)

� How to easily compute this average?
� Many complicated approaches possible ☺

� Simplest way
� Compute the total area under the curve, and at the end of the simulation, 

divide by the total simulated time
� At every event that manipulates the queue: add the area since the last 

event to the total area 
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# of custom
ers in

queue

Time

1

2

3



Different Kinds of Metrics

� Average waiting time of customers
� Average is taken over a discrete set of individuals
� Measured value is time
� Example for a discrete-time metric (or statistic)

� Average queue length
� Average is continuously taken over time
� Measured value is a number, a discrete metric
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� Example for a continuous-time metric (or statistic)



Meaning of Measurements (1)

� What is the correct interpretation of such simulation-based 
measurements?

� Look e.g. at waiting time in queue
� Let Di represent the waiting time as measured for customer i
� This refers to one particular simulation run – or to observations on one 

particular day (for the real system)!
� For different simulations/on different days, the Dis will be different
� Dis are averaged over n customers to obtain aggregate information, here: 
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� Dis are averaged over n customers to obtain aggregate information, here: 
average waiting time in queue

� Other possible aggregations: max, min, proportions, … 

� Both Dis and their aggregate will change from one set of observations 
to the next!



Meaning of Measurements (2)

� Why look at aggregated information of measurements?

� Aggregated information gives a more concise 
representation/description of the system under study

� It is easier to compare aggregated information from different 
system/simulation runs 
� The average waiting times in a supermarket on weekdays as opposed to 

Saturdays is more informative than waiting times of individual customers 
(which are not really important)
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(which are not really important)

� So what about looking at distributions instead of averages?

� Successive values might not be distributed in the same way
� In the queuing example, D1 is always 0, whereas D2, D3, etc. are not
� Hence, the average of such values are not the usual statistical average 

which is usually computed over independent, but identically distributed 
observations



Meaning of Measurements (3)

� The “truly typical” (in a statistical sense) behavior of the model can be 
considered to be the “average” over all possible behaviors the model 
can exhibit

� Weighted by the probabilities of these behaviors

� Sometimes possible to analytically derive closed-form descriptions for 
such behavior
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Meaning of Measurements (4)

� What is the relationship between truly typical behavior and the result of 
a simulation run?

Average
siD )(ˆ nd )(nd

n observations StatisticallyEstimator for 

Estimates
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� How good is such an estimator? How to improve the estimation? What 
are typical sources of errors?
� There is a course on the topic of simulation which studies these questions 

in much more detail (“Leistungsbewertung”, held every winter term)

n observations
from one run

Statistically
typical

behavior

Estimator for 
true behavior



How Long to Run Simulations?

� When have sufficiently many observations been collected?

� Depends on the purpose (again)

� Sometimes (rarely): behavior of system for a well-defined finite amount 
of time is of interest
� Example: supermarket closes at 8pm, no matter what
� Simulate for a certain fixed amount of simulated time, or a fixed number of 

events
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� Problem: quality of estimations is variable

� Often: certain metrics (depending on input parameters) are of interest
� Simulate as long as it takes for the estimation of these metrics to have 

reached a desired “quality level” (we will come back to this later)
� Correctly computing the quality level is difficult
� Amount of necessary simulated time can vary
� “Stopping rules” regulate when to stop a simulation



Short Review of Some Probability Basics

� Probability is a numerical measure of the likelihood that an 
event will occur.

� Probability values are always assigned on a scale from 0 to 1.

� A probability near 0 indicates an event is very unlikely to occur.

� A probability near 1 indicates an event is almost certain to 
occur.

� A probability of 0.5 indicates the occurrence of the event is just 
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� A probability of 0.5 indicates the occurrence of the event is just 
as likely as it is unlikely.

0 1.5

Increasing Likelihood of Occurrence

Probability:

The occurrence of the event is
just as likely as it is unlikely.

(compiled from [Rob01])



An Experiment and Its Sample Space

� An experiment is any process that generates well-defined 
outcomes.

� The sample space for an experiment is the set of all 
experimental outcomes.

� A sample point is an element of the sample space, any one 
particular experimental outcome.

� Examples:
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� Examples:

Experiment

� Draw a card from a pack

� Telephone sales call
� First number drawn in 

National Lottery

Outcomes

� {Ace hearts, 2 hearts,  
…,King of spades}

� Sale or no sale
� {1,2,3,…,49}



Constructing Sample Spaces

� A good way to construct the sample space is to write down examples 
of typical outcomes and try to identify the complete set

� Example: 
Toss a coin four times 
One typical outcome is four consecutive heads (H,H,H,H),  another is 
a head, tail, head and head (H,T,H,H) 

A little thought results in identifying the sample space as the set of all 
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A little thought results in identifying the sample space as the set of all 
such 4-tuples

S={   (H,H,H,H), (H,H,H,T), (H,H,T,H), (H,T,H,H),
(T,H,H,H),  (H,H,T,T),  (H,T,H,T), (H,T,T,H),
(T,H,T,H),   (T,T,H,H),  (T,H,H,T), (H,T,T,T),
(T,H,T,T),    (T,T,H,T),   (T,T,T,H), (T,T,T,T) }



A Counting Rule for Multiple-Step Experiments

� If an experiment consists of a sequence of k steps in which 
there are n1 possible results for the first step, n2 possible results 
for the second step, and so on, then the total number of 
experimental outcomes is given by (n1)(n2) . . . (nk)

� A helpful graphical representation of a multiple-step experiment 
is a tree diagram
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Another useful counting rule enables us to count the
number of experimental outcomes when n objects are to
be selected from a set of N objects
� Number of combinations of N objects taken n at a time

Counting Rule for Combinations

)!(!

!

nNn

N

n

N
CN

n −
=








=
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where N! = N(N - 1)(N - 2) . . . (2)(1)
n! =  n(n - 1)( n - 2) . . . (2)(1)
0! = 1

)!(! nNnn
Cn −

=





=



Counting Rule for Permutations

A third useful counting rule enables us to count the
number of experimental outcomes when n objects are to
be selected from a set of N objects where the order of
selection is important

� Number of permutations of N objects taken n at a time:
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n)!(N

N!

n

N
n!PN

n −
=








=



Assigning Probabilities

� Classical Method:
� Assigning probabilities based on the assumption of equally likely 

outcomes

� Relative Frequency Method:
� Assigning probabilities based on experimentation or historical data

� Subjective Method:
� Assigning probabilities based on the assignor’s judgment 
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� Assigning probabilities based on the assignor’s judgment 
� Applied in economics and related sciences 



Classical Method

If an experiment has n possible outcomes, this method 
would assign a probability of 1/n to each outcome.

� Example:
Experiment:  Rolling a die
Sample Space:  S = {1, 2, 3, 4, 5, 6}
Probabilities:  Each sample point has a 1/6 chance

of occurring.
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of occurring.



Relative Frequency of an Outcome

� Suppose that, in a large number of repetitions, N, of
the experiment, the outcome O, occurs        times.
The relative frequency of O is,

We can think of the probability of O as the value to which the relative 

On

N
nO
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We can think of the probability of O as the value to which the relative 
frequency settles down as N gets larger and larger.



Events and Their Probability

� An event is a collection of sample points

� The probability of any event is equal to the sum of the 
probabilities of the sample points in the event

� If we can identify all the sample points of an experiment and 
assign a probability to each, we can compute the probability of 
an event

� There are some basic probability relationships that can be used 
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� There are some basic probability relationships that can be used 
to compute the probability of an event without knowledge of all 
the sample point probabilities:
� Complement of an Event
� Union of Two Events
� Intersection of Two Events
� Mutually Exclusive Events



Complement of an Event

� The complement of event A is defined to be the event consisting 
of all sample points that are not in A

� The complement of A is denoted by Ac

� The Venn diagram below illustrates the concept of a 
complement

Sample Space S
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Event A Ac



� The union of events A and B is the event containing all sample 
points that are in A or B or both

� The union is denoted by A ∪ B
� The union of A and B is illustrated below

Sample Space S

Union of Two Events

35
©  Dr.-Ing G. Schäfer

Simulation Project: 05 – Obtaining Data from Simulations

Event A Event B



Intersection of Two Events

� The intersection of events A and B is the set of all sample points 
that are in both A and B

� The intersection is denoted by A ∩ Β
� The intersection of A and B is the area of overlap in the 

illustration below

Sample Space S
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Sample Space S

Event A Event B

Intersection



Addition Law

� The addition law provides a way to compute the probability of 
event A, or B, or both A and B occurring

� It is written as:

P(P(AA ∪ ∪ BB) = P() = P(AA) + P() + P(BB) ) -- P(P(AA ∩∩ BB))P(P(AA ∪ ∪ BB) = P() = P(AA) + P() + P(BB) ) -- P(P(AA ∩∩ BB))
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Mutually Exclusive Events

� Two events are said to be mutually exclusive if the events have 
no sample points in common

� That is, two events are mutually exclusive if, when one event 
occurs, the other cannot occur

Sample 
Space S

Event BEvent A
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Event BEvent A

� Addition Law for Mutually Exclusive Events:

P(A ∪ B) = P(A) + P(B) 



Conditional Probability

� The probability of an event given that another event has 
occurred is called a conditional probability

� The conditional probability of A given B is denoted by P(A|B)
� A conditional probability is computed as follows:

P
P

P
( | )

( )
( )

A B
A B

B
= ∩

39
©  Dr.-Ing G. Schäfer

Simulation Project: 05 – Obtaining Data from Simulations

P
P

( | )
( )

A B
B

=



Multiplication Law

� The multiplication law provides a way to compute the probability 
of an intersection of two events

� The law is written as: 

P(A ∩ B) = P(B)P(A|B)
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Independent Events

� Events A and B are independent if P(A|B) = P(A)

� Multiplication Law for Independent Events  

P(A ∩ B) = P(A)P(B)
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� The multiplication law also can be used as a test to see if two 
events are independent



Random Variables

� A random variable is a numerical expression of the outcome of an 
experiment
� Example 1: toss a die twice; count the number of times the number 4 

appears (0, 1 or 2 times)
� Example 2: toss a coin; assign $10 to head and -$30 to a tail

� Discrete random variable:

� Can only take discrete values
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� Obtained by counting (0, 1, 2, 3, etc.)

� Usually a finite number of different values

� E.g., toss a coin 5 times; count the number of tails (0, 1, 2, 3, 4, or 5 times)

(compiled from [BLK02])



Discrete Probability Distribution

� A discrete probability distribution is the list of all possible [Xj , P(Xj) ]
pairs, with:

� Xj = Value of random variable

� P(Xj) = Probability associated with value

� This list can be visualized with a histogram

� Mutually Exclusive (Nothing in Common)
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� Collective Exhaustive (Nothing Left Out)

( ) ( )0 1         1j jP X P X≤ ≤ =∑



Basic Summary Measures (1)

� Expected Value (The Mean):

� Weighted average of the probability distribution

� E.g., toss 2 coins, count the number of tails, compute expected 

( ) ( )j j
j

E X X P Xµ = =∑
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� E.g., toss 2 coins, count the number of tails, compute expected 
value:

( )
( ) ( ) ( ) ( ) ( ) ( )   0 .25 1 .5 2 .25 1

j j
j

X P Xµ =

= + + =

∑



Basic Summary Measures (2)

� Variance:
� Weighted average squared deviation about the mean

� E.g., Toss 2 coins, count number of tails, compute variance: 

( ) ( ) ( )222
j jE X X P Xσ µ µ = − = −

  ∑

( ) ( )22 X P Xσ µ= −∑
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� The standard deviation is the square root of the variance:

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2

2 2 2
    0 1 .25 1 1 .5 2 1 .25

    .5

j jX P Xσ µ= −

= − + − + −
=

∑

2σσ =



Binomial Probability Distribution

� ‘n’ Identical Trials
� E.g., 15 tosses of a coin; 10 light bulbs taken from a warehouse

� 2 Mutually Exclusive Outcomes on Each Trial
� E.g., Heads or tails in each toss of a coin; defective or not defective light 

bulb

� Trials are Independent
� The outcome of one trial does not affect the outcome of the other
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� Constant Probability for Each Trial
� E.g., Probability of getting a tail is the same each time we toss the coin

� 2 Sampling Methods
� Infinite population without replacement
� Finite population with replacement



Binomial Probability Distribution Function

( ) ( ) ( )

( )
( )

!
1

! !

:  probability of  successes given  and 

:  number of "successes" in sample 0,1, ,

:  the probability of each "success"

n XXn
P X p p

X n X

P X X n p

X X n

p

−= −
−

= L
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:  sample sizen
Tails in 2 Tosses of Coin

X P(X)
0 1/4 = .25

1 2/4 = .50

2 1/4 = .25 

Tails in 2 Tosses of Coin

X P(X)
0 1/4 = .25

1 2/4 = .50

2 1/4 = .25 



Binomial Distribution Characteristics

� Mean

� E.g.,  

� Variance and 
Standard Deviation

( )E X npµ = =

( )5 .1 .5npµ = = =

n = 5 p = 0.1
.6

P(X)
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Standard Deviation
�

� E.g., 

n = 5 p = 0.1

0
.2
.4
.6

0 1 2 3 4 5

X

( ) ( )( )1 5 .1 1 .1 .6708np pσ = − = − =

( )
( )

2 1

1

np p

np p

σ

σ

= −

= −



Poisson Distribution
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Siméon Poisson



Poisson Distribution

� Discrete events (“successes”) occurring in a given area of 
opportunity (“interval”) 
� “Interval” can be time, length, surface area, etc.

� The probability of a “success” in a given “interval” is the same for 
all the “intervals”

� The number of “successes” in one “interval” is independent of the 
number of “successes” in other “intervals”
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� The probability of two or more “successes” occurring in an 
“interval” approaches zero as the “interval” becomes smaller
� E.g., # customers arriving in 15 minutes
� E.g., # defects per case of light bulbs



Poisson Probability Distribution Function

( )

( )
!

:  probability of  "successes" given 

:  number of "successes" per unit

:  expected (average) number of "successes"

Xe
P X

X
P X X

X

λλ

λ

λ

−

=
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:  expected (average) number of "successes"

:  2.71828 (base of natural logs)e

λ

E.g., Find the probability of 4 
customers arriving in 3 minutes when 
the mean is 3.6.  

( )
3.6 43.6

.1912
4!

e
P X

−

= =



Poisson Distribution Characteristics

� Mean

� Standard Deviation
and Variance

( )

( )
1

   
N

i i
i

E X

X P X

µ λ

=

= =

=∑ λ λ λ λ = 0.5

0
.2
.4
.6

0 1 2 3 4 5

X

P(X)
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and Variance

λ λ λ λ = 6

0 1 2 3 4 5

0
.2
.4
.6

0 2 4 6 8 10

X

P(X)2        σ λ σ λ= =



Continuos Random Variables

� Continuous random variable:
� Values from interval of numbers (absence of gaps)
� This implies, that for every single value, the probability that the variable 

takes on this value is 0

� Continuous probability distribution:
� Distribution of continuous random variable
� Transition from a histogram to a continuous function
� The probability that the random variable takes on a value in the interval 
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� The probability that the random variable takes on a value in the interval 
[a, b] is the area under the function between the values a and b

� Probability density function:
� The derivation of the probability distribution

� Important continuous probability distributions:
� The uniform distribution
� The exponential distribution
� The normal distribution



The Uniform Distribution

� Properties:
� The probability of occurrence of a value is equally likely to occur anywhere 

in the range between the smallest value a and the largest value b
� Also called the rectangular distribution

� Mean:
( )

2

a b
µ

+
=
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� Variance:  

2

( )2

2

12

b a
σ

−
=



The Uniform Distribution

� The probability density function of the uniform distribution

� Application: Selection of random numbers
� E.g., A wooden wheel is spun on a horizontal surface and allowed to 

come to rest. What is the probability that a mark on the wheel will point to 

( ) ( )
1

   if f X a X b
b a

= ≤ ≤
−
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come to rest. What is the probability that a mark on the wheel will point to 
somewhere between the North and the East?

( ) 90
0 90 0.25

360
P X< < = =

o

o o

o



Exponential Distributions

( )arrival time 1

:  any value of continuous random variable

:  the population average number of

      arrivals per unit of time

XP X e

X

λ

λ

−< = −
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1/ :  average time between arrivals

2.71828e

λ
=

E.g., Drivers arriving at a toll bridge; 
customers arriving at an ATM machine



Exponential Distributions

� Describe Time or Distance between Events
� Used for queues

� Density Function

�

f(X)
λλλλ = 0.5( ) 1 x

f x e λ

λ
−

=
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� Parameters

� X

λλλλ = 2.0
( )f x e

λ
=

       µ λ σ λ= =



Exponential Distributions: Example

30       5 / 60 hoursXλ = =

� Customers arrive at the checkout line of a supermarket at the rate 
of 30 per hour.  

� What is the probability that the arrival time between consecutive 
customers will be greater than 5 minutes? 

58
©  Dr.-Ing G. Schäfer

Simulation Project: 05 – Obtaining Data from Simulations

( ) ( )
( )( )30 5/ 60

30       5 / 60 hours

arrival time > 1 arrival time 

                              1 1

                              .0821

X

P X P X

e

λ

−

= =
= − ≤

= − −

=



The Normal Distribution

� Properties:
� “Bell Shaped”
� Symmetrical
� Mean, Median and 

Mode are Equal
X

f(X)

µµµµ
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Mode are Equal
� Random Variable

Has Infinite Range Mean 
Median 
Mode

X
µµµµ



The Mathematical Model

( ) ( )

( )

2
(1/ 2) /1

2

:  density of random variable 

3.14159;       2.71828

X
f X e

f X X

e

µ σ

πσ

π

− −  =

≈ ≈
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( )

3.14159;       2.71828

:  population mean

:  population standard deviation

:  value of random variable 

e

X X

π
µ
σ

≈ ≈

−∞ < < ∞



Many Normal Distributions

There are an Infinite Number of Normal Distributions
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Varying the Parameters σ and µ, We Obtain 
Different Normal Distributions



The Standardized Normal Distribution

When X is normally distributed with a mean     and a standard deviation    ,                    

follows a standardized (normalized) normal distribution with a mean 0 and a 
standard deviation 1.

X
Z

µ
σ
−=

f(X)f(Z)

µ σ
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X

f(X)

µ

Z

σ

0Zµ =

1Zσ =

f(Z)



Finding Probabilities

Probability is 
the area under 
the curve!

f(X)

( ) ?P c X d≤ ≤ =
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c d
X



Which Table to Use?
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Infinitely Many Normal Distributions 
Means Infinitely Many Tables to Look Up!



Solution: The Cumulative Standardized Normal Distribution

Z .00 .01

0.0 .5000 .5040 .5080

.5398 .5438

.5478
.02

0.1 .5478

Cumulative Standardized Normal 
Distribution Table (Portion) 0     1Z Zµ σ= =
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.5398 .5438

0.2 .5793 .5832 .5871

0.3 .6179 .6217 .6255

0.1 .5478

Probabilities

Only One Table is Needed

Z = 0.12

0



Standardizing Example

6.2 5
0.12

10

X
Z

µ
σ
− −= = =

Normal Distribution Standardized 
Normal Distribution

10σ = 1Zσ =
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1Zσ =

5µ =
6.2 X Z

0Zµ =
0.12



Example:

Normal Distribution Standardized 
Normal Distribution

10σ = 1σ =

2.9 5 7.1 5
.21          .21

10 10

X X
Z Z

µ µ
σ σ
− − − −= = = − = = =

( )2.9 7.1 .1664P X≤ ≤ =

.0832
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10σ = 1Zσ =

5µ =
7.1 X Z0Zµ =

0.212.9 0.21−

.0832

.0832



Z .00 .01

0.0 .5000 .5040 .5080
.5832

.02

Cumulative Standardized Normal 
Distribution Table (Portion) 0     1Z Zµ σ= =

Example: ( )2.9 7.1 .1664P X≤ ≤ =
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0.0 .5000 .5040 .5080

.5398 .5438

0.2 .5793 .5832 .5871

0.3 .6179 .6217 .6255

0.1 .5478

Z = 0.21

0



Z .00 .01

-0.3 .3821 .3783 .3745

.4168.02

Cumulative Standardized Normal 
Distribution Table (Portion) 0     1Z Zµ σ= =

Example: ( )2.9 7.1 .1664P X≤ ≤ =
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-0.3 .3821 .3783 .3745

.4207 .4168

-0.1.4602 .4562 .4522

0.0 .5000 .4960 .4920

-0.2 .4129

Z = -0.21

0



Back to Simulation...

� When performing a simulation study, we are usually interested in 
obtaining answers to some quantitative questions

� One very common question in this respect is:
� What is the mean value of some defined metric of the system under 

study?

� Example:
� Packets arrive with an average inter-arrival time of 1/ λ at a router 

70
©  Dr.-Ing G. Schäfer

Simulation Project: 05 – Obtaining Data from Simulations

� The router has two outgoing links and arriving packet joins link i with 
probability φi 

� The service time on link i is µi

µ1

µ2

λ

(mostly compiled from [Tow04])



Gathering Performance Statistics

� Average delay at queue i: 
� Record Dij : delay of customer j at queue i 
� Let Ni be # customers passing through queue i

iN
total simulated time

� Throughput at queue i,  γi =

i

N

j
ij

i N

D

T

i

∑
== 1
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iii TN γ=� Average queue length at i:

total simulated time

Little’s Law
(not treated here)



Analyzing Output Results (1)

� Each time we run a simulation (using different random number 
streams), we will get different output results!

distribution of random numbers
to be used during simulation
(interarrival, service times)

random number sequence 1 simulation output results 1
input output
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random number sequence 1 simulation output results 1

random number sequence 2 simulation output results 2
input output

random number sequence M simulation output results M
input output

… … … … … …



Analyzing Output Results (2)

� Example: Delay 
experienced by each 

µ1

µ2

λ
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experienced by each 
customer in queue 2

� W2,n: delay of nth 
departing customer from 
queue 2



Analyzing Output Results (3)

� Each run shows variation in 
customer delay

µ1

µ2

λ
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customer delay
� One run different from next
� Statistical characterization of 

delay must be made
� Expected delay of n-th 

customer
� Behavior as n approaches 

infinity
� Average of n customers



Transient Behavior

� Simulation outputs that depend on initial condition (i.e., output value 
changes when initial conditions change) are called transient 
characteristics
� “Early” part of simulation
� Example: The first customer entering a supermarket in the morning 

will always find an empty queue at the counter  
� Later part of simulation less dependent on initial conditions
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µ1

µ2

λ



Effect of Initial Conditions

� Histogram of delay of 20th

customer, given initially empty 
(1000 runs)

� Histogram of delay of 20th

customer, given non-empty 
conditions
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Steady state behavior

� Output results may converge to limiting “steady state” value if 
simulation run “long enough”

avg delay
of packets 

[n, n+10] avg of 5 simulations“Knee”
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� Discard statistics gathered during transient phase, e.g., ignore first k 
measurements of delay at queue 2

kN

D

T
i

N

kj
ij

i

i

−
=
∑

=

� Pick k so statistic is “approximately 
the same” for different random 
number streams and remains same 
as n increases



Estimating the Transient Phase (1)

� Perform m independent replications containing n observations each:

{ }m

iji njX
1, ...,,1,

=
=

� Calculate mean across all replications: 

njX
m

X
m

i
jij ...,,1,

1

1
, == ∑

=
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� Calculate overall mean across all replications: 

∑
=

=
n

j
jX

n
X

1

1

� Remove first k observations when calculating overall mean: 

1...,,1,
1

1

−=
−

= ∑
+=

nkX
kn

X
n

kj
jk



Estimating the Transient Phase (2)

� Compute and plot as a function of k:

X

XX k −

� Identify the position k0 of the “knee” and discard the first k0
observations in subsequent runs 

� In order to facilitate computation of       , it is better to
record the running sum of all prior values instead of ∑=

k

jiki XS ,,
kX
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record the running sum of all prior values instead of 
recording the values themselves:

� Individual values can still be easily obtained by simple subtraction

� With this we get: 

∑
=j

jiki
1

,,

∑
=

=
m

i
niS

mn
X

1
,

11
and ( )∑

=

−
−

=
m

i
kinik SS

mkn
X

1
,,

11



Confidence Intervals (1)

� Run simulation: get estimate X1 as estimate of performance metrics 
of interest

� Repeat simulation M times (each with new set of random numbers), 
get X2, … XM – all different!

� Which of X1, … XM is “right”?

� Intuitively, average of M samples should be “better” than choosing 
any one of M samples
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any one of M samples

M

X

X

M

j
j∑

== 1
How “confident”
are we in X?
How “confident”
are we in X?



Confidence Intervals (2)

� We can not get perfect estimate of true mean, µ, with finite # samples
� Instead, we look for bounds: find c1 and c2 such that:

Probability(c1 < µ < c2) = 1 – α

[c1,c2]: confidence interval
100(1-α)%: confidence level
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� One approach for finding c1, c2 (suppose α=.1)
� Take k samples (e.g., k independent simulation runs)
� Sort
� Find largest value is smallest 5% -> c1

� Find smallest value in largest 5% -> c2



� Central Limit Theorem: If samples X1, … XM are independent and from 
same population (independent identically distributed, i.i.d.) with 
population mean µ and standard deviation σ, then

M

X

X

M

j
j∑

== 1the sample mean:

σ

Confidence Intervals – The Central Limit Theorem
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is approximately normally distributed with mean µ and standard deviation 
M

σ



Confidence Intervals (3)

� However, we usually do not know the population’s standard 
deviation

� So, we estimate it using the sample’s (observed) standard 
deviation:

∑
=

−
−

=
M

m
mX XX

M 1

22 )(
1

1σ

� Given we can now find upper and lower tails of normal distributions 
2,X σ
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� Given we can now find upper and lower tails of normal distributions 
containing α100% of the mass

2, XX σ



� If we calculate confidence 
intervals as in the above 
recipe for α = 0.5, 95% of 
the confidence intervals thus 
computed will contain the 
true (unknown) population 
mean

Interpretation of Confidence Intervals
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Computing a Sample’s Variance Simplified 

� Computing the sum of squared samples leads to simpler computation:

( )

12
1

2
1

1

)(
1

1

22

1

22

1

22





 +−=

+−
−

=

−
−

=

∑ ∑ ∑

∑

∑

=

=

XXXX

XXXX
M

XX
M

M M M

M

i
ii

M

i
iXσ
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1

2
1

1

12
1

1

1

22

2

1

2

1 1 1

22

−

−
=








 +−
−

=








 +−
−

=

∑

∑

∑ ∑ ∑

=

=

= = =

M

XMX

XMXMXX
M

XXXX
M

M

i
i

M

i
i

i i i
ii



M1

� Given samples X1, … XM, (e.g., having repeated simulation M 
times), compute

M

X

X

M

j
j∑

== 1

Confidence Intervals: The Recipe (1)
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∑
=

−
−

=
M

m
mX XX

M 1

22 )(
1

1σ

95% confidence interval:
M

X Xσ96.1±



Confidence Intervals: The Recipe (2)

� Why does this work?
� If the Xi have been observed running the same simulation program 

with different seed values for the random number generation (with 
enough “distance” between the seed values), then they are 
independent and identically distributed (i.i.d.) with some mean  µ and 
variance σ2

� With ∑=
M

XX
1
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� With 

we have:

∑
=

=
i

iM X
M

X
1

1

[ ] 






=






= ∑∑
==

M

i
i

M

i
iM XE

M
X

M
EXE

101

11

[ ] µµ === ∑
=

M
M

XE
M

M

i
i

11

1



Confidence Intervals: The Recipe (3)

� Furthermore,

and 

� Because of the central limit theorem, for large M the XM are normal 

2

11

][ σMXVARMXVAR i

M

i =⋅=







∑

=

[ ]M

M

i XVAR
M

M
M

X
M

VAR ===







∑

=

2
2

2
11

11 σσ

σ
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� Because of the central limit theorem, for large M the XM are normal 
distributed with expected value µ and standard deviation

� In practice, this gives a good estimation already for M>30
M

σ



Confidence Intervals: The Recipe (4)

� Consider now the random variable

� Z is normal distributed with mean 0 and variance 1

� We now look for             and           so that

M

X
Z M

σ
µ−=

2
αZ−

2
αZ
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� From the table of the N(0,1) normal distribution we obtain the value 
for a given α (~“the amount of confidence we are aiming at”)

� For α = 0.05, we obtain 

ααα −=




 ≤≤− 1

22
ZZZP

2
αZ

96.1
2

=αZ



Confidence Intervals: The Recipe (5)

σσ

ασ
µ

α

αα

αα



−=
















≤−≤−⇔

−=




 ≤≤−

1

1

22

22

Z

M

X
ZP

ZZZP

M
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� This leads to our formula                         for the confidence interval

ασµσ

ασµσ

αα

αα

−=




 +≤≤−⇔

−=




 +−≤−≤−−⇔

1

1

22

22

M
ZX

M
ZXP

M
ZX

M
ZXP

MM

MM

M
X Xσ96.1±



� In order to obtain enough i.i.d. observations, we have two simple 
alternatives (others exist):

� Independent replications: perform M independent runs with different 
seeds (also remember to delete k observations from transient phase): 
� However, if we want to use the central limit theorem, we should at 

least perform 30 independent simulation runs...
� Alternatively, we can use a student-t distribution instead of the 

normal distribution if M<30 (we do not explain why here)

Generating Confidence Intervals for Steady State Measures
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normal distribution if M<30 (we do not explain why here)

� Batch means: take a single run, delete first k observations, divide 
remainder into n groups and obtain Xi for i-th group, i = 1,…,n
� Follow procedure for independent replications
� Complication due to non-independence of Xis
� Potential efficiency gain due to deletion of only k observations
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